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Interaction between GW and Detectors

Figure 1: The setup of the detectors A and B in a space-time diagram. In both coordinates the detector A
happens to stay at the spatial origin, while the world line of B is (t,X + �xB(t), Y + �yB(t), Z + �zB(t))
(indicated by green dashed curve) which are spatially separated from (t,X, Y, Z) by O(h), where (X,Y, Z)
is the constant spatial location of B in absence of gravitational waves. The blue dashed curve indicates the
light ray that travels from the spatial origin at t = T � L (event A in the diagram) to the spatial location
(X,Y, Z), it arrives at T + �tprop. The red curve indicates the light ray that propagates from event A the
spatial location of detector B at T , it arrives with an additional delay of �tdisp. Not shown in the diagram is
that due to redshift, the clock reading at B differs from the coordinate time t+�tdisp+tprop by an additional
�tredshift.

2 A Simple Gravitational-Wave Detector In A General Coordinate System

2.1 The Setup of the Detector

We consider the simplest possible gravitational-wave detector, in which light travels between an emitter A,
and a receiver B, both freely falling, each of which carries an ideal clock, which records the proper time
when sending and receiving light pulses. In absence of gravitational waves, both detectors are at rest relative
to each other, with a known spatial distance L, therefore the pulse delay between them — as measured by
their local clocks — will also be L. As a gravitational wave arrives, pulse delay will differ from L, and this
difference will be used to measure the gravitational wave. The space-time diagram of our simple experiment
is displayed in Fig. 1.

We set up a Cartesian coordinate system x
µ = (x0, x1, x2, x3) = (t, x, y, z). We shall use Greek indices

to run through 0, 1, 2, 3. Without loosing generality, in absence of gravitational waves, the detector A stays
at the spatial origin, with (xA, yA, zA) = (0, 0, 0) while the detector B stays at rest at spatial location
(xB, yB, zB) = (X,Y, Z). We also assume the gravitational wave to travel along the +z direction. In the
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• Three different “physical effects” (which are in fact gauge dependent):

1. Proper time  differ from  (gravitational redshift)

2. Test masses move under gravity force

3. Light rays distorted due to metric perturbation.

τ t

• Two free masses initially at rest.

• Light travels from A to B. 

• Ideal clocks measure arrival 

time
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2.2.2 Displacement of detectors

Next, let us solve for the trajectory x
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To solve for the specific trajectory of each detector, we will need its initial spatial position and initial
speed at an early time. For a detectors whose unperturbed position is at (X,Y, Z), i.e., the position in
absence of gravitational waves, at linear order in h, we can simply set initial position at (X,Y, Z), initial
speed zero, and evaluate �j

00 at (t, x, y, z) = (t,X, Y, Z). Given the trajectory x
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detector due to the gravitational wave.
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2.2.3 Propagation of light

Finally, let us evaluate the additional pulse arrival time delay due to the modification to light propagation
caused by gravitational waves. Let us, for the moment, assume that the emitter and the receiver still stay at
constant spatial coordinate locations, with A at xjA = (0, 0, 0) and B at xjB = (X,Y, Z) — and combine
with the effect of the motions of the detectors in the coordinate system later. Suppose the light pulse is
emitted from A at t = T � L, while arriving at B at t = T + �t. In this way, the full coordinates of the
beginning point P and the end point Q of the ray is given by

x
µ
P = (T � L, 0, 0, 0) , x

µ
P = (T + �t,X, Y, Z) . (14)

We can then connect P and Q using a straight line in the coordinate system,

x
µ
ray(�) = (T � L+ �(L+ �t),�X,�Y,�Z) (15)

Using the extremity condition of the action, we have [14]
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Here we have defined
n
j = (X,Y, Z)/L, (19)

which is the spatial unit normal vector from A to B. Note that in the integral, the argument of hµ⌫ is along
the ray. However, since we work at the linear order in h, we only need to keep the leading x

µ
ray(�) when

plugging into hµ⌫

2.3 The total time delay

At linear order in h, the effect of redshift, displacement and propagation should be linearly superimposed to
obtain the total time delay:

�tdelay = �tredshift + �tdisp + �prop (20)

The only ambiguity between gauges can be a time-independent constant in �tdelay, which arises from an
offset between the zero points of the two clocks — while the time-dependent part of the time delay should
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distortion of light propagation

Figure 1: The setup of the detectors A and B in a space-time diagram. In both coordinates the detector A
happens to stay at the spatial origin, while the world line of B is (t,X + �xB(t), Y + �yB(t), Z + �zB(t))
(indicated by green dashed curve) which are spatially separated from (t,X, Y, Z) by O(h), where (X,Y, Z)
is the constant spatial location of B in absence of gravitational waves. The blue dashed curve indicates the
light ray that travels from the spatial origin at t = T � L (event A in the diagram) to the spatial location
(X,Y, Z), it arrives at T + �tprop. The red curve indicates the light ray that propagates from event A the
spatial location of detector B at T , it arrives with an additional delay of �tdisp. Not shown in the diagram is
that due to redshift, the clock reading at B differs from the coordinate time t+�tdisp+tprop by an additional
�tredshift.

2 A Simple Gravitational-Wave Detector In A General Coordinate System

2.1 The Setup of the Detector

We consider the simplest possible gravitational-wave detector, in which light travels between an emitter A,
and a receiver B, both freely falling, each of which carries an ideal clock, which records the proper time
when sending and receiving light pulses. In absence of gravitational waves, both detectors are at rest relative
to each other, with a known spatial distance L, therefore the pulse delay between them — as measured by
their local clocks — will also be L. As a gravitational wave arrives, pulse delay will differ from L, and this
difference will be used to measure the gravitational wave. The space-time diagram of our simple experiment
is displayed in Fig. 1.

We set up a Cartesian coordinate system x
µ = (x0, x1, x2, x3) = (t, x, y, z). We shall use Greek indices

to run through 0, 1, 2, 3. Without loosing generality, in absence of gravitational waves, the detector A stays
at the spatial origin, with (xA, yA, zA) = (0, 0, 0) while the detector B stays at rest at spatial location
(xB, yB, zB) = (X,Y, Z). We also assume the gravitational wave to travel along the +z direction. In the
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rest of the paper, we shall set c = 1.
In the next sections, in presence of the gravitational wave, we shall add a perturbation to the metric,

study how the detectors A and B will move in this coordinate system, how clocks carried by A and B run at
proper times that differ from the coordinate time, and how light propagation between A and B are affected.

2.2 Time delay for a generic gravitational-wave metric

For the gravitational wave, we shall denote its metric perturbation with hµ⌫ , writing

ds
2 = (⌘µ⌫ + hµ⌫)dx

µ
dx

⌫ (1)

For components of hµ⌫ , we will perform a 3+1 decomposition, writing

khµ⌫k =

 
h00 h0j

hi0 hij

!
(2)

In this paper, the Latin indices i, j, k, . . . run through 1, 2, and 3. In Eq. (2), h00 is the time-time component
of metric perturbation, h0j = hj0 are the three time-space components, while the hij = hji contain 6
independent space-space components. Throughout this paper, we shall consider perturbations up to linear
order in hµ⌫ .

2.2.1 Gravitational Redshift

In this subsection, we shall relate the proper time read by ideal clocks carried by the detectors to the coordi-
nate time of the detector. To be more specific, we shall denote the world line of detector D (here D can be
either A or B) by x

↵
D(⌧). More specifically, x0D(⌧) = tD(⌧) is coordinate time as a function of proper time,

while x
j
D(⌧) describes the detector’s spatial trajectory as a function of proper time.

The four-velocity of the detector is given by

u
↵
D =

dx
↵
D

d⌧
, (3)

and here we already know that ujD = O(h), because the detectors do not move in absence of gravitational
waves. Using the normalization condition for the four velocity,
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�
D

d⌧
= �1 (4)

we can obtain

gij
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dtD
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j
D

d⌧
+ g00

✓
dtD

d⌧

◆2

= �1 (5)

Since dx
j
D/d⌧ and g0j are O(h), the first two terms on the left-hand side of the above equation are at least
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Gauge transformation:  hμν → hμν − ξμ,ν − ξν,μ



TT Gauge
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Local Lorentz Frame
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be guage independent.

3 Contributions to time delay in TT gauge and the long-wavelength approx-
imation of LLF

3.1 TT Gauge

In the TT gauge, hµ⌫ only has spatial components hij . For a gravitational wave traveling along the z

direction, within the + polarization, we can express hij in a matrix form [1]

khTT
ij k =

0

BB@

h+(t� z) 0 0

0 �h+(t� z) 0

0 0 0

1

CCA (21)

Here h+ and h⇥ are waveforms for the + and ⇥ polarizations. For the sake of simplicity, we only consider
the + polarization in the rest of the calculation.

Because h only has spatial components in the TT gauge, from Secs. 2.2.1 and 2.2.2, we can see that the
detectors remain at rest, with A at the spatial origin and B at (X,Y, Z). The proper times measured by their
local clocks are equal to the coordinate time as well. We only need to focus on the light propagation effect.
From Sec. 2.2.3, we can write

�t
TT
delay =

(X2 � Y
2)

2L

Z 1

0
h+(T � L+ �L� �Z)d� (22)

For low gravitational-wave frequencies, or long wavelengths, we can expand the time delay (22) by treating
L and Z inside the argument of h+ as small quantity, obtaining, up to second order:

�t
TT
delay =

(X2 � Y
2)

2L


h(T )� 1

2
(L+ Z)ḣ+(T ) +

1

6
(L2 + LZ + Z

2)ḧ+(T )

�
(23)

In this formula, the order of time derivatives on h+ coincides the order in the long-wavelength, or low-
frequency, expansion.

3.2 Local Lorentz Frame within the long-wavelength approximation

For the Local Lorentz frame, the metric takes a different form. We shall still use the same x
µ = (t, x, y, z)

for Cartesian coordinates, but we realize that the coordinates here are related to those in the TT gauge via a
coordinate transformation. At leading order in the long-wavelength approximation, we can write [1]

khLLF,LWµ⌫ k =

 
C00 C0k

Cj0 Cjk

!
ḧ+(t) (24)
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TT Gauge Local Lorentz Frame (Long Wavelength)

Redshift 0 �L

2
ḣ+(T )

Displacement 0 h+(T )

Propagation h+(T )� L+Z
2 ḣ+(T ) +

L2+LZ+Z2

6 ḧ+(T )
3L2 � 2Z2

18
ḧ+(T )

Total h+(T )� L+Z
2 ḣ+(T ) +

L2+LZ+Z2

6 ḧ+(T ) h+(T )�
L

2
ḣ+(T ) +

3L2 � 2Z2

18
ḧ+(T )

Table 1: Contributions of clock redshift, test-mass displacement and light propagation to the total pulse
delay �tdelay, divided by a common normalization factor (X2 � Y

2)/(2L), using TT gauge on the left
column, and long-wavelength-approximated LLF on the right column.

where

C00 =
x
2 � y

2

2
(25)

C0k =
1

3
(�xz, yz, x

2 � y
2) (26)

Cjk =
1

6

0

BB@

z
2 0 �xz

0 �z
2

yz

�xz yz �(x2 � y
2)

1

CCA (27)

This is widely used in textbooks like Misner, Thorne and Wheeler [1], and in the literature.
Suppose we consider a light pulse that ends at the detector B at coordinate time t = T , and therefore

starting at A at coordinate time t = T � L + O(h). We would like to find out, up to O(h) the change in
propagation time of that pulse measured by clocks at A and B.

Starting from redshift, at O(h), according to Eq. (8), we have the difference between the emission/arrival
proper time and coordinate time (i.e., proper time minus coordinate time):

�t
A
redshift(t) = 0 , �t

B
redshift(t) = �X

2 � Y
2

4
ḣ+(t) (28)

This leads to a measured propagation time change of

�t
AB
redshift(T ) = �t

B
redshift(T )� �t

A
redshift(T � L) = �X

2 � Y
2

4
ḣ+(T ) (29)

Next, let us obtain the coordinate displacement of A and B detectors when they are in free fall. We have
�t

A
disp = 0 and

�t
B
disp = n

j
�x

j
B (30)
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Fabry-Perot Michelson Interferometer

Carrier

Input
Test Mass

End 
Test Mass

Arm Cavity
L ~ 4 km

Power Recycling
Mirror

Carrier: Amplified by Resonance (Cavity & Recycling)

Two Types of Noise: shot noise

Shot Noise 
discreteness of out-

going photons

Vacuum Fluctuations of EM field enter oppositely from 
detection port. Responsible for all quantum noise. [Caves, 
1980]

and radiation-pressure noise

Radiation-Pressure Noise 
random radiation-pressure 

force on mirrors

Signal: differential phase modulation, escape from detection 
port.

anti-sym motion

anti-sym
 m

otion

local oscillator 
tiny fraction of 

carrier



Quantum Limit: Sensing versus Back Action

light field

Test

Mass

Must introduce light field to fully 
describe measurement process

Sensing Noise: Position Uncertainty from  photons：N Δx ∼
1

2N

λ
2π

Back-Action Noise: Momentum Uncertainty from  photons：N Δp ∼
N
2

ℏ
2π
λ

Total Uncertainty: Δxtot ∼ Δx2 +
Δp2T2

M2
=

1
2N ( λ

2π )
2

+
ℏ2T2

M2

N
2 ( 2π

λ )
2

Photon’s fluctuations also lead to the Standard Quantum Limit: Δxtot ≥ ΔxSQL
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Other Types of Noise

In the individual mirror angle basis, we can define an
optical torsional stiffness matrix:

!RP ¼ 2P

c

L

1" g1g2

"g2 1
1 "g1

! "
; (18)

where P is the cavity power, L is the cavity length, and the
cavity g factors for each mirror are defined as gi ¼ 1" L=Ri,
where Ri is the radius of curvature of the ith mirror. The
cavity instability occurs when the eigenvalue from this tor-
sional matrix corresponding to the soft mode exceeds the
mechanical torsional stiffness of the mirror suspension.

