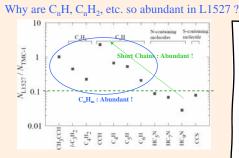

Abundant Carbon-Chain Molecules toward a Low-Mass Protostar


IRAS04368+2557 in L1527

Nami Sakai¹, Takeshi Sakai², Tomoya Hirota³, and Satoshi Yamamoto¹

(1Dept. of Physics, The Univ. of Tokyo, 2Nobeyama Radio Observatory, 3National Radio Observatory of Japan) (Sakai et al. 2008, ApJ, 672, 371)

We have detected the high excitation lines of carbon-chain molecules such as C_4H_2 ($J = 10_{0,10} - 9_{0,9}$, $E_u = 24$ K), C_4H (N = 9 - 8, F_2 , $E_u = 21$ K), l- C_3H_2 ($4_{1,3} - 3_{1,2}$, $E_u = 23$ K), and CH_3CCH (J = 5 - 4, K = 2, $E_u = 41$ K) toward a low-mass star forming region, L1527. In particular, the F_2 line of C_4H is as strong as 1.7 K in T_{MB} . The rotation temperature of C_4H_2 is determined by the multi-transition observation to be 12.3 ± 0.8 K, which is significantly higher than that in TMC-1. Furthermore, the column density of C₄H₂, is derived to be about 1/4 of that in TMC-1, indicating that carbon-chain molecules are abundant in L1527 for a star forming region. Small mapping observations show that the C_4H , C_4H_2 and c- C_3H_2 emissions are distributed from the outer envelope to the inner part of the protostellar disk. In addition, we have detected the lines of C_5H , HC_7N , and HC_9N in the 20 GHz region. Since the carbon-chain molecules are thought to be generally deficient in star forming cores, the above results cannot simply be explained by the existing chemical models. If the timescale of the prestellar collapse in L1527 is shorter than those of the other star forming cores, the carbon-chain molecules can survive in the central part of the core. In addition, regeneration processes of the carbon-chain molecules due to star formation activities would play an important role. Evaporation of CH4 from the grain mantles would drive the regeneration processes. This is new chemistry in a warm and dense region near the protostars, which is named "Warm Carbon-Chain Chemistry (WCCC)".

Origin of Abundant Carbon-Chains in L1527 **<u>6 Time Scale of the Prestellar Collapse</u>**

be deficient in star forming cores.

ex. CCS, CCH, H2CCCC, HCCCCCN, etc. cf; NGC1333IRAS4B IRAS16293-2422 Star-formation Carbon-chain molecules are deficient. (e.g. Sakai et al. 2007, van Dishoeck et al. 1995)

Starless core

L1527 **close to the free-fall case?** even in the central part.

Some carbon-chain molecules could survive

we can learn a timescale of the protostellar collapse ??

Warm Carbon-Chain Chemistry (WCCC) Evaporation of CH₄ would also contribute to the regeneration of carbon-chain molecules. (Sakai et al. 2007, ApJ, in press: Regeneration of C_nH_m Aikawa et al. 2007, ApJ, in press) $CH_4 + C^+ \rightarrow C_2H_3^+ + H$ $C_2H_3^+ + e$ $C_2H_2 + H_1$ $C_2H_2 + C_1 \rightarrow$ $C_3H^+ + H$ CH₄ in grain mantle: Low sublimation temperature ~30 K · Substantial amount

Detailed distribution is the KEY

Nami Sakai, e-mail: nami@taurus.phys.s.u-tokyo.ac.jp