Lectures on Gravitational-Wave Astronomy

Yanbei Chen California Institute of Technology

RESCEU Summer School, Kanazawa, Japan, September 2024

Contents

• Lecture 1

- Brief Introduction; gravitational waves from binary stars.
- Black holes and tests of General Relativity.
- Neutron stars.

Lecture 2

- Interaction between gravitational waves and measuring devices.
- Ground- and space-based detectors; pulsar timing arrays.
- Gravitational-wave sources from the early universe.
- Gravitational-wave sources within galaxies.

General Relativity

Space-time geometry described by metric

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu$$

• Non-gravitational physics uses "covariant derivative", adapted to curved spacetime.

$$F_{\mu\nu} = \nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu}$$

$$\nabla_{\mu}F^{\mu\nu} = J^{\nu}$$

• Geometry is curved by energy/momentum content of spacetime.

a lot of
calculus

$$g_{\mu\nu} \longrightarrow G_{\mu\nu} \qquad G_{\mu\nu} \sim R_{\mu\nu} \sim R_{\mu\nu\alpha\beta} \sim \frac{1}{\Re^2}$$
Einstein's Equation
 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

• Gauge freedom: different $g_{\mu\nu}(x^{\alpha})$ may correspond to the same spacetime since they may be related by coordinate transformations.

Gravitational Waves are Linear Perturbations

• Linear perturbations of Minkowski geometry

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{h}{2} \eta_{\mu\nu}, \quad h = h_{\mu\nu} \eta^{\mu\nu}$$

Gauge Freedom

$$x^{\alpha} \to x^{\alpha} + \xi^{\alpha}$$
 $h_{\alpha\beta} \to h_{\alpha\beta} - \xi_{\alpha,\beta} - \xi_{\beta,\alpha}$

Obtain Einstein Tensor

$$G_{\alpha\beta} = \bar{R}_{\alpha\beta} = \frac{1}{2} \left[-\bar{h}_{\alpha\beta,\mu}{}^{,\mu} - \eta_{\alpha\beta}\bar{h}_{\mu\nu}{}^{,\mu\nu} + \bar{h}_{\alpha\mu}{}^{,\mu}{}_{,\beta} + \bar{h}_{\beta\mu}{}^{,\mu}{}_{,\alpha} \right] = 8\pi T_{\alpha\beta}$$

Linearized Einstein's Equation

$$\Box \bar{h}_{\alpha\beta} = -16\pi T_{\alpha\beta}$$

The TT Gauge

• For a plane wave along the z direction, we can choose a gauge like

$$\|h_{\alpha\beta}(t,x,y,z)\| = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+}(t-z) & h_{\times}(t-z) & 0 \\ 0 & h_{\times}(t-z) & -h_{+}(t-z) & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- In general, if wave vector is ${\boldsymbol k}$
 - Find orthonormal basis $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ with $\mathbf{e}_3 = \mathbf{k}$
 - Define
 - $\mathbf{e}_{+} = \mathbf{e}_{1} \otimes \mathbf{e}_{1} \mathbf{e}_{2} \otimes \mathbf{e}_{2}$
 - $\mathbf{e}_{\times} = \mathbf{e}_1 \otimes \mathbf{e}_2 + \mathbf{e}_2 \otimes \mathbf{e}_1$

$$h_{+} = \frac{1}{2} h_{ij} e_{+}^{ij}, \quad h_{\times} = \frac{1}{2} h_{ij} e_{\times}^{ij}$$

[only keep transverse traceless components]

$$Z = \underbrace{e_{1} \otimes e_{1} - e_{2} \otimes e_{2}}_{e_{1}}$$

$$\underbrace{e_{1} \otimes e_{2} + e_{2} \otimes e_{1}}_{e_{1}}$$

$$\underbrace{e_{3}}_{e_{2}} = \underbrace{e_{1} \otimes e_{2} + e_{2} \otimes e_{1}}_{e_{1}}$$

$$\underbrace{e_{3}}_{e_{2}} = \underbrace{e_{1} \otimes e_{2}}_{e_{1}} + e_{2} \otimes e_{1}$$