As described in Sec. V.B.1, the cavity beam sizes are
maximized to reduce the impact of the mirror’s thermal noise.
This has the unfortunate side effect of amplifying these
optical torsional stiffnesses. The large beam sizes can be
realized by utilizing either a plane-parallel or concentric
cavity design (Siegman, 1986). As seen from Eq. (18), the
concentric design (which has negative g factors) causes the
dominant mode to have a positive sign and thereby contribute
to the stiff, self-aligning mode. The plane-parallel design,
on the other hand, has positive g factors. In this case the

denominator of Eq. (18) blows up as the g factors approach
unity (as they must to increase the spot sizes). For this reason,
the concentric design has been adopted for all modern GW
detectors.

This Sigg-Sidles effect was first characterized for the
initial LIGO detectors (Hirose et al., 2010) and then subse-
quently in the Enhanced LIGO where a modal control ap-
proach was used to stabilize it (Dooley, 2011). This modal
approach seems to be sufficient to control the instability
(Barsotti, Evans, and Fritschel, 2010) but the noise from the
control system is likely to be comparable to the more funda-
mental limits (e.g., suspension thermal noise).

2. Parametric instabilities

With high circulating powers in the arm cavities, a para-
metric instability can occur involving the high-Q mechanical
modes of the mirrors and higher-order transverse optical
modes of the Fabry-Pérot cavity (Braginsky, Strigin, and
Vyatchanin, 2001, 2002; Strigin and Vyatchanin, 2007).
Although not observed in the first generation detectors, simi-
lar instabilities have been observed in toroidal microcavities
(Kippenberg et al., 2005) and in short, kilogram-scale Fabry-
Pérot cavities (Corbitt et al., 2006).

Following Evans, Barsotti, and Fritschel (2010), we can
write the round-trip parametric gain for the mth mechanical
mode as

Rm ¼ 4"QmP

M!2
mc#

X1

n¼0

RfGngB2
m;n; (19)
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FIG. 13 (color online). Noise budget of the Advanced LIGO
interferometers operating in a broadband configuration with the
parameters of Table III.
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FIG. 15 (color online). The common and differential angular
modes of the Fabry-Pérot cavity mirrors are softened (bottom)
and stiffened (top) by the radiation pressure torque.
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Frequency-Dependent Squeezing with LIGO

SSQZh ðϕ ¼ 0Þ ¼ e−2rSSNh þ e2rSRPNh ; ð6Þ

analogous to increasing the laser power by a factor of e2r.
In this case, SSQZh > SQNh for frequencies below approx-
imately 100 Hz due to interferometer backaction from the
e2r enhanced radiation pressure term. When the injected
squeezed states are instead prepared with frequency-
dependent squeezing angles, ϕðΩÞ ¼ θðΩÞ, the total quan-
tum noise SSQZh can be minimized to e−2rSQNh across the
detection band, analogous to increasing both laser power P
and mirror mass m by a factor of e2r. This is the premise
of frequency-dependent squeezing—to overcome not
one but two engineering challenges using quantum
enhancement.
The appropriate frequency-dependent squeezing angles

can be produced by reflecting the squeezed states off an
optical filter cavity, detuned from the interferometer laser

carrier frequency at Ω ¼ 0, before injection in the inter-
ferometer [20].

III. EXPERIMENTAL SETUP

Figure 1 shows the experimental implementation of
frequency-dependent squeezing via a filter cavity in
LIGO, with an overview of the full interferometer and
key elements of the squeezing system. A more complete
description of the squeezer experimental setup and control
scheme is presented in Appendix A.

A. Squeezer

The LIGO squeezed vacuum source, installed for O3 [8],
uses spontaneous parametric down-conversion in a sub-
threshold optical parametric oscillator (OPO) containing a
periodically poled potassium titanyl phosphate (PPKTP)
nonlinear crystal. The OPO is a traveling-wave, doubly

FIG. 1. Experimental setup of frequency-dependent squeezing in the LIGO detectors. The blue panel shows a simplified overview of
the main experimental components. The LIGO detector is a modified Michelson interferometer with Fabry-Perot arm cavities and both
power recycling and signal extraction cavities [1]. The LIGO squeezer [8] generates squeezed vacuum at 1064 nm using a subthreshold
optical parametric oscillator, pumped at 532 nm. The squeezed beam reflects from the 300-m filter cavity, and a movable beam diverter
opens to inject squeezing at the output port of the interferometer. Three Faraday isolators prevent stray interferometer light from reaching
the squeezer and filter cavity. Active steering optics [34] enable alignment and mode matching of the squeezed beam to the filter cavity
and interferometer. The squeezed beam copropagates with the outgoing interferometer beam through the output mode cleaner cavity, for
measurement at the readout photodetectors [1]. The yellow panels illustrate uncertainty ellipses of squeezed states in phase space [20],
where vacuum fluctuations are squeezed along the vertical readout quadrature. The left depicts the frequency-dependent rotation
impressed by filter cavity resonance (upper) upon the generated squeezed vacuum state (lower). The right shows how the interferometer
backaction affects the injected squeezed state, which is either frequency independent (light) or frequency dependent (dark). In either
case, the ellipse is rotated and stretched, corresponding to rotation and gain of the squeezed state. For frequency-independent squeezing,
uncertainty in the readout quadrature is increased at low frequencies, as indicated by the vertical red arrows. For frequency-dependent
squeezing prepared with the appropriate rotation to counteract backaction, a reduced uncertainty in the readout quadrature is recovered
at low frequencies.

D. GANAPATHY et al. PHYS. REV. X 13, 041021 (2023)

041021-4

[Ganapathy et al., 2023]



FIG. 2. Observation of frequency-dependent squeezing in the LIGO detectors. The top and bottom show strain noise spectra of the
LIGO Hanford (H1) and Livingston (L1) detectors in amplitude spectral density units, measured in the commissioning period leading up
the fourth observing run, O4. Reference measurements of detector noise spectra without squeezing are shown in black and measured
with the squeezed beam diverted away from the detector. Without squeezing, the classical noise estimate (gray), i.e., the sum of
nonquantum noises, is obtained by subtracting the calculated quantum noise (red) from the measured detector noise (black). Frequency-
independent squeezing spectra (green) are measured with the squeezed beam injected and the filter cavity end mirror misaligned, to have
the input mirror act as a high reflector. With frequency-independent squeezing, shot noise reductions of 4.0 (H1) and 5.8 dB (L1) are
observed around 1 kHz, alongside the corresponding increase in quantum radiation pressure noise below a few hundred hertz.
Frequency-dependent squeezing spectra (purple) are obtained by locking the filter cavity near resonance, demonstrating the broadband
reduction of detector quantum noise. In addition to the squeezed shot noise reduction, the filter cavity reduces total detector noise by
1–2 dB from 60–100 Hz in both detectors, with quantum enhancement visible from kilohertz down to tens of hertz.

D. GANAPATHY et al. PHYS. REV. X 13, 041021 (2023)

041021-6

[Ganapathy et al., 2023]
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alone )ИДЊ*. The test masses will be isolated from seismic disturbances with both passive and active 
systems scaled up from those in Advanced LIGO )ИДξ, ИДϭ*, and equipped with improved sensors )Ϲφ, 
Иωе*. A dedicated seismometer array will be used to measure the local seismic field, enabling the 
subtraction of noise introduced via direct gravitational coupling of ground motion to the test mass 
VȒNewtonianȓ or Ȓgravity gradientȓ noiseW )ИωϹ, ИωИ*. Finally, longer and heavier multiple pendulum 
suspensions will suppress environmental vibrations and the suspensions’ thermal noise. 

ИYИY iec@NRIR<y 
The CE test masses will be significantly larger and heavier than in LIGO AZ Vsee Table ϹW — reducing 
coating thermal noise through larger laser spot size and displacement noises through greater iner-
tia — requiring a focused development e{ort for manufacturing, polishing, and coating the larger 
optics. These larger optics will be suspended and seismically isolated to lower frequencies, requiring 
larger suspensions and seismic isolation platforms with an increased payload capacity. To reduce 
the quantum sensing noise, high circulating arm power VϹ.φ MW, a four-fold increase with respect to 
the maximum power achieved in current detectorsW and high squeezing levels VϹе dB, see Table ϹW 
are required to meet CE sensitivity targets. Advancements in control strategies will be necessary to 
stably and reliably operate at such high power and squeezing levels — in particular, thermal and 
radiation pressure e{ects on the optics will have to be managed. Finally, with the longer arms comes 
a greater infrastructure cost. While the vacuum design is informed by the LIGO experience )Ϲ, ИωД*, 
`�D is underwayИ to reduce cost through value engineering. 
HB;Q A♯ as a CE Path~nder ġ Most of these CE technologies can be at least partially demonstrated 
within the limits imposed by the LIGO facilities. This idea grew into the envisioned LIGO A♯ 

ИNSF Award T?vĢИИеЊωЊφ, 2na$ICn< `3c3aa,@ 8Ra j@3 i@Cad ;3n3aajCRn ;aaqCjajCRnaI raq3 /3j3,jRac, TI: Lazzarini; 
Co-TI: Weiss. 
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Stochastic Background From PTA
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FIG. 2: Hellings and Downs curve for the expected correlated response of a pair of Earth-pulsar baselines to an isotropic,
unpolarized stochastic gravitational-wave background, plotted as a function of the angle between the baselines, cf. Eq. (1).

part of the integration (see, e.g., Appendix A). But for
some reason, perhaps related to the di�culty of analyt-
ically evaluating the sky integral, students or beginning
researchers who are first introduced to the Hellings and
Downs curve see it as a somewhat mysterious object, inti-
mately connected to the realm of pulsar timing. Granted,
the precise analytic form in (1) is specific to the response
of a pair of Earth-pulsar baselines to an isotropic, un-
polarized stochastic gravitational-wave background, but
Hellings-and-Downs-type functions show up in any sce-
nario where one is interested in the dependence of the
correlated response of a pair of receivers on the geomet-
rical configuration of the two receivers. The geometry re-
lating the configuration of one receiver to another might
be more complicated (or simpler) than that for the pul-
sar timing case, but the basic idea of correlation across
receivers is exactly the same.

The purpose of this paper is to emphasize this
commonality, and to calculate Hellings-and-Downs-type
functions for two simpler scenarios. Scenario 1 will be
for a pair of receivers constructed from omni-directional
microphones responding to an isotropic stochastic sound
field. Scenario 2 will be for a pair of receivers con-
structed from electric dipole antennas responding to
an isotropic and unpolarized stochastic electromagnetic
field. These two scenarios were chosen since the deriva-
tion of the corresponding Hellings-and-Downs-type func-
tions (cf. Eqs. (27) and (48)) and the evaluation of the
necessary sky-integral and polarization averaging (for the
electromagnetic-wave case) are relatively simple. But the
steps that one must go through to obtain these results are
identical to those for the gravitational-wave pulsar tim-
ing Hellings and Downs function, even though the math-
ematics needed to derive the relevant expression for the
pulsar timing case (cf. Eq. (58)) is more involved. Hope-
fully, after reading this paper, the reader will understand

the pulsar timing Hellings and Downs curve in its proper
context, and appreciate that it is a special case of a gen-
eral correlation calculation.

The rest of the paper is organized as follows: In Sec-
tion II, we describe a general mathematical formalism for
working with random fields, which we will use repeat-
edly in the following sections. In Section III we apply
this formalism to calculate a Hellings-and-Downs-type
function for the case of omni-directional microphones in
an isotropic stochastic sound field. Section IV extends
the calculation to electric dipole antennas in an isotropic
and unpolarized stochastic electromagnetic field, which
requires us to deal with the polarization of the compo-
nent waves. Finally, in Section V, we summarize the basic
steps needed to calculate Hellings-and-Downs-type func-
tions in general, and then set-up up the calculation for
the actual pulsar timing Hellings and Downs curve, leav-
ing the evaluation of the final integral to the motivated
reader. (We have included details of the calculation in
Appendix A, in case the reader has di�culty completing
the calculation.)

II. RANDOM FIELDS AND EXPECTATION
VALUES

Probably the most important reason for calculating
Hellings-and-Downs-type functions is to determine the
correlation signature of a signal buried in noisy data.
The situation is tricky when the signal is associated with
a random field (e.g., for a stochatic gravitational-wave
background), since then one is e↵ectively trying to de-
tect “noise in noise.” Fortunately, it turns out that there
is a way to surmount this problem. The key idea is that
although the signal associated with a random field is typ-
ically indistinguishable from noise in a single detector or

[Jenet & Romano, 2014]
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shift technique, which removes interpulsar correlations by
adding random phase shifts to the Fourier components of the
common process (Taylor et al. 2017). We find false-alarm
probabilities of p= 10−3 and p= 5× 10−5 for the observed
Bayes factor and optimal statistic, respectively (see Figure 3).

