Lectures on Gravitational-Wave Astronomy

Yanbei Chen California Institute of Technology

RESCEU Summer School, Kanazawa, Japan, September 2024

Interaction between GW and Detectors

- Three different "*physical* effects" (which are in fact **gauge dependent**):
 - 1. Proper time τ differ from *t* (gravitational redshift)
 - 2. Test masses move under gravity force
 - 3. Light rays distorted due to metric perturbation.

Interaction between GW and Detectors

gravitational redshift

$$\delta t_{\text{redshift}} = \int \left(\frac{d\tau}{dt_D} - 1\right) dt_D = -\frac{1}{2} \int^t h_{00}(t, x_D^j) dt$$

tidal displacement $\frac{d^2 x_D^j}{dt^2} + \Gamma_{00}^j = 0 \, . \quad \Gamma_{00}^j = \frac{1}{2} \left[2h_{j0,0} - h_{00,j} \right]$

$$n^j = (X, Y, Z)/L, \qquad \delta t_{\text{disp}} = n^j \delta x_D^j$$

distortion of light propagation

$$\delta t_{\rm prop} = \frac{1}{2L} \int h_{\mu\nu} [x^{\rho}_{\rm ray}(\lambda)] \frac{dx^{\mu}_{\rm ray}(\lambda)}{d\lambda} \frac{dx^{\nu}_{\rm ray}(\lambda)}{d\lambda} = \frac{L}{2} \int_0^1 d\lambda \left[h_{00} + h_{0j} n^j + h_{ij} n^i n^j \right]$$

Gauge transformation:
$$h_{\mu\nu} \rightarrow h_{\mu\nu} - \xi_{\mu,\nu} - \xi_{\nu,\mu}$$

TT Gauge

Response to GW in TT gauge

integral of the projection of h_{ij} along light propagation direction

Response to GW in TT gauge

$$\Delta t = \frac{L}{2} \int_0^1 d\zeta n^i n^j h_{ij}^{TT} (t + \zeta L, \mathbf{x}_A + \zeta \mathbf{n}L)$$

A _____ B

integral of the projection of h_{ij} along light propagation direction

Long wavelength Low frequency

$$\Delta t \approx \frac{Lh_{ij}n^i n^j}{2}$$

in general, for
$$h_{ij} = \sum_{p=+,\times} H_p e_{p,ij}(\mathbf{k}) e^{-i\omega t + i\mathbf{k}\cdot\mathbf{x}}$$

$$\Delta t = \frac{H_p e_{p \, ij}(\mathbf{k}) n^i n^j}{2} \frac{e^{-i\omega(t+L)+i\mathbf{k}\cdot\mathbf{x}_B} - e^{-i\omega t + i\mathbf{k}\cdot\mathbf{x}_A}}{-i(\omega - \mathbf{k}\cdot\mathbf{n})}$$

 $\begin{array}{ccc} \mbox{polarization matching} & \mbox{phase matching} \\ n \perp k & n \propto k \end{array}$

Local Lorentz Frame

Ground-Based Laser Interferometers

Ground-Based Laser Interferometers

Quantum Limit: Sensing versus Back Action

Must introduce light field to fully describe measurement process

Sensing Noise: Position Uncertainty from N photons: $\Delta x \sim \frac{1}{\sqrt{2N}} \frac{\lambda}{2\pi}$

Back-Action Noise: Momentum Uncertainty from N photons: $\Delta p \sim \sqrt{\frac{N}{2}} \hbar \frac{2\pi}{\lambda}$

Total Uncertainty:
$$\Delta x_{\text{tot}} \sim \sqrt{\Delta x^2 + \frac{\Delta p^2 T^2}{M^2}} = \sqrt{\frac{1}{2N} \left(\frac{\lambda}{2\pi}\right)^2 + \frac{\hbar^2 T^2}{M^2} \frac{N}{2} \left(\frac{2\pi}{\lambda}\right)^2}$$