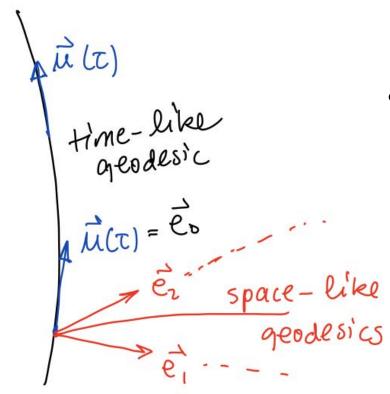
$$\underbrace{e_{1} \otimes e_{2}}_{e_{2}} = \underbrace{e_{1} \otimes e_{2}}_{e_{1}} + e_{2} \otimes e_{1}$$

$$\underbrace{e_{1} \otimes e_{2}}_{e_{2}} = \underbrace{e_{1} \otimes e_{2}}_{e_{2}} + e_{2} \otimes e_{1}$$

$$\underbrace{e_{1} \otimes e_{2}}_{e_{2}} = \underbrace{e_{2} \otimes e_{2}}_{e_{2}} + e_{2} \otimes e_{2}$$

Effect of GW on Freely Falling Objects

$$ds^{2} = -(1 + R_{0l0m}x^{l}x^{m})dt^{2} - \frac{4}{3}R_{0ljm}x^{l}x^{m}dt^{j}dt + \left(\delta_{jk} - \frac{1}{3}R_{jlkm}x^{l}x^{m}\right)dx^{j}dx^{k}$$



Fermi Normal Coordinates

$$R_{0l0m} = -rac{1}{2}\ddot{h}_{lm}^{\mathrm{TT}} \sim rac{h}{\lambda^2}$$
, $R_{0jlm} \sim R_{jlkm} \sim rac{h}{\lambda^2}$

- In this gauge (coordinate system):
 - **Local Lorentz Frame** [metric is flat up to $O(x/\lambda)^2$]
 - For $L \ll \lambda_{\rm GW}/(2\pi)$, main effect is objects feel tidal gravity force:

$$\ddot{x}^{j} = \frac{F^{j}}{M} - R_{0l0j}x^{l} = \frac{F^{j}}{M} + \frac{\ddot{h}_{lj}^{\text{TT}}}{2}x^{l}$$
$$\delta x = \frac{h_{lj}^{\text{TT}}}{2}x^{j}$$

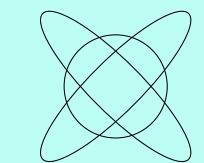
Polarizations of Gravitational Waves

$$\ddot{x}^{j} = \frac{F^{j}}{M} - R_{0l0j}x^{l} = \frac{F^{j}}{M} + \frac{\ddot{h}_{lj}^{\text{TT}}}{2}x^{l} \qquad \delta x = \frac{h_{lj}^{\text{TT}}}{2}x^{j}$$

+ polarization

× polarization

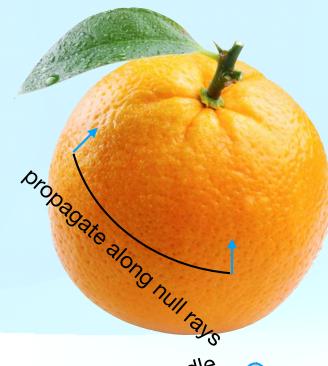
$$h_{xx} = -h_{yy} = h_+$$



plane perpendicular to propagation direction

 $h_{xy} = h_{yx} = h_{\times}$

Wave Propagation on Curved Background (I)



phase front

 S_1 S_2 S_2 S_2 $A_2 = A_1 \frac{\sqrt{S_1}}{\sqrt{S_2}}$

ohase front

 $g_{\mu\nu} = g^B_{\mu\nu} + h_{\mu\nu}$

$$\nabla^{\alpha} \nabla_{\alpha} h_{\mu\nu} + 2^{B} R^{\alpha}{}_{\mu\nu}{}^{\beta} h_{\alpha\beta} = 0$$