For our fiducial power-law model ( f−2/3 for characteristic
strain and f−13/3 for timing residuals) and a log-uniform
amplitude prior, the Bayesian posterior of GWB amplitude at
the customary reference frequency 1 yr−1 is AGWB =
2.4 100.6

0.7 15´-
+ - (median with 90% credible interval), which is

compatible with current astrophysical estimates for the GWB from
SMBHBs (e.g., Burke-Spolaor et al. 2019; Agazie et al. 2023b).
This corresponds to a total integrated energy density of

9.3 10gw 4.0
5.8 9W = ´-

+ - or 7.7 10 ergs cmgw 3.3
4.8 17 3r = ´-

+ - -

(assuming H0= 70 km s−1Mpc−1) in our sensitive frequency

band. For a more general model of the timing-residual power
spectral density with variable power-law exponent −γ, we find
A 6.4 10GWB 2.7

4.2 15= ´-
+ - and 3.2 0.6

0.6g = -
+ . See Figure 1(b) for

AGWB and γ posteriors. The posterior for γ is consistent with the
value of 13/3 predicted for a population of SMBHBs evolving by
GW emission, although smaller values of γ are preferred;
however, the recovered posteriors are consistent with predictions
from astrophysical models (see Agazie et al. 2023b). We also note
that, unlike our detection statistics (which are calibrated under our
modeling assumptions), the estimation of γ is very sensitive to
minor details in the data model of a few pulsars.
The rest of this paper is organized as follows. We briefly

describe our data set and data model in Section 2. Our main
results are discussed in detail in Sections 3 and 4; they are
supported by a variety of robustness and validation studies,

Figure 1. Summary of the main Bayesian and optimal-statistic analyses presented in this paper, which establish multiple lines of evidence for the presence of
Hellings–Downs correlations in the 15 yr NANOGrav data set. Throughout we refer to the 68.3%, 95.4%, and 99.7% regions of distributions as 1σ/2σ/3σ regions,
even in two dimensions. (a) Bayesian “free-spectrum” analysis, showing posteriors (gray violins) of independent variance parameters for a Hellings–Downs-correlated
stochastic process at frequencies i/T, with T the total data set time span. The blue represents the posterior median and 1σ/2σ posterior bands for a power-law model;
the dashed black line corresponds to a γ = 13/3 (SMBHB-like) power law, plotted with the median posterior amplitude. See Section 3 for more details. (b) Posterior
probability distribution of GWB amplitude and spectral exponent in an HD power-law model, showing 1σ/2σ/3σ credible regions. The value γGWB = 13/3 (dashed
black line) is included in the 99% credible region. The amplitude is referenced to fref = 1 yr−1 (blue) and 0.1 yr−1 (orange). The dashed blue and orange curves in the

Alog10 GWB subpanel show its marginal posterior density for a γ = 13/3 model, with fref = 1 yr−1 and fref = 0.1 yr−1, respectively. See Section 3 for more details. (c)
Angular-separation-binned interpulsar correlations, measured from 2211 distinct pairings in our 67-pulsar array using the frequentist optimal statistic, assuming
maximum-a-posteriori pulsar noise parameters and γ = 13/3 common-process amplitude from a Bayesian inference analysis. The bin widths are chosen so that each
includes approximately the same number of pulsar pairs, and central bin locations avoid zeros of the Hellings–Downs curve. This binned reconstruction accounts for
correlations between pulsar pairs (Romano et al. 2021; Allen & Romano 2022). The dashed black line shows the Hellings–Downs correlation pattern, and the binned
points are normalized by the amplitude of the γ = 13/3 common process to be on the same scale. Note that we do not employ binning of interpulsar correlations in our
detection statistics; this panel serves as a visual consistency check only. See Section 4 for more frequentist results. (d) Bayesian reconstruction of normalized
interpulsar correlations, modeled as a cubic spline within a variable-exponent power-law model. The violins plot the marginal posterior densities (plus median and
68% credible values) of the correlations at the knots. The knot positions are fixed and are chosen on the basis of features of the Hellings–Downs curve (also shown as a
dashed black line for reference): they include the maximum and minimum angular separations, the two zero-crossings of the Hellings–Downs curve, and the position
of minimum correlation. See Section 3 for more details.
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the telescope. Of the 68 MSPs in NG15, 30 MSPs with
declinations 0° < δ<+39° were solely observed with Arecibo,
and 31 MSPs with δ>− 45° (and outside the decl. range

accessible to Arecibo) with the GBT. Two pulsars, PSR J1713
+0747 and PSR B1937+21, were observed with the GBT,
Arecibo, and the VLA; PSR J1600−3053, PSR J1643−1224,

Figure 1. Epochs of all TOAs in the data set. The observatory and observing frequency are indicated by color: Arecibo observations are red (327 MHz), orange
(430 MHz), light blue (1.4 GHz), and purple (2.1 GHz); GBT observations are green (800 MHz) and dark blue (1.4 GHz); and VLA observations are brown (1.4 GHz)
and pink (3 GHz). The Arecibo and GBT data acquisition systems are indicated by symbols: open circles are ASP or GASP, and closed circles are PUPPI or GUPPI.
Only a single back end (YUPPI) was used at the VLA.
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shift technique, which removes interpulsar correlations by
adding random phase shifts to the Fourier components of the
common process (Taylor et al. 2017). We find false-alarm
probabilities of p= 10−3 and p= 5× 10−5 for the observed
Bayes factor and optimal statistic, respectively (see Figure 3).

For our fiducial power-law model ( f−2/3 for characteristic
strain and f−13/3 for timing residuals) and a log-uniform
amplitude prior, the Bayesian posterior of GWB amplitude at
the customary reference frequency 1 yr−1 is AGWB =
2.4 100.6

0.7 15´-
+ - (median with 90% credible interval), which is

compatible with current astrophysical estimates for the GWB from
SMBHBs (e.g., Burke-Spolaor et al. 2019; Agazie et al. 2023b).
This corresponds to a total integrated energy density of

9.3 10gw 4.0
5.8 9W = ´-

+ - or 7.7 10 ergs cmgw 3.3
4.8 17 3r = ´-

+ - -

(assuming H0= 70 km s−1Mpc−1) in our sensitive frequency

band. For a more general model of the timing-residual power
spectral density with variable power-law exponent −γ, we find
A 6.4 10GWB 2.7

4.2 15= ´-
+ - and 3.2 0.6

0.6g = -
+ . See Figure 1(b) for

AGWB and γ posteriors. The posterior for γ is consistent with the
value of 13/3 predicted for a population of SMBHBs evolving by
GW emission, although smaller values of γ are preferred;
however, the recovered posteriors are consistent with predictions
from astrophysical models (see Agazie et al. 2023b). We also note
that, unlike our detection statistics (which are calibrated under our
modeling assumptions), the estimation of γ is very sensitive to
minor details in the data model of a few pulsars.
The rest of this paper is organized as follows. We briefly

describe our data set and data model in Section 2. Our main
results are discussed in detail in Sections 3 and 4; they are
supported by a variety of robustness and validation studies,

Figure 1. Summary of the main Bayesian and optimal-statistic analyses presented in this paper, which establish multiple lines of evidence for the presence of
Hellings–Downs correlations in the 15 yr NANOGrav data set. Throughout we refer to the 68.3%, 95.4%, and 99.7% regions of distributions as 1σ/2σ/3σ regions,
even in two dimensions. (a) Bayesian “free-spectrum” analysis, showing posteriors (gray violins) of independent variance parameters for a Hellings–Downs-correlated
stochastic process at frequencies i/T, with T the total data set time span. The blue represents the posterior median and 1σ/2σ posterior bands for a power-law model;
the dashed black line corresponds to a γ = 13/3 (SMBHB-like) power law, plotted with the median posterior amplitude. See Section 3 for more details. (b) Posterior
probability distribution of GWB amplitude and spectral exponent in an HD power-law model, showing 1σ/2σ/3σ credible regions. The value γGWB = 13/3 (dashed
black line) is included in the 99% credible region. The amplitude is referenced to fref = 1 yr−1 (blue) and 0.1 yr−1 (orange). The dashed blue and orange curves in the

Alog10 GWB subpanel show its marginal posterior density for a γ = 13/3 model, with fref = 1 yr−1 and fref = 0.1 yr−1, respectively. See Section 3 for more details. (c)
Angular-separation-binned interpulsar correlations, measured from 2211 distinct pairings in our 67-pulsar array using the frequentist optimal statistic, assuming
maximum-a-posteriori pulsar noise parameters and γ = 13/3 common-process amplitude from a Bayesian inference analysis. The bin widths are chosen so that each
includes approximately the same number of pulsar pairs, and central bin locations avoid zeros of the Hellings–Downs curve. This binned reconstruction accounts for
correlations between pulsar pairs (Romano et al. 2021; Allen & Romano 2022). The dashed black line shows the Hellings–Downs correlation pattern, and the binned
points are normalized by the amplitude of the γ = 13/3 common process to be on the same scale. Note that we do not employ binning of interpulsar correlations in our
detection statistics; this panel serves as a visual consistency check only. See Section 4 for more frequentist results. (d) Bayesian reconstruction of normalized
interpulsar correlations, modeled as a cubic spline within a variable-exponent power-law model. The violins plot the marginal posterior densities (plus median and
68% credible values) of the correlations at the knots. The knot positions are fixed and are chosen on the basis of features of the Hellings–Downs curve (also shown as a
dashed black line for reference): they include the maximum and minimum angular separations, the two zero-crossings of the Hellings–Downs curve, and the position
of minimum correlation. See Section 3 for more details.
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Sources of Gravitational Waves
Cosmological gravitational waves

[National Astronomical Observatory of Japan, gwpo.nao.ac.jp]

Viable possibility: Signal receives contributions from SMBHBs + X (or X only?)
æ Probe cosmology of the early Universe and particle physics at high energies
Cosmic strings [2009.06555, 2009.06607, 2009.10649, 2009.13452, 2102.08923] Primordial black holes [2009.07832, 2009.08268,
2009.11853, 2010.03976, 2101.11244] Phase transitions [2009.09754, 2009.10327, 2009.14174, 2009.14663, 2101.08012 ] Audible axions
and axion strings [2009.11875, 2012.06882] Inflation [2009.13432, 2010.05071, 2011.03323] Domain walls [2009.13893, 2012.14071]
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Inflation and Stochastic GW background
• Motivation for inflation


• Universe is nearly spatially flat right now

• the CMB is very homogeneous

• Inflation

• The universe expanded very fast

• Slow-roll inflation: a period where expansion rate is constant

• Drives fluctuations in energy density and curvature of the universe.

• Generates stochastic gravitational wavesGRAVITATIONAL WAVES FROM INFLATION 407

Fig. 2. – Time evolution of the comoving Hubble horizon during inflation and the following
epoch, compared to the evolution of a comoving scale λ [53]. During the accelerated expansion
the comoving Hubble horizon decreases in time, while it grows during the radiation and matter
dominated epochs. At a certain time during inflation, the comoving scale λ exits the comoving
Hubble horizon and then re-enters after inflation is over. The behavior of the comoving Hubble
horizon shown in this figure, provides a solution to the horizon problem.

this feature is expressed in terms of the number of e-foldings [50], defined as:

(14) Ntot ≡
∫ tf

ti

H dt,

where ti and tf are the starting and ending time of inflation, that, in case the scale-factor
evolution is described by (4), reads N = ln(af/ai), where aλ = a(t(λ)). The lower bound
required to solve the horizon problem number is N ! ln 1026 ∼ 60 [52].

2.1.3. Reheating phase. Inflation cannot proceed forever: the greatest successes of the
Standard Big Bang model, such as primordial nucleosynthesis and the origin of the CMB,
require the standard evolutionary progression from radiation to a matter domination era.

In the single-field slow-roll scenario, inflation ends when the inflaton field starts rolling
fast along its potential, it reaches the minimum and then oscillates around it. Anyhow,
we know that the Universe must be repopulated by hot radiation in order to initiate the
hot Big Bang phase. The process by which the Universe moves from the inflationary
dynamics to the hot Big Bang is called reheating [40, 39,41,54].

By investigating primordial GW, we cannot neglect this stage, for several reasons.
First, there are many models for the reheating period which provide further GW pro-
duction, besides that of the inflationary phase. Moreover, it can be shown that reheating
parameters are related to inflationary power spectra ones, so that the constraints on
tensor perturbations are related to those on the reheating period of the Universe.

The main requirement for the developing of the hot Big Bang is a radiation-dominated
Universe at T " 1 MeV. However at the end of inflation most of the energy density of
the Universe is stored in the scalar field(s), as the other components have been diluted
by the accelerated expansion. The reheating process so consists in the conversion of such
an energy into other forms, which ultimately lead to a radiation-dominated scenario

[S Matarrese, et al., 2016]
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This filter optimizes the signal-to-noise ratio, enhancing the fre-
quencies at which the signal of the template gravitational-wave spec-
trumVGW(f) is strong, while suppressing the frequencies at which the
detector noise (P1(f ) and P2(f )) is large. In equation (2), and
throughout this Letter, we assume the present value of the Hubble
parameter H05 72 km s21Mpc21 (ref. 21), and use c(f ) to denote
the overlap reduction function8, arising from the overlap of antenna
patterns of interferometers at different locations and with different
orientations. For the H1–L1 and H2–L1 pairs, the sensitivity above
roughly 50Hz is attenuated due to the overlap reduction. As most
theoretical models in the LIGO frequency band are characterized by a
power-law spectrum, we assume a power-law template gravitational-
wave spectrum with index a:VGW(f )5Va(f/100Hz)a. The normal-
ization constant N in equation (2) is chosen such that the expected
value of the optimally filtered cross-correlation is Va.