Photon's fluctuations also lead to the Standard Quantum Limit: $\Delta x_{tot} \ge \Delta x_{SQL}$

Frequency-Dependent Squeezing with LIGO

[Ganapathy et al., 2023]

[Ganapathy et al., 2023]

Future Detectors

Home Overview Science News CE Consortium Researchers Funding Jobs Meetings Land Acknowledgemen Cosmic Explorer www.cosmicexplorer.org

Einstein Telescope

Future Detectors

www.cosmicexplorer.org

Laser Interferometer Space Antenna

LISA - LASER INTERFEROMETER SPACE ANTENNA

Gravitational waves are ripples in spacetime that alter the distances between objects. LISA will detect them by measuring subtle changes in the distances between **free-floating cubes** nestled within its three spacecraft.

· eesa

Laser Interferometer Space Antenna

(a)

(b)

Laser Interferometer Space Antenna

DECIGO

[Shuichi Sato and Seiji Kawamura]

Space Based Detectors

Pulsar Timing Array

HUNTING GRAVITATIONAL WAVES USING PULSARS

Rulsar

Gravitational waves from supermassive black-hole mergers in distant galaxies subtly shift the position of Earth.

0

0

NEW MILLISECOND PULSARS An all-sky map as seen by the Fermi Gamma-ray Space Telescope in its first year

0

0 0

0

2 Telescopes on Earth measure tiny differences in the arrival times of the radio bursts caused by the jostling.

> 3 Measuring the effect on an array of pulsars enhances the chance of detecting the gravitational waves.

 $\Delta t = \frac{H_p e_{p \, ij}(\mathbf{k}) n^i n^j}{2} \frac{e^{-i\omega(t+L)+i\mathbf{k}\cdot\mathbf{x}_B}}{2} - e^{-i\omega t+i\mathbf{k}\cdot\mathbf{x}_A}$ $-i(\omega - \mathbf{k} \cdot \mathbf{n})$

Stochastic Background From PTA

[[]Jenet & Romano, 2014]

NanoGrav 15 Year Result

Gabriella Agazie et al 2023 ApJL 951

The Gravitational-Wave Spectrum

gwplotter.com

Sources of Gravitational Waves

[National Astronomical Observatory of Japan, gwpo.nao.ac.jp]

Inflation and Stochastic GW background

- Motivation for inflation
 - Universe is nearly spatially flat right now
 - the CMB is very homogeneous
- Inflation
 - The universe expanded very fast
 - Slow-roll inflation: a period where expansion rate is constant
 - Drives fluctuations in energy density and curvature of the universe.
 - Generates stochastic gravitational waves

Inflation and Stochastic GW background

[LIGO-VIRGO Collaboration, 2009]

Constraints on Primordial Black Holes

[Green & Kavanagh, 2021]

Formations of Galaxies

Stellar formation history

Lookback time (Gyr)

Stellar Evolution

Galactic field versus clusters **Globular** Cluster Nuclear Cluster Globular 633 clusters Stellar halo 00 Pop. II stars 83 Galactic Sun Galactic disk center Galactic Dust [©] bulge 0 50 kpc

0

Population I

stars

8

.

Formation of Merging Binaries

Binary stars that evolve into compact objects, and then become very close to each other

Binaries that form via triple or quadrupole interaction

Galactic field versus clusters

Galactic Field	Globular Clusters	Nuclear Clusters
		Dynamical formation
	Dynamical formation	due to close
Core-Collapse Supernova	due to close encounters	encounters, esp in migration traps
Mass Gap between 50—65 and 130—160, due to Pair Instability.	Substantial Spin? [Equal-mass non- spinning binaries create	Substantial Spin?
	a/M ~ 0.7]	BH may not escape?
Low spins?	BH easily escape?	Multiple Generations?
		Signatures interacting with SMBH? Disk?