Short-wavelength Approximation:

$$h_{\mu\nu} = A_{\mu\nu} e^{i\Phi/\epsilon}$$

$$k_{\alpha} = \nabla_{\alpha} \Phi \qquad k_{\alpha} k^{\alpha} = 0 \qquad k^{\alpha} \nabla_{\alpha} k^{\beta} = 0$$

phase Φ constant along **null rays**, with tangent vector field k^{α}

$$A_{\mu\nu} = e_{\mu\nu}A$$
, $e_{\mu\nu}e^{\mu\nu} = 2$, $e_{\mu\nu} = e_{\nu\mu}$, $e_{\mu\nu}k^{\mu} = 0$

decomposed into **amplitude** A and **polarization tensor** $e_{\mu\nu}$

$$k^{\alpha} \nabla_{\alpha} e_{\mu\nu} = 0, \quad k^{\alpha} \nabla_{\alpha} A = -\frac{1}{2} A \nabla_{\alpha} k^{\alpha}$$

polarization tensor **parallel transported**; amplitude decays ~ $1/\sqrt{S}$

Wave Propagation on Curved Background (II)

$$g_{\mu\nu} = g^{B}_{\mu\nu} + h_{\mu\nu} \qquad \nabla^{\alpha} \nabla_{\alpha} h_{\mu\nu} + 2^{B} R^{\alpha}{}_{\mu\nu}{}^{\beta} h_{\alpha\beta} = 0$$

• Existence of wave cause second-order correction

$$g_{\alpha\beta} = g^B_{\alpha\beta} + \epsilon h^{(1)}_{\alpha\beta} + \epsilon^2 h^{(2)}_{\alpha\beta}$$

... because Einstein's equation is nonlinear

$$G_{\mu\nu} = G^B_{\mu\nu} + \epsilon G^{(1)}_{\mu\nu} [h^{(1)}_{\alpha\beta}] + \epsilon^2 G^{(2)}_{\mu\nu} [h^{(1)}_{\alpha\beta}] + \epsilon^2 G^{(1)}_{\mu\nu} [h^{(2)}_{\alpha\beta}]$$

• Second-order perturbation is quadratic in first-order perturbation

 $G^{(1)}_{\mu\nu}[h^{(2)}_{\alpha\beta}] = -G^{(2)}_{\mu\nu}[h^{(1)}_{\alpha\beta}] \qquad h^{(2)} \sim h^{(1)}h^{(1)} \quad \text{double frequency or zero frequency}$

• Average over wavelength provides "energy-momentum content of GW".

$$T_{\mu\nu}^{\rm GW} = \frac{1}{32\pi} \left\langle h_{\alpha\beta|\mu}^{\rm TT} h_{\rm TT}^{\alpha\beta} \right\rangle \qquad \qquad \frac{1}{\mathscr{R}_{\rm GW}^2} \sim \frac{h^2}{\lambda_{\rm GW}}$$

GW from Binary Stars

$$\Box \bar{h}_{\alpha\beta} = -16\pi T_{\alpha\beta}$$

Using retarded potential: gravitational radiation is caused by stress

$$h_{jk}^{\text{TT}}(t, \mathbf{x}) = 4 \left[\int \frac{T_{jk}(t - |\mathbf{x} - \mathbf{x}'|, \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 \mathbf{x}' \right]^{\text{TT}}$$

... and energy-momentum conservation, within mass-quadrupole approximation, radiation caused by change in mass-quadrupole moment