We apply the above search technique to the data acquired by LIGO
during the science run S5. We include two interferometer pairs: H1–
L1 and H2–L1. Summing up the contributions to the cross-correla-
tion in the frequency band 41.5–169.25Hz, which contains 99% of
the sensitivity, leads to the final point estimate for the frequency
independent gravitational-wave spectrum (a5 0): V05 (2.16 2.7)3
1026, where the quoted error is statistical. We calculate the Bayesian
95% confidence upper limit for V0, using the previous LIGO result
(S4 run22) as a prior for V0 and averaging over the interferometer
calibration uncertainty. This procedure yields the 95% confidence
upper limit V0, 6.93 1026. For other values of the power index a
in the range between 23 and 3, the 95% upper limit varies between
1.93 1026 and 7.13 1026. These results constitute more than an

order of magnitude improvement over the previous LIGO result in
this frequency region22. Figure 2 shows this result in comparison with
other observational constraints and some of the cosmological SGWB
models.

Before the result described here, the most constraining bounds on
the SGWB in the frequency band around 100Hz came from the Big
Bang nucleosynthesis (BBN) and from cosmic microwave back-
ground (CMB) measurements. The BBN bound is derived from
the fact that a large gravitational-wave energy density at the time of
BBN would alter the abundances of the light nuclei produced in the
process. Hence, the BBN model and observations constrain the total
gravitational-wave energy density at the time of nucleosynthesis1,6:

VBBN~

ð
VGW fð Þ d ln fð Þv1:1|10{5 Nn{3ð Þ ð3Þ

where Nn (the effective number of neutrino species at the time of
BBN) captures the uncertainty in the radiation content during
BBN. Measurements of the light-element abundances, combined
with the Wilkinson Microwave Anisotropy Probe (WMAP) data
give the upper bound Nn – 3, 1.4 (ref. 23). Similarly, a large
gravitational-wave background at the time of decoupling of CMB
would alter the observed CMB and matter power spectra. Assu-
ming homogeneous initial conditions, the total gravitational-wave
energy density at the time of CMB decoupling is constrained toÐ
VGW(f ) d(ln f ), 1.33 1025 (ref. 7). In the LIGO frequency band

and for a5 0, these bounds become: VBBN
0 v1:1|10{5 and

VCMB
0 v9:5|10{6. Our result has now surpassed these bounds,
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Figure 2 | Comparison of different SGWBmeasurements and models. The
95% upper limit presented here, V0v6:9|10{6 (LIGO S5), applies in the
frequency band 41.5–169.25Hz, and is compared to the previous LIGO S4
result22 and to the projected Advanced LIGO sensitivity25. Note that the
corresponding S5 95% upper bound on the total gravitational-wave energy
density in this band, assuming frequency independent spectrum, is
9.73 1026. The indirect bound due to BBN1,6 applies to
VBBN~

Ð
VGW( f )d( ln f ) (andnot to the densityVGW(f )) over the frequency

band denoted by the corresponding horizontal line, as defined in equation 3.
A similar integral bound (over the range 10215–1010Hz) can be placed using
CMB andmatter power spectra7. Projected sensitivities of the satellite-based
Planck CMB experiment7 and LISA gravitational-wave detector26 are also
shown. The pulsar bound27 is based on the fluctuations in the pulse arrival
times of millisecond pulsars and applies at frequencies around 1028Hz.
Measurements of the CMB at large angular scales constrain the possible
redshift of CMB photons due to the SGWB, and therefore limit the
amplitude of the SGWB at largest wavelengths (smallest frequencies)6.
Examples of inflationary9,10, cosmic strings4,5,15,16, and pre-Big-Bang11–13

models are also shown (the amplitude and the spectral shape in thesemodels
can vary significantly as a function of model parameters).
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Figure 3 | Constraining early Universe evolution. The gravitational-wave
spectrum VGW fð Þ is related to the parameters that govern the evolution of

the Universe3: VGW fð Þ~A f âa fð Þ f n̂nt fð Þ r, where âa fð Þ~2
3ŵw fð Þ{1

3ŵw fð Þz1
, r is the

ratio of tensor and scalar perturbation amplitudes (measured by the CMB
experiments), n̂nt fð Þ and ŵw fð Þ are effective (average) tensor tilt and equation
of state parameters respectively, and A is a constant depending on various
cosmological parameters. Hence, the measurements of VGW and r can be
used to place constraints in the ŵw{n̂nt plane, independently of the
cosmological model. The figure shows the ŵw{n̂nt plane for r5 0.1. The
regions excluded by the BBN23, LIGO and pulsar27 bounds are above the
corresponding curves (the inset shows a zoom-in on the central part of the
figure). The BBN curve was calculated in ref. 3. We note that the CMB
bound7 almost exactly overlaps with the BBN bound. Also shown is the
expected reach of Advanced LIGO25. Note that these bounds apply to
different frequency bands, so their direct comparison is meaningful only if
n̂nt fð Þ and ŵw fð Þ are frequency independent. We note that for the simplest
single-field inflationary model that still agrees with the cosmological data,
with potential V(w)5m2w2/2 (where w is a scalar field of mass m), r5 0.14
and nt(100Hz)520.035 (ref. 28), implying a LIGObound on the equation-
of-state parameter of ŵw (100Hz), 0.59.
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Constraints on Primordial Black Holes

[Green & Kavanagh, 2021]
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FIG. 3. All constraints on the fraction of DM in the form of PBHs, fPBHs, with mass MPBH, coming from PBH evaporation,
microlensing, gravitational waves, PBH accretion and dynamical constraints. Each region shows the envelope of constraints
from the corresponding panel in Fig. 2. Digitised bounds and plotting codes are available online at PBHbounds.

H. Indirect constraints

In this subsection we look at constraints on the amplitude of large primordial perturbations, which lead to indirect
constraints on the abundance of PBHs formed via the collapse of large density perturbations during radiation domi-
nation (Sec. II A). These constraints do not apply to PBHs formed via other mechanisms (see Sec. II D). As discussed
in Sec. IIA, there are large uncertainties in the calculation of the abundance of PBHs formed from a given primordial
power spectrum.

First order scalar perturbations generate tensor perturbations at second order [247, 248]. If the density perturbations
are su�ciently large then the amplitude of the resulting ‘scalar induced gravitational waves’ (SIGWs) is larger than
that of the GWs generated by the primordial tensor perturbations. Constraints on the energy density of stochastic
GWs, from e.g. Pulsar Timing Arrays, therefore limit the abundance of PBHs formed via the collapse of large
density perturbations [249]. These constraints depend on the shape of the primordial power spectrum, and also the
assumed probability distribution of the density perturbations, and are therefore (inflation) model dependent [250–
252]. Models which produce a broad peak in the primordial power spectrum are most tightly constrained [251, 252].
For PBHs forming from large density perturbations during radiation domination, Refs. [59, 108] find fPBH < 1 for
10�2 . MPBH/M� . 1. Reference [109] finds, using data from NANOGrav, fPBH < 10�23 for MPBH = 0.1M� and
fPBH < 10�6 for 0.002 < MPBH/M� < 0.4. However this calculation makes approximations which have a huge e↵ect
on the constraint on fPBH (including setting the PBH formation threshold equal to unity, and �

2 = A). There are
also tight constraints on the abundance of light, MPBH ⇠ 1013�15 g, PBHs from limits on SIGWs from LIGO [253].
Such light PBHs are expected to have evaporated by the present day, however if Hawking evaporation is not realised
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Stellar formation history
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brighter limit, which more closely represents the sample of galaxies actually observed in the study,
is significantly larger than for the extrapolation—nearly two times larger for the Reddy & Steidel
(2009) samples and by a lesser factor for the more distant objects from Bouwens et al. (2012a). In
our analysis of the SFRDs, we have adopted the mean extinction factors inferred by each survey
to correct the corresponding FUV luminosity densities.

Adopting a different approach, Burgarella et al. (2013) measured total UV attenuation from
the ratio of FIR to observed (uncorrected) FUV luminosity densities (Figure 8) as a function of
redshift, using FUVLFs from Cucciati et al. (2012) and Herschel FIRLFs from Gruppioni et al.
(2013). At z < 2, these estimates agree reasonably well with the measurements inferred from the
UV slope or from SED fitting. At z > 2, the FIR/FUV estimates have large uncertainties owing to
the similarly large uncertainties required to extrapolate the observed FIRLFs to a total luminosity
density. The values are larger than those for the UV-selected surveys, particularly when compared
with the UV values extrapolated to very faint luminosities. Although galaxies with lower SFRs may
have reduced extinction, purely UV-selected samples at high redshift may also be biased against
dusty star-forming galaxies. As we noted above, a robust census for star-forming galaxies at z ! 2
selected on the basis of dust emission alone does not exist, owing to the sensitivity limits of past
and present FIR and submillimeter observatories. Accordingly, the total amount of star formation
that is missed from UV surveys at such high redshifts remains uncertain.

Figure 9 shows the cosmic SFH from UV and IR data following the above prescriptions as
well as the best-fitting function

ψ(z) = 0.015
(1 + z)2.7

1 + [(1 + z)/2.9]5.6 M" year−1 Mpc−3. (15)
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Figure 9
The history of cosmic star formation from (a) FUV, (b) IR, and (c) FUV+IR rest-frame measurements. The data points with symbols
are given in Table 1. All UV luminosities have been converted to instantaneous SFR densities using the factor KFUV = 1.15 × 10−28

(see Equation 10), valid for a Salpeter IMF. FIR luminosities (8–1,000 µm) have been converted to instantaneous SFRs using the factor
KIR = 4.5 × 10−44 (see Equation 11), also valid for a Salpeter IMF. The solid curve in the three panels plots the best-fit SFR density in
Equation 15. Abbreviations: FIR, far-infrared; FUV, far-UV; IMF, initial mass function; IR, infrared; SFR, star-formation rate.
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Stellar Evolution



Galactic field versus clusters

Population I  
stars

Pop. II stars

Globular ClusterNuclear Cluster



Formation of Merging Binaries
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Figure 7. Marginal posterior distributions for the source chirp mass M, mass ratio q, e↵ective inspiral spin �e↵ , e↵ective
precession spin �p and luminosity distance DL for O3b candidates with pastro > 0.5 plus GW200105 162426. The vertical
extent of each colored region is proportional to one-dimensional marginal posterior distribution at a given parameter value
for the corresponding event. We highlight with italics GW200105 162426 as it has pastro < 0.5, as well as GW191219 163120
because of potential uncertainties in its pastro and because it has significant posterior support outside of mass ratios where the
waveform models have been calibrated. Results for GW200308 173609 and GW200322 091133 include a prior-dominated mode
at large distances and high masses: the hatched posterior probability distribution shown on the lower half of the plots for these
candidates exclude these low-likelihood, prior-dominated modes. Colors correspond to the date of observation.
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sources of GW191219 163120, GW200105 162426,
GW200115 042309 and GW200210 092254 have mass
ratios q  0.041, q  0.259, q  0.571 and q  0.150,
respectively. The mass ratio of GW200210 092254’s
source is q = 0.118+0.048

�0.041, which is comparable to

GW190814’s q = 0.112+0.008
�0.009 [227]. The mass ra-

tio of GW191219 163120’s source is inferred to be
q = 0.038+0.005

�0.004, which is extremely challenging for
waveform modeling, and thus there may be systematic
uncertainties in results for this candidate.

GW200115 042309’s source is the lowest total mass
O3b binary; this potential NSBH coalescence has M =
7.4+1.8

�1.7M�. Its chirp mass is well measured at M =

2.43+0.05
�0.07M�. GW200115 042309’s source has com-

ponents with masses m1 = 5.9+2.0
�2.5M� and m2 =

1.44+0.85
�0.29M�. These results are consistent with previ-

ous inferences [8], showing that the change in how the
fast scattering glitches in Livingston data were mitigated
(discussed in Appendix C) does not have a significant
impact on this analysis. The primary is consistent with
being a low-mass BH [8], we infer a 29% probability that
m1 < 5M�; the secondary is consistent with the masses
of known Galactic NSs [159, 228–230].

GW200105 162426’s source corresponds to a higher
mass NSBH candidate, with M = 11.0+1.5

�1.4M�, and

M = 3.42+0.08
�0.08M�. The binary components have masses

m1 = 9.0+1.7
�1.7M� and m2 = 1.91+0.33

�0.24M�, which are con-
sistent with a BH and a NS, respectively [8].

GW200210 092254’s source has M = 27.0+7.1
�4.3M�

and M = 6.56+0.38
�0.40M�, which sit within the range

seen for the unambiguous-BBHs candidates discussed in
Sec. V A 1. While the primary is clearly a BH with m1 =
24.1+7.5

�4.6M�, its secondary has m2 = 2.83+0.47
�0.42M� with

a 76% probability that m2 < 3M�. The secondary mass
sits within the hypothesized lower mass gap between NSs
and BHs [187–190]. The inferred m2 is comparable to the
3.3+2.8

�0.7M� (95% confidence) candidate BH in the non-
interacting binary 2MASS J05215658+4359220 [231]; the
3.04 ± 0.06M� (68% confidence) candidate BH binary
companion to V723 Mon [232], and potentially the pul-
sar J1748�2021B’s estimated mass of 2.74 ± 0.21M�
(68% confidence) if the assumption of purely rela-
tivistic precession (with no contributions from tidal
or rotational distortion of the companion) is accu-
rate [233]. GW200210 092254’s source is similar to
GW190814’s, where the component masses were inferred
to be m1 = 23.2+1.1

�1.0M� and m2 = 2.59+0.08
�0.09M� [227].

GW200210 092254’s source could either be a BBH or
a NSBH system, but given current understanding of
the maximum NS mass [159, 160, 234–239], it is more
probable that it is a BBH, similar to the case for
GW190814 [227].