GW191103_012549 GW191105_143521 GW191109_010717 GW191113_071753 GW191126_115259 GW191127_050227 GW191129_134029 GW191204_110529 GW191204_171526 GW191215_223052 GW191216_213338 *GW191219_163120* GW191222_033537 GW191230_180458 GW200105_162426 GW200112_155838 GW200115_042309 GW200128_022011 GW200129_065458 GW200202_154313 GW200208_130117 GW200208_222617 GW200209_085452 GW200210_092254 GW200216_220804 GW200219_094415 GW200220_061928 GW200220_124850 GW200224_222234 GW200225_060421 GW200302_015811 GW200306_093714 GW200308_173609* GW200311_115853 GW200316_215756 GW200322_091133*

Effect of phase cumulation

$$\chi_{\rm eff} = \frac{(m_1 \vec{\chi_1} + m_2 \vec{\chi_2}) \cdot \hat{L}_{\rm N}}{M},$$

Effect of precessions

$$\chi_{\rm p} = \max\left\{\chi_{1,\perp}, \frac{q(4q+3)}{4+3q}\chi_{2,\perp}\right\},$$

GW190521

Parameter	
Primary mass	$85^{+21}_{-14}~M_{\odot}$
Secondary mass	$66^{+17}_{-18}~M_{\odot}$
Primary spin magnitude	$0.69\substack{+0.27\\-0.62}$
Secondary spin magnitude	$0.73\substack{+0.24\\-0.64}$
Total mass	$150^{+29}_{-17}~M_{\odot}$
Mass ratio $(m_2/m_1 \le 1)$	$0.79^{+0.19}_{-0.29}$
Effective inspiral spin parameter (χ_{eff})	$0.08^{+0.27}_{-0.36}$
Effective precession spin parameter (χ_p)	$0.68^{+0.25}_{-0.37}$
Luminosity Distance	$5.3^{+2.4}_{-2.6}$ Gpc
Redshift	$0.82^{+0.28}_{-0.34}$
Final mass	$142^{+28}_{-16} M_{\odot}$
Final spin	$0.72^{+0.09}_{-0.12}$
$P \ (m_1 < 65 \ M_{\odot})$	0.32%
log_{10} Bayes factor for orbital precession	$1.06^{+0.06}_{-0.06}$
log ₁₀ Bayes factor for nonzero spins	$0.92^{+0.06}_{-0.06}$
log_{10} Bayes factor for higher harmonics	$-0.38^{+0.06}_{-0.06}$

- Massive
- May have orbital precessions.

GW190521

Population III stars

Collisions of Galaxies and their BHs

NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/ Stony Brook University), K. Noll (STScI), and J. Westphal (Caltech)

Collisions of Galaxies and their BHs

"Hardening" of Super-Massive Black Holes after a galaxy merger [Begelman, Blandford, Rees, 1980]

Hardening of SMBH Binaries

[Kelly, Blechia and Hernquist, 2017]

Stochastic Background from SMBH Mergers

LISA Sources

SMBH Binaries for LISA

SNR for q = 0.2 binaries with total mass M. [K. Danzmann et al., LISA Proposal]

... from LISA Proposal

- "Trace the origin, growth and merger history of massive black holes across cosmic ages
- Search for seed black holes at cosmic dawn
- Study the growth mechanism of MBHs from the epoch of the earliest quasars
- Observation of EM counterparts to unveil the astrophysical environment around merging binaries
- Test the existence of Intermediate Mass Black Hole Binaries (IMBHBs)"

Extreme Mass Ratio Inspirals (EMRIs)

- Stellar-mass object circles SMBH for long many cycles.
- Can be treated with black-hole perturbation theory (second order): interesting theoretical problem.
- Maps space-time geometry around and astrophysical environments around SMBH.
- Form via direct capture & tidal disruption of stellar-mass binaries.
 Enhanced for SMBH binaries.

Multi-Band Observations

- Adding Deci-Hertz detector (e.g., DECIGO, TOBA) will be more productive!
- Triple systems offer more opportunities!

[Jani, Shoemaker and Cutler, 2020]

Summary of Lecture 2