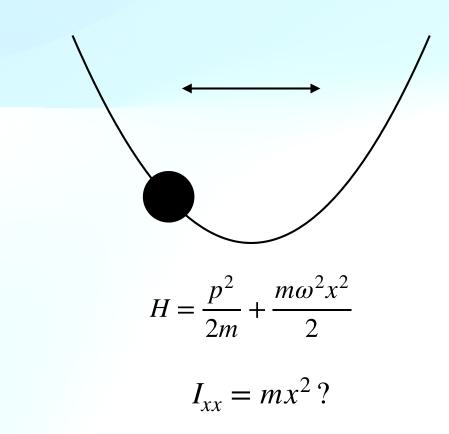
$$h_{jk}^{\text{TT}}(t, \mathbf{x}) = \left[\frac{2\ddot{I}_{jk}(t-r)}{r}\right]^{\text{TT}}$$

$$I_{jk} = \int d^3 \mathbf{x} \,\rho(\mathbf{x}) \, x_j x_k$$

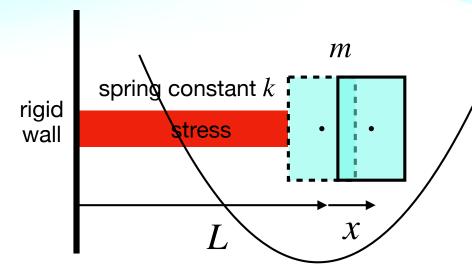
Harmonic Oscillator?

$$h_{jk}^{\text{TT}}(t, \mathbf{x}) = 4 \left[\int \frac{T_{jk}(t - |\mathbf{x} - \mathbf{x}'|, \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 \mathbf{x}' \right]^{\text{TT}} \qquad h_{jk}^{\text{TT}}(t, \mathbf{x}) = \left[\frac{2\ddot{I}_{jk}(t - r)}{r} \right]^{\text{TT}}$$

... what about this harmonic oscillator?