For GW191219 163120, we infer a source with M =
32.3+2.2

�2.7M� and M = 4.32+0.12
�0.17M�. It has m1 =

31.1+2.2
�2.8M� and m2 = 1.17+0.07

�0.06M�, which would make
the source a clear NSBH, assuming that the signal is as-
trophysical. The secondary is probably the least massive

compact object among the O3b observations, and is com-
parable to the least massive of known NSs [159, 228, 240].
For example, the companion to pulsar J0453+1559 that
has an estimated mass of 1.174 ± 0.004M� (68% confi-
dence) [241], although this object has also been suggested
to be a white dwarf [242]; the pulsar J1802�2124 that
has an estimated mass 1.24 ± 0.11M� (68%) [243], or
the NSs in the high-mass X-ray binaries SMC X-1 and
4U 1538�522 that have inferred masses of 1.21 ± 0.12M�
and 1.02 ± 0.17M� (68%), respectively [244].

Measuring the mass distribution of NSs will illuminate
the physical processes that form them. Determining the
maximum NS mass provides a key insight into the prop-
erties of NS matter [235, 238, 239, 245–249], while de-
termining the spectrum of NS masses provides an insight
into the physics of processes such as supernova explo-
sions [195, 242, 250–255]. As the catalog of observations
grows, it will be possible to better determine the NS mass
distribution.

B. Spins

Spins leave a relatively subtle imprint on the GW sig-
nal, and so are more di�cult to measure from observa-
tions than the masses [13, 138–140, 156, 256–258]. Typi-
cally, it is not possible to put strong constraints on indi-
vidual components’ spins, as the evolution of the system
is primarily determined by mass-weighted combinations
of the two component spins [259–263]. However, when
a binary has unequal masses it may also be possible to
constrain the primary spin because �1 dominates the spin
contributions to the signal. To reflect how the two spins
influence the signal, we quote results for two convenient
spin parameters, the e↵ective inspiral spin �e↵ [91, 92]
and the e↵ective precession spin �p [264, 265].

The e↵ective inspiral spin, as defined in Eq. (2),
describes the mass-weighted projection of the compo-
nent spins parallel to the orbital angular momentum,
and is approximately conserved throughout the inspi-
ral [266] while remaining important in determining evo-
lution through the merger [222, 267, 268]. The e↵ective
inspiral spin influences the length of the inspiral and the
transition to merger [222, 260, 267, 269]. A non-zero �e↵

indicates the definite presence of spins in the system, with
positive values indicating that there is a net spin aligned
with the orbital angular momentum, and negative values
indicating that there is a net spin anti-aligned with the
orbital angular momentum.

The e↵ective precession spin,

�p = max

⇢
�1,?,

q(4q + 3)

4 + 3q
�2,?

�
, (4)

where �i,? is the component of spin perpendicular to the
direction of the Newtonian orbital angular momentum
L̂N, measures the mass-weighted in-plane spin compo-
nent that contributes to spin precession [264, 265, 270,
271]. With this parametrization, a value of �p = 0 would
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IV. CANDIDATE IDENTIFICATION

Identification of candidates and assessment of their sig-
nificance relative to the background of detector noise is
the first step in extracting catalog results. This is fol-
lowed by detailed analyses to estimate source properties
(Sec. V) and reconstruct waveforms (Sec. VI). We use
multiple search algorithms to identify potential GW can-
didates in our data. Searches are performed at two dif-
ferent latencies: online searches are run in near-real time
as data are collected, and o✏ine searches are completed
later, using the final calibrated and cleaned data set. The
online analyses allow for the rapid release of public alerts
associated with candidates, to enable the search for mul-
timessenger counterparts, as described in Appendix A.
The o✏ine analyses benefit from improved background
statistics, extensive data calibration, vetting and condi-
tioning as described in Sec. III, and the ability to perform
more computationally expensive calculations to separate
signals from background given the relaxation of latency
requirements. Due to these factors, the o✏ine analyses
are more sensitive than the online analyses. In this cata-
log, we report on the results of o✏ine analyses performed
after the end of O3b.

Our search analyses use di↵erent approaches to find
events, either filtering the data using CBC waveform tem-
plates to identify matches (described in Sec. IV A), or
coherently searching data from the detector network for
transient signals without assuming a waveform template
(described in Sec. IVB). We use four pipelines to identify
the candidates from O3b: three that search using CBC
waveform templates, GstLAL [70–73], Multi-Band Tem-
plate Analysis (MBTA) [74, 75] and PyCBC [21, 76–80],
and one that searches for transient signals with minimal
assumptions about sources, cWB [55, 81, 82]. The four
pipelines used o✏ine were also operated in online config-
urations, along with the waveform-based Summed Par-
allel Infinite Impulse Response (SPIIR) pipeline [83–85],
to identify candidate GW signals in low latency. Of the
four pipelines, cWB, GstLAL, and PyCBC were used for
o✏ine LVK analysis of O1 [13, 86], O2 [14] and O3a [3, 4]
data, whereas MBTA was first used for o✏ine analysis of
O3a [4].

There are several technical and configuration di↵er-
ences across the pipelines used in the search analyses.
While the CBC pipelines consider all possible (double or
triple) detector combinations to form coincident events,
cWB only reports analysis of pairs of detectors [27]. An-
other significant di↵erence across pipelines is the data
baseline used to assign FARs to candidates. The FAR is
used as a measure of significance, and defines how regu-
larly we would expect to see a noise (non-astrophysical
background) event with the same, or higher, ranking
statistic as the candidate. GstLAL compares candidates
to a global background from the full O3b time-span, while
cWB, MBTA and PyCBC use local background from a
typical time-span of one to a few weeks. All pipelines
estimate background distributions empirically from the

O3b data. Further technical details of the search algo-
rithms are given in Appendix D.

A. Modeled search analyses for transient sources

The dedicated CBC search algorithms use matched fil-
tering [87, 88], identifying candidates by correlating the
data with templates. We use sets of templates, or banks,
that provide a discrete sampling of the parameter space
defined by the binary component masses m1 and m2 (the
primary and secondary masses, defining m1 � m2), and
the corresponding dimensionless spins ~�1 and ~�2.

The signals expected from CBCs are well characterized
by combinations of the binary component parameters.
To leading order, the phase evolution during inspiral of
a binary is determined by the chirp mass [89, 90],

M =
(m1m2)3/5

(m1 + m2)1/5
. (1)

We also use the total mass M = m1 + m2, and the mass
ratio q = m2/m1  1 to describe a binary system. The
dimensionless component spin ~�i = c~Si/(Gm

2

i ), where
~Si is the spin angular momentum and i = {1, 2}, can
theoretically range in magnitude from 0 (non-spinning)
to 1 (Kerr limit) for BHs. The two spins are combined
to form the e↵ective inspiral spin [91, 92], defined as

�e↵ =
(m1~�1 + m2~�2) · L̂N

M
, (2)

where L̂N is the unit vector in the direction of the Newto-
nian orbital angular momentum. In the modeled search
analyses, the spins are assumed to be parallel to L̂N.

The banks cover systems with total masses, redshifted
to the detector frame [93], ranging from a minimum value
2M� for all pipelines to a maximum value of 200M�
(MBTA), 500M� (PyCBC) or 758M� (GstLAL). The
minimum binary component mass is 1M�. Searches for
binaries with component masses less than 1M� have been
completed for previous observing runs [94–98]. The Py-
CBC pipeline performs two search analyses; the first is an
analysis encompassing a wide parameter space, allowing
detection of many di↵erent types of CBC systems, which
we refer to as the PyCBC-broad analysis. In addition to
this broad analysis, PyCBC is also used in a di↵erent con-
figuration, which we refer to as the PyCBC-BBH analy-
sis, focusing on BBH systems with total masses between
10M� and 500M�, mass ratios in the range 1/3  q  1,
and component masses in the range 5M�  m1  350M�
and m2 � 5M�. This PyCBC-BBH analysis is designed
to have higher sensitivity to BBH coalescences with com-
ponent masses that are similar to those of the majority
of previously detected systems. The range of templates
is the same as used for the search of O3a [4].

For each template, the matched-filter correlation pro-
duces a time series of SNR values for each detector, and

Effect of phase cumulation

Effect of precessions
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coalescence rate [38]. The remnant of GW190521 fulfills
the above definition of an IMBH.
GW190521 was detected by searches for quasicircular

binary coalescences, and there is no evidence in the data for
significant departures from such a signal model. However,
for any transient with high inferred masses, there are few
cycles observable in ground-based detectors, and therefore
alternative signal models may also fit the data. This is
further addressed in the companion paper [39] that also
provides details about physical parameter estimation, and
the astrophysical implications of the observation of GWs
from this massive system.
Observation.—On May 21, 2019 at 03:02:29 UTC, the

LIGO Hanford (LHO), LIGO Livingston (LLO), and Virgo
observatories detected a coincident transient signal. A
matched-filter search for compact binary mergers,
PYCBC LIVE [40,41,42], reported the transient with a
network signal-to-noise ratio (SNR) of 14.5 and a false-
alarm rate of 1 in 8 yr, triggering the initial alert. Aweakly
modeled transient search based on coherent wave burst
(CWB) [43] in its IMBH search configuration [35] reported
a signal with a network SNR of 15.0 and a false-alarm rate
lower than 1 in 28 yr. Two other matched-filter pipelines,
SPIIR [44] and GSTLAL [45], found consistent candidates
albeit with higher false-alarm rates. The identification,
localization, and classification of the transient as a binary
BH merger were reported publicly within ≈6 min, with the
candidate name S190521g [46,47].

A second significant GW trigger occurred on the same
day at 07:43:59 UTC, S190521r [48]. Despite the short
time separation, the inferred sky positions of GW190521
and S190521r are disjointed at high confidence, and so the
events are not related by gravitational lensing. Further
discussions pertaining to gravitational lensing and
GW190521 are presented in the companion paper [39].
GW190521, shown in Fig. 1, is a short transient signal

with a duration of approximately 0.1 s and around four
cycles in the frequency band 30–80 Hz. A frequency of
60 Hz at the signal peak and the assumption that the source
is a compact binary merger imply a massive system.
Data.—The LIGO and Virgo strain data are conditioned

prior to their use in search pipelines and parameter
estimation analyses. During online calibration of the data
[53], narrow spectral features (lines) are subtracted using
auxiliary witness sensors. Specifically, we remove from the
data the 60 Hz U.S. mains power signature (LIGO), as well
as calibration lines (LIGO and Virgo) that are intentionally
injected into the detectors to measure the instruments’
responses. During online calibration of Virgo data, broad-
band noise in the 40–1000 Hz frequency range is subtracted
from the data [54]. The noise-subtracted data produced by
the online calibration pipelines are used by online search
pipelines and initial parameter estimation analyses.
Subsequent to the subtraction conducted within the

online calibration pipeline, we perform a secondary offline
subtraction [55] on the LIGO data with the goal of

FIG. 1. The GW event GW190521 observed by the LIGO Hanford (left), LIGO Livingston (middle), and Virgo (right) detectors.
Times are shown relative to May 21, 2019 at 03:02:29 UTC. The top row displays the time-domain detector data after whitening by each
instrument’s noise amplitude spectral density (light blue lines); the point estimate waveform from the CWB search [43] (black lines); the
90% credible intervals from the posterior probability density functions of the waveform time series, obtained via Bayesian inference
(LALINFERENCE [49]) with the NRSur7dq4 binary BH waveform model [50] (orange bands), and with a generic wavelet model
(BayesWave [51], purple bands). The ordinate axes are in units of noise standard deviations. The bottom row displays the time-
frequency representation of the whitened data using the Q transform [52].
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compared using broader simulations of heavy BH mergers,
including precession and higher-order multipole moments,
also concluding that CWB is often more sensitive
[80,81]. We performed a similar simulation campaign for
GW190521 in order to further understand the different
significances. We simulated thousands of signals compat-
ible with the parameters inferred for the event under the
assumption of a quasicircular BH merger, using the
NRSur7dq4 waveform model described in the next section,
which includes precession and higher-order multipole
moments. The simulated sources have merger times dis-
tributed uniformly over several days surrounding
GW190521, so as to sample many different realizations
of the detector noise. The right ascensions have been
correspondingly corrected in order to cancel the effect of
Earth’s rotation, which would lead to different projections
of the strain polarizations on the detectors. We added the
signals into the data surrounding the event, reran the search
pipelines with the same configuration used for the offline
analysis, and counted the number of signals recovered by
each pipeline. CWB, GSTLAL, and PYCBC recovered,
respectively, 36%, 45%, and 11% of the simulated signals
at a false-alarm rate better than 1 in 4900 yr. The fraction of
signals found at a false-alarm rate in CWB better than 1 in
4900 yr and a false-alarm rate in PYCBC worse than 1 in
0.94 yr is 2.7%, which is small but not negligible. The
fraction found at a false-alarm rate in CWB better than 1 in
4900 yr and a false-alarm rate in GSTLAL worse than 1 in
829 yr is 7.8%.
We conclude that the outputs of CWB, GSTLAL, and

PYCBC are fully consistent with expectations for a qua-
sicircular binary merger signal with the parameters of
GW190521. The reported false-alarm rates do not include
a trials factor for the number of analyses performed. If one
were to choose a single representative false-alarm rate, one
should use the CWB rate multiplied by a trials factor of 3,
resulting from the conservative assumption [37,38] that
CWB, GSTLAL, and PYCBC are equally sensitive and
statistically independent. The resulting rate would still
point to a significant detection.
Astrophysical source.—GW190521 is qualitatively dif-

ferent from previous detections [3,6–8] due to the small
number of cycles and maximum frequency in the sensitive
band of the detectors. Hence, its astrophysical interpreta-
tion as a quasicircular compact binary merger warrants
more discussion than previous events. Alternative scenar-
ios, such as an eccentric collision [82], become more
relevant and are discussed in the companion paper [39].
Nevertheless, the quasicircular BH merger scenario
remains the most plausible and we will proceed under this
assumption in the rest of this Letter.
We performed Bayesian parameter inference on

GW190521 using three waveform models for quasicircular
binary BHs including the effects of higher order multipole
moments and precession. These are the numerical relativity

surrogate model NRSur7dq4 [50], the effective-one-body
model SEOBNRv4PHM [83,84], and the phenomenologi-
cal model IMRPhenomPv3HM [85]. To compute the
evidence for the presence of higher-order modes, orbital
precession and nonzero spin, we also compared the data
with the aforementioned models after removing these
effects from the models. We analyzed 8 s of data around
the time of GW190521. We impose uniform priors on the
redshifted component masses, on the individual spin
magnitudes and on the square of the luminosity distance.
We have checked that imposing an uniform-in-co-moving-
volume prior changes the results by less than 1%. We
impose an isotropic prior on the source and the spin
orientations. We produce posterior distributions margin-
alized over calibration uncertainties. For the NRSur7dq4
and IMRPhenomPHM runs, we made use of the
LALINFERENCE software package [49] while the
SEOBNRv4PHM runs were done using the RIFTalgorithm
[86]. We find that despite differences in how these wave-
form models are computed, and the fact that we needed to
sample over parameters outside their calibration regions
[87], all yield broadly consistent results [39]. In addition,
direct comparison of the data to numerical relativity
simulations [88–90], using the RIFT algorithm, yields
consistent results. In the following we quote results
obtained using the NRSur7dq4 model. This choice is
motivated by this being the only model that has been
calibrated to numerical simulations of precessing BH

TABLE I. Parameters of GW190521 according to the
NRSur7dq4 waveform model. We quote median values with
90% credible intervals that include statistical errors.

Parameter

Primary mass 85þ21
−14 M⊙

Secondary mass 66þ17
−18 M⊙

Primary spin magnitude 0.69þ0.27
−0.62

Secondary spin magnitude 0.73þ0.24
−0.64

Total mass 150þ29
−17 M⊙

Mass ratio (m2=m1 ≤ 1) 0.79þ0.19
−0.29

Effective inspiral spin parameter (χeff ) 0.08þ0.27
−0.36

Effective precession spin parameter (χp) 0.68þ0.25
−0.37

Luminosity Distance 5.3þ2.4
−2.6 Gpc

Redshift 0.82þ0.28
−0.34

Final mass 142þ28
−16 M⊙

Final spin 0.72þ0.09
−0.12

P (m1 < 65 M⊙) 0.32%

log10 Bayes factor for orbital precession 1.06þ0.06
−0.06

log10 Bayes factor for nonzero spins 0.92þ0.06
−0.06

log10 Bayes factor for higher harmonics −0.38þ0.06
−0.06
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binaries. The NRSur7dq4 results are summarized in
Table I. Results for all three models are presented in the
companion paper [39].
Figure 2 shows our estimated 90% credible regions for

the individual masses of GW190521. We estimate indivi-
dual components with ðm1; m2Þ ¼ ð85þ21

−14 ; 66
þ17
−18Þ M⊙ and

a total mass 150þ29
−17 M⊙. This makes GW190521 the most

massive binary BH observed to date, as expected from its
short duration and low peak frequency. To quantify
compatibility with the PISN mass gap, we find the
probability of the primary component being below
65 M⊙ to be 0.32%. The estimated mass and dimensionless
spin magnitude of the remnant object areMf ¼ 142þ28

−16 M⊙
and χf ¼ 0.72þ0.09

−0.12 respectively. The posterior forMf shows
no support below 100 M⊙, making the remnant the first
conclusive direct observation of an IMBH.
The left panel of Fig. 3 shows the posterior distributions

for the magnitude and tilt angle of the individual spins,
measured at a reference frequency of 11 Hz. All pixels in
this plot have equal prior probability. While we obtain
posteriors with strong support at the χ ¼ 1 limit imposed by
cosmic censorship [91], these also show non-negligible
support for zero spin magnitudes. In addition, the maxi-
mum posterior probability corresponds to large angles
between the spins and the orbital angular momentum.
Large spin magnitudes and tilt angles would lead to a
strong spin-orbit coupling, causing the orbital plane to

FIG. 2. Posterior distributions for the progenitor masses of
GW190521 according to the NRSur7dq4 waveform model. The
90% credible regions are indicated by the solid contour in the
joint distribution and by solid vertical and horizontal lines in
the marginalized distributions.

FIG. 3. Left: posterior distribution for the individual spins of GW190521 according to the NRSur7dq4 waveform model. The radial
coordinate in the plot denotes the dimensionless spin magnitude, while the angle denotes the spin tilt, defined as the angle between the
spin and the orbital angular momentum of the binary at reference frequency of 11 Hz. A tilt of 0° indicates that the spin is aligned with
the orbital angular momentum. A nonzero magnitude and a tilt away from 0° and 180° imply a precessing orbital plane. All bins have
equal prior probability. Right: posterior distributions for the effective spin and effective in-plane spin parameters. The 90% credible
regions are indicated by the solid contour in the joint distribution, and by solid vertical and horizontal lines in the marginalized
distributions. The large density for tilts close to 90° leads to large values for χp and low values for χeff.
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binaries. The NRSur7dq4 results are summarized in
Table I. Results for all three models are presented in the
companion paper [39].
Figure 2 shows our estimated 90% credible regions for

the individual masses of GW190521. We estimate indivi-
dual components with ðm1; m2Þ ¼ ð85þ21

−14 ; 66
þ17
−18Þ M⊙ and

a total mass 150þ29
−17 M⊙. This makes GW190521 the most

massive binary BH observed to date, as expected from its
short duration and low peak frequency. To quantify
compatibility with the PISN mass gap, we find the
probability of the primary component being below
65 M⊙ to be 0.32%. The estimated mass and dimensionless
spin magnitude of the remnant object areMf ¼ 142þ28

−16 M⊙
and χf ¼ 0.72þ0.09

−0.12 respectively. The posterior forMf shows
no support below 100 M⊙, making the remnant the first
conclusive direct observation of an IMBH.
The left panel of Fig. 3 shows the posterior distributions

for the magnitude and tilt angle of the individual spins,
measured at a reference frequency of 11 Hz. All pixels in
this plot have equal prior probability. While we obtain
posteriors with strong support at the χ ¼ 1 limit imposed by
cosmic censorship [91], these also show non-negligible
support for zero spin magnitudes. In addition, the maxi-
mum posterior probability corresponds to large angles
between the spins and the orbital angular momentum.
Large spin magnitudes and tilt angles would lead to a
strong spin-orbit coupling, causing the orbital plane to

FIG. 2. Posterior distributions for the progenitor masses of
GW190521 according to the NRSur7dq4 waveform model. The
90% credible regions are indicated by the solid contour in the
joint distribution and by solid vertical and horizontal lines in
the marginalized distributions.

FIG. 3. Left: posterior distribution for the individual spins of GW190521 according to the NRSur7dq4 waveform model. The radial
coordinate in the plot denotes the dimensionless spin magnitude, while the angle denotes the spin tilt, defined as the angle between the
spin and the orbital angular momentum of the binary at reference frequency of 11 Hz. A tilt of 0° indicates that the spin is aligned with
the orbital angular momentum. A nonzero magnitude and a tilt away from 0° and 180° imply a precessing orbital plane. All bins have
equal prior probability. Right: posterior distributions for the effective spin and effective in-plane spin parameters. The 90% credible
regions are indicated by the solid contour in the joint distribution, and by solid vertical and horizontal lines in the marginalized
distributions. The large density for tilts close to 90° leads to large values for χp and low values for χeff.
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Population III stars

3

gies Zwart & McMillan 2000; Antonini & Gieles 2020;
Santoliquido et al. 2020; Rodriguez et al. 2015, 2016;
Rodriguez & Loeb 2018; Di Carlo et al. 2019; Kremer
et al. 2020; Rodriguez et al. 2015, 2016; Rodriguez &
Loeb 2018; Antonini & Gieles 2020) or AGN disk (Bartos
et al. 2017; Yi & Cheng 2019; Yang et al. 2019, 2020;
Gröbner et al. 2020; Tagawa et al. 2020b,c,a; Samsing
et al. 2020), from Population III (Pop III) stars (Kinu-
gawa et al. 2014, 2016; Hartwig et al. 2016; Belczynski
et al. 2017) or primordial black holes (Carr & Hawking
1974; Ali-Häımoud et al. 2017; Clesse & Garćıa-Bellido
2017; Bird et al. 2016; Sasaki et al. 2016; Raidal et al.
2017, 2019; Wong et al. 2020a; Boehm et al. 2020; Hall
et al. 2020).
For simplicity, in this paper we use galactic fields and

globular cluster as the only main populations at low
redshift, and Pop III stars as the only high-redshift chan-
nel. The analysis can be easily extended to even more
population, at the price of an increased computational
cost.
Hereafter, we label the BBHs in the three formation

channels as field binaries, cluster binaries and Pop III
binaries. Since an astrophysical BH is a remnant of
stellar collapse, the merger rate history of each chan-
nel is correlated with the SFR and with the time delay
from the binary formation to merger. Cluster and field
binaries consist of BH-remnants leftover from Pop I/II
stars, whose corresponding SFR peaks at late times:
z ⇠ 3 (Vangioni et al. 2015; Madau & Dickinson 2014).
Accounting for the typical time delay between binary
formation and merger (⇠ 10 Myr to ⇠ 10 Gyr), their
merger rates are expected to peak at around z ⇠ 2 (Do-
minik et al. 2013; Belczynski et al. 2016; Mapelli et al.
2019; Rodriguez & Loeb 2018).
Pop III stars are instead formed at early times, z & 10,

from primordial gas clouds at extremely low metallic-
ity (Vangioni et al. 2015; de Souza et al. 2011). The
“metal-free” environment reduces the stellar wind mass
loss during the binary evolution (Bara↵e et al. 2001)
so that Pop III stars might be more massive than later
stellar populations. Eventually, heavy BH remnants are
left behind that merge in a short timescale, resulting
on a merger rate density that could peak at around
z ⇠ 10 (Belczynski et al. 2016; Hartwig et al. 2016;
Kinugawa et al. 2014, 2016).
The fact that di↵erent formation channels result in

di↵erent merger rate distributions as a function of red-
shift, especially for Pop III remnants, can be exploited
to infer properties of BBH populations solely based on
the redshift distribution of the detected sources. More
elaborate tests can be envisaged, that also rely on other
distinguishing features, e.g. masses, spins or eccentricity

of the sources. In this study we will show that tests
based on the redshift distribution alone can already pro-
vide significant constraints, while also having the benefit
of being model-independent, at least in some of the
implementations we demonstrate below. This seems par-
ticularly desirable, since the true distribution of intrinsic
parameters such as masses and spins is highly uncertain,
especially for Pop III remnants.
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Figure 1. The merger rate densities of field (orange), cluster
(blue) and Pop III (green) binaries, together with the overall
merger rate (black), given by the sum of the three populations.
For the purposes of this plot, field and cluster merger rate
densities are normalized such that they produce the same
number of binaries up to z of 15. The Pop III merger rate
density is scaled so that its peak has an amplitude of 1/10
relative to the peak of the field and cluster merger rate
densities. The vertical lines indicate the detector horizons, zh,
to BBHs with total masses (in the comoving frame)  100M�,
in a network of three advanced detectors (zh ⇠ 2.25), a single
Voyager (Adhikari et al. 2019) (zh ⇠ 8.5) and a network of
three Voyager-like detectors (zh ⇠ 12.1), respectively (Hall &
Evans 2019). The SNR threshold for detection is set to be 8
for a single detector and 12 for a detector network.