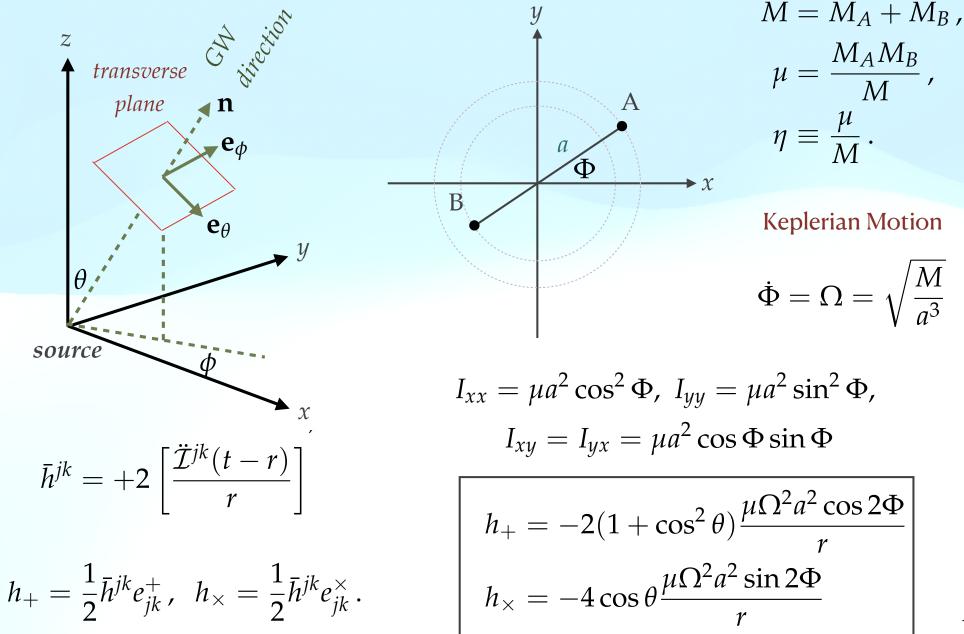


... actually depends on how the "potential" is created



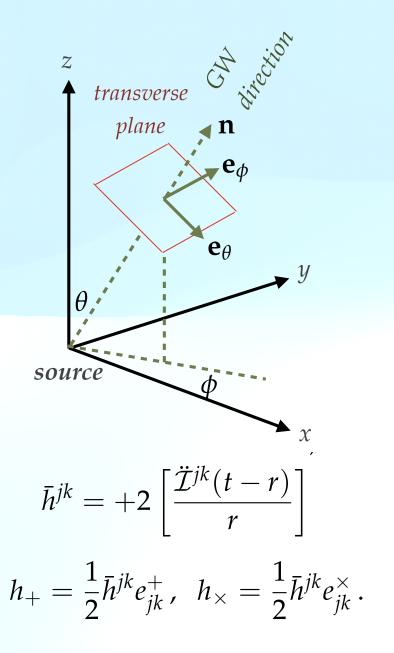
 $I_{xx} = m(L+x)^2$

Binary Stars in Circular Orbits



 $\dot{\Phi} = \Omega = \sqrt{\frac{M}{a^3}}$

Binary Stars in Circular Orbits

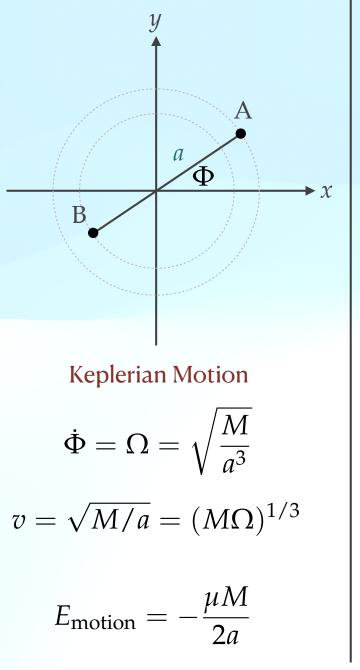


$$h_{+} = -2(1 + \cos^{2}\theta) \frac{\mu \Omega^{2} a^{2} \cos 2\Phi}{r}$$
$$h_{\times} = -4 \cos \theta \frac{\mu \Omega^{2} a^{2} \sin 2\Phi}{r}$$

Optimally Oriented: $\theta = 0$

$$h_{+} \sim h_{+} \sim 4 \frac{\mu \Omega^{2} a^{2}}{r} \sim 4 \frac{\mu v^{2}}{r} \sim \frac{M v^{2}}{r}$$
$$M_{\odot} \sim 1.5 \times 10^{3} \,\mathrm{m}$$
$$Mpc \sim 3 \times 10^{22} \,\mathrm{m}$$
$$h \sim 5 \times 10^{-21} \left(\frac{M}{100 \,M_{\odot}}\right) \left(\frac{100 \,\mathrm{Mpc}}{r}\right) \left(\frac{v^{2}}{0.1}\right)$$

Back Reaction!



$$\left(\frac{dE}{dt}\right)_{\rm GW} = \frac{1}{5} \left\langle \ddot{I}_{jk} \ddot{I}^{jk} \right\rangle$$
$$= \frac{32}{\pi} \frac{\mu^2}{M^2} (M\Omega)^{10/3}$$

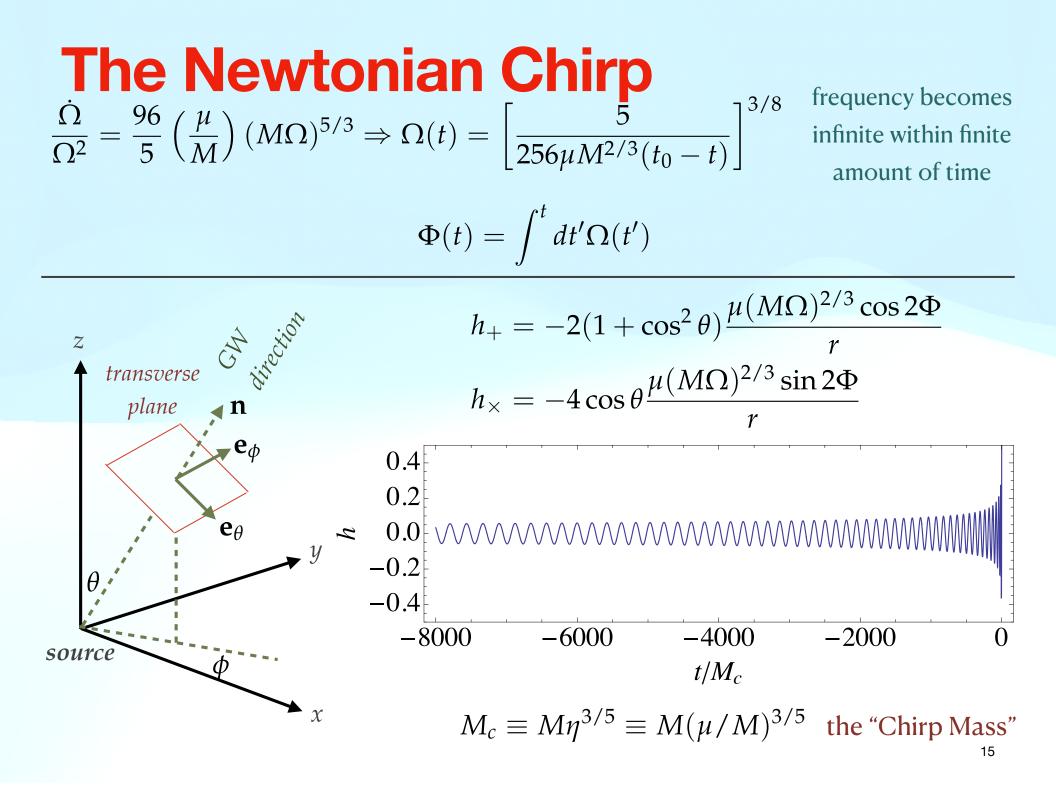
Energy carried by GW per unit time

Adiabatic Approach: assuming that orbit remains nearly Keplerian, but with slowly varying parameters.

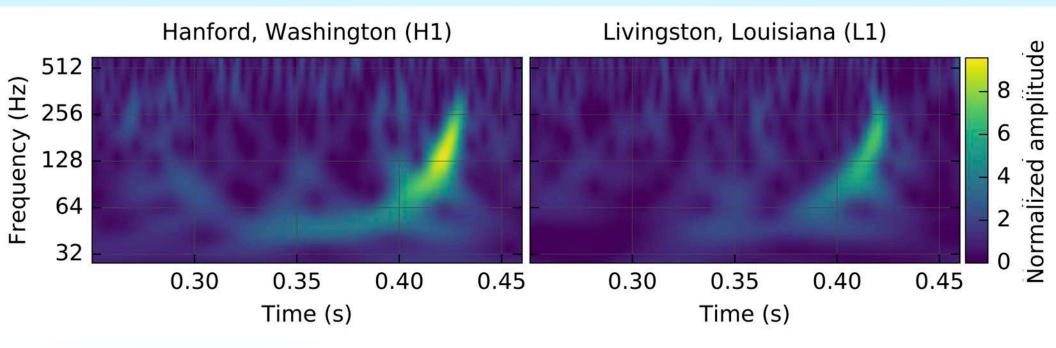
$$\frac{dE_{\text{motion}}}{dt} = -\left(\frac{dE}{dt}\right)_{\text{GW}}$$

$$\frac{\dot{\Omega}}{\Omega^2} = \frac{96}{5} \left(\frac{\mu}{M}\right) (M\Omega)^{5/3}$$