In Fig. 1 we show the “true” merger rate densities of
three formation channels we use in this study, and focus
on key features of their shapes (we will discuss later the
branching ratios, i.e. the relative scale). The rate densi-
ties of field (orange), cluster (blue) and Pop III (green)
binaries are phenomenological fits (details in Appendix C,
Eqs. (C13), (C14) and (C15)) of the population synthesis
simulation from Belczynski et al. (2016); Rodriguez &
Loeb (2018); Belczynski et al. (2017), respectively. We
notice that the high-redshift tail of the cluster merger
rate density is much steeper than that of the field binaries.
This is largely due to the choice of model: the cluster
merger rates are based on the model of globular cluster
formation from (El-Badry et al. 2019), which goes to
zero at z ⇠ 10. That, combined with the delay between
cluster formation and BBH mergers (since BHs in clus-
ters can only merge after the cluster has formed and the
BHs have sunk to the center due to dynamical friction,



GW190521GW190521GW190521GW190521

GW150914GW150914GW150914GW150914

GW170817GW170817GW170817GW170817

Cosmic 2uUIoaea 

Total Binary Mass [MØ] Big Bang 

1 10 100 1000 
1000 

CMB 

Primordial Black Holes 

100 

Pop III Black Holes 

A
ge

 o
f 
U

n
iv

er
se

Dark Ages 

Reionization 

10 

R
ed

sh
if
t 

z 

1 

0.1 

G
R
B

s 
N

eu
tr

on
 S

ta
rs

N
S
B

H

B
la

ck
 H

ol
es

 

Peak Star Formation 

GW190521 

GW150914 

GW1708170.01 
CE40 

100 

A# 
10 A+ 

O3 
1 

0.1 

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 

7i<ure Ϲ- ihe ae�ch o8 the Cosmic 2uUIoaea ωе Gm obseaq�toaw 8oa comU�ct bin�aw meageas �s � 8unction o8 tot�I 
bin�aw m�ss �n0 ae0shi8t �t q�aious sign�IAtoAnoise a�tio VSN`W thaeshoI0sY Cosmic 2uUIoaea siII Uush the cosmic 
hoaiyon to the boun0�aw o8 the UoUuI�tion o8 bin�aw neutaon st�as VgoI0W. neutaon st�a Ģ bI�cG hoIes VNS#?W Vae0W 
�n0 bin�aw bI�cG hoIe meageas VshiteW VȽϹYϹWY ihe oa0ea o8 m�gnitu0e imUaoqement in sensitiqitw en�bIes obseaq�tion 
o8 nes UoUuI�tions. incIu0ing meageas 8aom PoUuI�tion BBB bI�cG hoIes Vcw�nW. �n0 sUecuI�tiqe Uaimoa0i�I bI�cG hoIes 
Vm�gent�W )ИĢφ*Y A s�mUIe o8 obseaqe0 shoat g�mm�Aa�w buast VG`#W ae0shi8ts )Ѝ* is shosn VweIIos. sith m�sses 
0a�sn 8aom the #NS UoUuI�tionWY SN` > Ϲее sign�Is VbeIos weIIos cuaqeW siII en�bIe Uaecision �staoUhwsics VȽȽ ϹYИ 
�n0 ϹYωWY GWϹЊеξϹЊ. GWϹφеϭϹω. �n0 GWϹϭеφИϹ Vst�asW �ae highIighte0 �Iong sith the UoUuI�tion o8 obseaqe0 
comU�ctAobEect bin�aies Vsm�II tai�ngIesW )Њ. ξ*Y ihe 8�ciIitw Iimit Vgaeen. see ȽИW is shosn sith Iimiting noise souacesd 
uUga�0es bewon0 the initi�I conceUt m�w �UUao�ch this IimitY A comU�aison to A♯ . AZ. �n0 QД is shosn �t the bottomY 

Д 



Collisions of Galaxies and their BHs 
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Collisions of Galaxies and their BHs 

“Hardening” of Super-Massive Black Holes after a galaxy merger [Begelman, Blandford, Rees, 1980]



Hardening of SMBH Binaries3142 L. Z. Kelley, L. Blecha and L. Hernquist

Figure 11. Binary hardening time-scales versus binary separation by mech-
anism. Coloured lines and bands show the median and 50 per cent intervals
for DF, LC scattering, VD, and GW emission with the total hardening rate
shown by the grey, hatched region. The inset panel shows the fraction of
binaries dominated by each mechanism. This simulation uses our fiducial
parameters (e.g. Frefill = 0.6), with ‘Stellar’ DF-mass enhancement. The
binary hardening landscape is very similar to that outlined by BBR80, but
the details are far more nuanced. For a comparison with alternate models,
see Fig. A3.

for a total mass M = M1 + M2, mass ratio µ ≡ M2/M1, initial
separation a0, and critical separation Rcrit. In practice, we assume
that the GW signal from binaries terminates at the Innermost Sta-
ble Circular Orbit (ISCO), at which point the binary ‘coalesces’;
i.e. Rcrit = Risco(J = 0.0) = 3Rs. For an equal-mass binary, with
median Illustris MBH masses15 of about 107 M", the binary needs
to come to a separation of ∼0.01 pc (∼104 Rs), to merge within a
Hubble time. Characteristic time-scales and separations for (purely)
GW-driven inspirals across total mass and mass-ratio parameter
space are plotted in Fig. A2. While the absolute most-massive
MBHB can merge purely from GW emission starting from a par-
sec, the bulk of physical systems, at 106–108 M", must be driven
by environmental effects to separations of the order of 10−3 to 10−2

pc (∼500–5000 Rs) to coalesce by redshift zero.

4 R ESULTS

The hardening time-scales for all MBHBs are plotted against bi-
nary separation in Fig. 11, broken down by hardening mechanism.
This is a representative model with a moderate LC refilling frac-
tion Frefill = 0.6 (see Section 3.2), using the ‘Enh-Stellar’ DF (see
Section 3.1). This is the fiducial model for which we present most
results, unless otherwise indicated. The inset shows the fraction of
binaries with hardening rates dominated by each mechanism. DF
is most important at large radii soon after binaries form, until LC
scattering takes over at ∼1 pc. The median hardening time-scale
remains fairly consistent at a few times 100 Myr, down to ∼10−2

pc at which point VD drives the bulk of systems until GW emission
takes over at separations below 10−5 pc, where the typical hardening
time-scale reaches years. The landscape of hardening time-scales
for alternative DF prescriptions and LC refilling fractions is shown
in the Appendix (Fig. A3).

15 After typical selection cuts, described in Section 2.

Figure 12. Binary lifetimes (upper) and coalescing fractions (lower) for
our fiducial model with a moderate DF and LC refilling (‘Enh-Stellar’
and Frefill = 0.6, respectively). The overall distribution of MBHB lifetimes
is shown in the upper-rightmost panel, with the cumulative distribution
plotted as the dashed line. The median lifetime is ∼30 Gyr overall, but is
significantly shorter for MBHBs with either high total masses, or nearly
equal mass ratios. For this group, the coalescing fractions are near unity.
Grey bins in the lower panel correspond to those with no binaries that
coalesce by redshift zero. While systems with the highest masses and mass
ratios tend to have much shorter lifetimes, they also form at low redshifts
with less time to coalesce.

4.1 Binary lifetimes

Characteristic hardening time-scales are often many 100 Myr, and
MBHBs typically need to cross eight or nine orders of magnitude
of separation before coalescing. The resulting lifetimes of MBHBs
can thus easily reach a Hubble time. Fig. 12 shows binary lifetimes
(upper panels) and the fraction of systems that coalesce by z = 0
(lower panels) for our fiducial model. Systems are binned by total
mass and mass ratio, with the number of systems in each bin indi-
cated. The plotted lifetimes are median values for each bin, with the
overall distribution shown in the upper-rightmost panel. Grey val-
ues are outside of the range of binned medians, and the cumulative
distribution is given by the dashed line.

The lifetime distribution peaks near the median value of 29
Gyr, with only ∼7 per cent of lifetimes at less than 1 Gyr. About
20 per cent of all MBHBs in our sample coalesce before redshift
zero. Systems involving the lowest mass black holes16 (i.e. down
and left) tend towards much longer lifetimes. Overall, lifetimes and

16 Recall we require MBH masses of at least 106 M".
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Stochastic Background from SMBH Mergers
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SMBH and galaxy parameters are known a priori. Ulti-
mately, many of these parameters become significantly de-
generate in determining the resulting shape of the GWB spec-
trum and the properties of the SMBH binaries producing it.
For this reason, we focus this analysis on a ‘phenomeno-
logical’ model that is designed to capture the overall e↵ects
of more explicit binary evolution, while introducing only a
small number of free parameters. In these models, the hard-
ening timescale is parameterized in terms of the evolution of
the binary semi-major axis a as

da
dt

�����
phenom

= Ha ·
 

a
ac

!1�⌫inner

·
 
1 +

a
ac

!⌫inner�⌫outer

. (24)

The hardening timescale is thus a double power law, with a
break at the critical separation ac, and asymptotic behaviors
of:

dt
d ln a

(a ⌧ ac) ⇠ a⌫inner , (25)

in the ‘inner’ (small-separation) regime, and

dt
d ln a

(a � ac) ⇠ a⌫outer , (26)

in the ‘outer’ (large-separation) regime. Hardening rates are
added linearly, such that the total rate of evolution when also
including GW emission (Equation 8) is given by da/dt =
[da/dt]phenom + [da/dt]GW. We assume a fixed value of
⌫outer = +2.5 in all of our analysis, motivated by detailed
literature models of dynamical-friction-driven evolution of
SMBH binaries (Kelley et al. 2017a). ⌫inner, which controls
the hardening rate of binaries as they approach and enter the
PTA band, is allowed to vary in our models.

In addition to the two power-law indices (⌫inner, ⌫outer), and
the characteristic break separation (ac), the normalization
(Ha) is calculated such that the total lifetime of the binary
matches a target ⌧ f , i.e.,

⌧ f =

Z aisco

ainit

 
da
dt

!�1

da, (27)

where ainit is the initial binary separation and aisco ⌘ 6 GM/c2

is the innermost stable circular orbit, where we consider the
two SMBHs to have merged. While this expression for aisco
is based on the test-particle approximation (q ⌧ 1), the true
value should di↵er by less than a factor of two (Flanagan &
Hughes 1998) for low SMBH spins, and the contribution to
the total lifetime is always negligible for a ⇠ aisco. The total
lifetime ⌧ f is a key parameter that we vary in our models.

At numerous po14ints in our analysis we compare the
self-consistent, phenomenological model (in the Phenom and
Phenom-Ext libraries) against a model where binaries de-
cay only due to GW emission (GWOnly and GWOnly-Ext
libraries). In the GW-only model, we take the redshift (and

Figure 3. SMBH binary hardening timescales and GW spectra
are shown for varying values of phenomenological binary evolu-
tion model parameters. The top panel shows the hardening time-
scale (⌧ = dt/d ln a), with the black, horizontal lines corresponding
to total binary lifetimes. Solid lines correspond to binary lifetimes
⌧ f = 0.1 Gyr, while dashed are 1.0 Gyr. The small separation hard-
ening rate power-law index, ⌫inner, is also varied which changes the
amount of time binaries spend at sub-parsec separations. The verti-
cal dotted line shows the separation at which an M = 109 M� sys-
tem reaches f = 1/16.03 yr. The bottom panel shows the resulting
GWB characteristic strain. The dotted line shows GW-only driven
evolution. For clarity, the top panel includes only binaries with
3 ⇥ 108 M� < M  3 ⇥ 109 M� and 0.1 < q  1.0. In both panels,
the shaded regions denote the inter-quartile range. Other parame-
ters of these population are fiducial values for the Phenom set of
models (§ 3.3). Variation in the binary evolution parameters signifi-
cantly impacts the shape and low-frequency amplitude of the GWB
spectrum.

thus source distance) to be the post-galaxy-merger redshift,
without an additional delay, and set the binary evolution time
in Equation (7) to be that of GW-only evolution (i.e., Equa-
tion 8). This model is not self-consistent, as GW-only evo-
lution is unable to bring binaries to the PTA band within a
Hubble time. It is nonetheless a useful comparison, because
the GW-only assumption is often still used in the literature
and tends to produce the highest GWB amplitudes.

Figure 3 shows the binary evolution and GWB spectra re-
sulting from the phenomenological evolution model. To-
tal binary lifetimes of 0.1 and 1 Gyr are plotted with solid
and dashed lines respectively, while varying small-separation
power-law indices (⌫inner) are shown with di↵erent colors. In
each panel, the median and 50% interquartile range of bina-
ries are shown. Note that in the top panel, only binaries with
3 ⇥ 108 M� < M  3 ⇥ 109 M� and 0.1 < q  1.0 are shown.
In the environmentally driven regime (larger separations),
their hardening rate is determined such that their total life-
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rameters achieved by ceffyl have been found to be nearly
identical to those obtained from the full likelihood approach.

In detail, we expand the likelihood, L
⇣
~d|~⇥
⌘
, where ~d is

the PTA data (e.g., the TOAs) and ~⇥ are the SMBH binary
population parameters (e.g., the parameters from Phenom),
by inserting an intermediate data product such as the free-
spectrum posteriors (log10(⇢i)). Then, instead of directly cal-
culating the fit of a GWB spectrum (generated by the trained
GPs for a given draw of SMBH binary population parame-
ters) to the TOAs, we compute the probability that a given
GWB spectrum is supported by the free-spectrum posteriors.
The expanded likelihood function is now given by

L
⇣
~d|~⇥
⌘
/

N fY

i=1

Z
d
�
log10 ⇢i

�
p
⇣
log10 ⇢i|~d

⌘
p
⇣
log10 ⇢i|~⇥

⌘
, (28)

where Nf is the number of Fourier components used
in the GWB analysis (5 or 14, but see also § 2 and
NG15gwb), p

⇣
log10 ⇢i|~d

⌘
is the posterior probability density

of log10(⇢i) (i.e., the free-spectral posteriors) which are repre-
sented by highly optimized kernel density estimators, while
p
⇣
log10 ⇢i|~⇥

⌘
is the probability of log10 ⇢i given a GWB spec-

trum from the trained GPs. Since the GPs are trained on
the median and standard deviation of the characteristic strain
log10(h2

c), these provide the mean and variance of a Gaus-
sian when calculating p

⇣
log10 ⇢i|~⇥

⌘
. The above likelihood is

sampled through MCMC techniques to obtain the resultant
posteriors on ~⇥.

While all of the libraries generated for GP training draw
uniformly from the SMBH binary population parameter
space, when we perform the MCMC analysis, we have the
opportunity to place di↵erent priors onto each parameter. For
the analysis in this paper, we utilize two distinct prior set-
ups: a uniform prior and a set of astrophysical priors based
on galaxy observations (e.g., see Table B1). When relevant,
we denote the prior distribution shape in combination with
the library designation as e.g., Phenom+Uniform or Phe-
nom+Astro (see Table B2).

4. RESULTS

We simulate populations of SMBH binaries using a phe-
nomenological (Phenom) and GW-only (GWOnly) model.
We create holodeck libraries of GWB spectra at fixed
points of the SMBH binary parameter space and interpo-
late them with GPs. We fit the models to the 15 yr free-
spectrum posteriors considering the HD-w/MP+DP+CURN
as the fiducial 15 yr NANOGrav results for this analysis (but
we also fit the HD-DMGP posteriors for comparison) us-
ing both uniform and astrophysically motivated priors (see
Table B1). As shown in Table B2, the Phenom library
is fit against the data using both uniform priors and as-
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Figure 7. Power-law amplitude (A) and spectral index (�) from
purely power-law fits to HD free-spectrum model posteriors from
the 15 yr data set, compared to simulated GWB spectra from
holodeck libraries. Data set fits include both the 15 yr HD-
w/MP+DP+CURN and HD-DMGP models for comparison. Fits
to the lowest 5-frequency bins of spectra from two holodeck li-
braries are shown: the self-consistent phenomenological binary evo-
lution model (Phenom) and the purely GW-driven evolution model
(GWOnly). We show 1, 2, & 3� contours for each. The analytic,
GWB PSD power-law index of � = 13/3 is shown as reference
(black, dashed). The spectral shape of the HD signal present in
the 15 yr data set is broadly consistent with expectations for a GWB
from binary SMBH population. The amplitude is towards the higher
end of predictions and the recovered spectral index deviates from
the idealized power law in similar ways as the phenomenological
binary evolution model.

trophysically informed priors (Phenom+Uniform and Phe-
nom+Astro), while the GWOnly library is fit only with uni-
form priors (GWOnly+Uniform). Our results are summarized
as follows.

In all of our analysis, we find that the NANOGrav 15 yr
data set is consistent with a GWB produced by a population
of SMBH binaries. In the first, most simplified approach,
power-law fits6 to both the observed GWB spectrum and
those from simulations produce amplitudes and spectral in-
dices that overlap in the 2- and 3-� regions depending on
model (§ 4.1). The remainder of this section presents the re-
sults of our systematic approach of fitting simulated SMBH
binary populations to the data, which yield more realistic
GWB spectra that match the 15 yr results (§ 4.2). From these
fits we obtain posterior distributions on uncertain astrophys-

6 Note that NANOGrav constraints are derived primarily at lower frequen-
cies. Fitting power laws, and extrapolating the amplitudes to f =

�
1 yr
��1

can lead to amplitudes that di↵er more significantly at this frequency than
at f =

�
10 yr

��1, for example. See Appendix A.

Mechanisms for hardening below parsec 
scale can be uncertain. 

shift technique, which removes interpulsar correlations by
adding random phase shifts to the Fourier components of the
common process (Taylor et al. 2017). We find false-alarm
probabilities of p= 10−3 and p= 5× 10−5 for the observed
Bayes factor and optimal statistic, respectively (see Figure 3).

For our fiducial power-law model ( f−2/3 for characteristic
strain and f−13/3 for timing residuals) and a log-uniform
amplitude prior, the Bayesian posterior of GWB amplitude at
the customary reference frequency 1 yr−1 is AGWB =
2.4 100.6

0.7 15´-
+ - (median with 90% credible interval), which is

compatible with current astrophysical estimates for the GWB from
SMBHBs (e.g., Burke-Spolaor et al. 2019; Agazie et al. 2023b).
This corresponds to a total integrated energy density of

9.3 10gw 4.0
5.8 9W = ´-

+ - or 7.7 10 ergs cmgw 3.3
4.8 17 3r = ´-

+ - -

(assuming H0= 70 km s−1Mpc−1) in our sensitive frequency

band. For a more general model of the timing-residual power
spectral density with variable power-law exponent −γ, we find
A 6.4 10GWB 2.7

4.2 15= ´-
+ - and 3.2 0.6

0.6g = -
+ . See Figure 1(b) for

AGWB and γ posteriors. The posterior for γ is consistent with the
value of 13/3 predicted for a population of SMBHBs evolving by
GW emission, although smaller values of γ are preferred;
however, the recovered posteriors are consistent with predictions
from astrophysical models (see Agazie et al. 2023b). We also note
that, unlike our detection statistics (which are calibrated under our
modeling assumptions), the estimation of γ is very sensitive to
minor details in the data model of a few pulsars.
The rest of this paper is organized as follows. We briefly

describe our data set and data model in Section 2. Our main
results are discussed in detail in Sections 3 and 4; they are
supported by a variety of robustness and validation studies,

Figure 1. Summary of the main Bayesian and optimal-statistic analyses presented in this paper, which establish multiple lines of evidence for the presence of
Hellings–Downs correlations in the 15 yr NANOGrav data set. Throughout we refer to the 68.3%, 95.4%, and 99.7% regions of distributions as 1σ/2σ/3σ regions,
even in two dimensions. (a) Bayesian “free-spectrum” analysis, showing posteriors (gray violins) of independent variance parameters for a Hellings–Downs-correlated
stochastic process at frequencies i/T, with T the total data set time span. The blue represents the posterior median and 1σ/2σ posterior bands for a power-law model;
the dashed black line corresponds to a γ = 13/3 (SMBHB-like) power law, plotted with the median posterior amplitude. See Section 3 for more details. (b) Posterior
probability distribution of GWB amplitude and spectral exponent in an HD power-law model, showing 1σ/2σ/3σ credible regions. The value γGWB = 13/3 (dashed
black line) is included in the 99% credible region. The amplitude is referenced to fref = 1 yr−1 (blue) and 0.1 yr−1 (orange). The dashed blue and orange curves in the

Alog10 GWB subpanel show its marginal posterior density for a γ = 13/3 model, with fref = 1 yr−1 and fref = 0.1 yr−1, respectively. See Section 3 for more details. (c)
Angular-separation-binned interpulsar correlations, measured from 2211 distinct pairings in our 67-pulsar array using the frequentist optimal statistic, assuming
maximum-a-posteriori pulsar noise parameters and γ = 13/3 common-process amplitude from a Bayesian inference analysis. The bin widths are chosen so that each
includes approximately the same number of pulsar pairs, and central bin locations avoid zeros of the Hellings–Downs curve. This binned reconstruction accounts for
correlations between pulsar pairs (Romano et al. 2021; Allen & Romano 2022). The dashed black line shows the Hellings–Downs correlation pattern, and the binned
points are normalized by the amplitude of the γ = 13/3 common process to be on the same scale. Note that we do not employ binning of interpulsar correlations in our
detection statistics; this panel serves as a visual consistency check only. See Section 4 for more frequentist results. (d) Bayesian reconstruction of normalized
interpulsar correlations, modeled as a cubic spline within a variable-exponent power-law model. The violins plot the marginal posterior densities (plus median and
68% credible values) of the correlations at the knots. The knot positions are fixed and are chosen on the basis of features of the Hellings–Downs curve (also shown as a
dashed black line for reference): they include the maximum and minimum angular separations, the two zero-crossings of the Hellings–Downs curve, and the position
of minimum correlation. See Section 3 for more details.
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LISA Sources
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SMBH Binaries for LISA

ring-downof the newMBH that formed. Being sources
at cosmological redshifts, masses in the observer frame
are (1+ z) heavier than in the source frame, and source
redshifts are inferred from the luminosity distance Dl ,
extracted from the signal (with the exception of those
sources for whichwe have an independentmeasure of z
from an identified electromagnetic counterpart). Con-
sistent with current, conservative population models
[10], the expected minimum observation rate of a few
MBH Binaries (MBHB) per year would fulfill the re-
quirements of SO2.

Figure 3: Massive black hole binary coalescences:
contours of constant SNR for the baseline obser-
vatory in the plane of total source-frame mass, M,
and redshift, z (left margin-assuming Planck cos-
mology), and luminosity distance, Dl (right mar-
gin), for binaries with constant mass ratio of q =
0.2. Overlaid are the positions of the threshold bi-
naries used to define the mission requirements.

Figure 3 presents the richness of sources that should
be visible to LISA, showing a wide range of masses ob-
servable with high SNR out to high redshift. The def-
inition of the threshold systems (which are shown as
red stars in Figure 3) for each OR leads to one or more
MR, shown in Figure 2.

SI2.1: Search for seed black holes at cosmic dawn

OR2.1 Have the capability to detect the inspiral of
MBHBs in the interval between a few 103M⊙ and a few
105M⊙ in the source frame, and formation redshifts be-
tween 10 and 15. Enable themeasurement of the source
frame masses and the luminosity distance with a frac-
tional error of 20% to distinguish formation models.

MR2.1: Ensure the strain sensitivity is better than 1.6×
10−20Hz−1/2 at 3.5mHz and 1 × 10−20Hz−1/2 at 9mHz,
to enable the observation of binaries at the low end of
this parameter space with a SNR of at least 10. Such
a “threshold” system would have a mass of 3000M⊙,

mass ratio q = 0.2, and be located at a redshift of 15.
All other MBHBs in OR2.1 with masses in the quoted
range and mass ratios higher than this and/or at lower
redshift, will then be detectedwith higher SNR yielding
better parameter estimation.

SI2.2: Study the growth mechanism of MBHs from
the epoch of the earliest quasars

OR2.2.a Have the capability to detect the signal for co-
alescing MBHs with mass 104 < M < 106M⊙ in the
source frame at z ≲ 9. Enable the measurement of the
source frame masses at the level limited by weak lens-
ing (5 %).

OR2.2.b For sources at z < 3 and 105 < M < 106M⊙,
enable the measurement of the dimensionless spin of
the largest MBH with an absolute error better than 0.1
and the detection of the misalignment of spins with
the orbital angular momentum better than 10 degrees.
This parameter accuracy corresponds to an accumu-
lated SNR (up to the merger) of at least ∼ 200.
MR2.2: The most stringent requirement is set by be-
ing able to measure the spin of a threshold system with
total intrinsic mass of 105M⊙, mass ratio of q = 0.2, lo-
cated at z = 3. This will satisfy both OR2.1.a and 2.1.b.
Achieving an SNR of 200 requires a strain sensitivity
of 4 × 10−20Hz−1/2 at 2mHz and 1.3 × 10−20Hz−1/2 at
20mHz. All systems in OR2.2.a and 2.2.b with higher
mass, mass ratios, spins, or lower redshift will result in
higher SNR, and better spin estimation.

SI2.3: Observation of EM counterparts to unveil the
astrophysical environment aroundmerging binaries

OR2.3.a Observe themergers ofMilky-Way typeMB-
HBs with total masses between 106 and 107M⊙ around
the peak of star formation (z ∼ 2), with sufficient SNR
to allow the issuing of alerts to EM observatories with
a sky-localisation of 100deg2 at least one day prior to
merger. This would yield coincident EM/GW observa-
tions of the systems involved.

OR2.3.b After gravitationally observing the merger of
systems discussed in OR2.3.a, the sky localisation will
be significantly improved, allowing follow-up EM ob-
servations to take place. This has the potential to wit-
ness the formation of a quasar following a BH merger.
This needs excellent sky localisation (about 1 deg2) to
distinguish from other variable EM sources in the field
months to years after the merger.

MR2.3: For the lowest SNR system in OR2.3.a, which
corresponds to a mass of 106M⊙ at z = 2, we will detect
the inspiral signal (with SNR=10) ∼ 11.5 days prior to
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• “Trace the origin, growth and 
merger history of massive black 
holes across cosmic ages


• Search for seed black holes at 
cosmic dawn


• Study the growth mechanism of 
MBHs from the epoch of the earliest 
quasars


• Observation of EM counterparts to 
unveil the astrophysical 
environment around merging 
binaries


• Test the existence of Intermediate 
Mass Black Hole Binaries 
(IMBHBs)”

SNR for  binaries with total mass . 
[K. Danzmann et al., LISA Proposal]

q = 0.2 M

… from LISA Proposal



Extreme Mass Ratio Inspirals (EMRIs)Berry et al. The unique potential of extreme mass-ratio inspirals
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Figure 1. Illustration of an orbit in Kerr spacetime, appropriate for a short portion of an EMRI around a
spinning MBH. The central black hole has a mass M = 106M� and a dimensionless spin of 0.9. Distances
are measured in units of the gravitational radius rg = GM/c2. The innermost stable circular orbit for this
MBH would be at r ' 2.3rg. The coordinates have been mapped into Euclidean space to visualise the orbit:
the bottom right panel shows a three-dimensional view of the orbit; the top panels show the projections of
this orbit into three planes, and the bottom left panels show the orbit as a function of time. While EMRIs
evolve over years, this trajectory is only a few hours long. The intricate nature of the orbit is encoded into
the frequencies of the gravitational-wave signal. Measuring these lets us reconstruct the spacetime of the
MBH. Adapted from [29].

2

[C. Berry et al., 2020 White Paper]

• Stellar-mass object circles SMBH 
for long many cycles. 


• Can be treated with black-hole 
perturbation theory (second order): 
interesting theoretical problem.


• Maps space-time geometry around 
and astrophysical environments 
around SMBH .


• Form via direct capture & tidal 
disruption of stellar-mass binaries. 
Enhanced for SMBH binaries. 



Multi-Band Observations

[Jani, Shoemaker and Cutler, 2020]

• Adding Deci-Hertz detector 
(e.g., DECIGO, TOBA) will be 
more productive!


• Triple systems offer more 
opportunities!



Summary of Lecture 2

51

Extra-Galactic Sources 
Low frequency: 
SMBH mergers (merging galaxies), Extreme mass-
ratio binaries (BH falling into SMBH) 
High frequency: 
BBH, NSBH, BHBH (stellar evolution, binary 
evolution, cluster dynamics)

Propagation Effects 
Gravitational redshift, strong lensing, 

weak lensing, diffraction

Galactic Sources/Effects 
NS & WD binaries (low frequency) and pulsars 
(LIGO band) 
Microlensing by objects inside galaxy. 
EM waves from pulsars can detect GW

Science Goals 
Test GR 
Measure Cosmic Expansion, Search for Dark Matter 
Probe BH geometry, NS & WD structures 
Study population/formation channels

cosmological sources 
primordial background 

phase transition 
cosmic strings