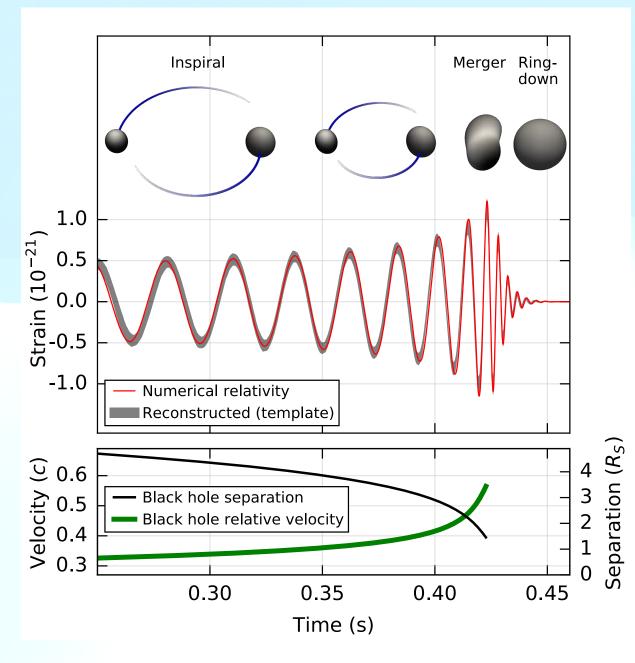
$$\dot{\Omega} \equiv \frac{\Omega}{\tau_{\rm R}} \Rightarrow \frac{\dot{\Omega}}{\Omega^2} = \frac{1}{\Omega \tau_{\rm R}} = \frac{\tau_{\rm orb}}{\tau_{\rm R}} \sim v^5$$



GW150914



GW150914



Primary black hole mass	$36^{+5}_{-4}M_{\odot}$
Secondary black hole mass	$29^{+4}_{-4}{M}_{\odot}$
Final black hole mass	$62^{+4}_{-4}{M}_{\odot}$
Final black hole spin	$0.67\substack{+0.05 \\ -0.07}$
Luminosity distance	$410^{+160}_{-180} { m Mpc}$
Source redshift z	$0.09\substack{+0.03\\-0.04}$

01 2015 - 2016	GN		02 2016 2017			Care a					03a+b 2019 - 2020	
• • • • • • • • • • • • • • • • • • •	23 14	14 77	31 20	11 76	50 34	35 24	31 25	15 13	35 27	40 29	88 22	25 18
63 CW150914	36 GW151012	21 GW151226	49 cw170104	18 GW170608	80 cw170729	56 cw170809	53 CW170814	≤ 2.8 cw170817	60 CW170818	65 GW170823	105 cw190403_051519	41 CW190408_181802
30 8.3	35 24	48 • 32	41 32	2 14	107 77	43 28	23 13	36 18	39 28	37 25	66 41	95 69
37 GW190412	56 GW190413_052954	76 GW190413_134308	70 GW190421_213856	3.2 GW190425	175 GW190426_190642	69 CW190503_185404	35 CW190512_180714	52 GW190513_205428	65 GW190514_065416	59 GW190517_055101	101 GW190519_153544	156 GW190521
42 3 3	37 23	69 6 48	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	38 29
71 GW190521_074359	56 GW190527_092055	111 CW190602_175927	87 cw190620_030421	56 cw190630_185205	90 .cw190701_203306	99 GW190706_222641	19 cw190707_093326	30 GW190708_232457	55 GW190719_215514	20 cw190720_000836	17 GW190725_174728	64 cw190727_060333
12 8.1	42 2 9	37 27	48 32	23 2.6	32 26	24 10	44 36	35 24	44 24	9.3 2.1	8.9 5	21 16
20 GW190728_064510	67 GW190731_140936	62 CW190803_022701	76 GW190805_211137	26 GW190814	55 CW190828_063405	33 GW190828_065509	76 GW190910_112807	57 CW190915_235702	66 GW190916_200658	11 GW190917_114630	13 GW190924_021846	35 GW190925_232845
40 23	81 24	12 7.8	12 7.9	11 7.7	65 - 47	29 5.9	12 8.3	53 24	11 6.7	27 19	12 8.2	25 18
61 cw190926_050336	102 GW190929_012149	19 GW190930_133541	19 cw191103_012549	18 GW191105_143521	107 GW191109_010717	34 GW191113_071753	20 GW191126_115259	76 GW191127_050227	17 CW191129_134029	45 CW191204_110529	19 GW191204_171526	41 GW191215_223052
12 7.7	31 12	45 35	49 57	9 19	36 28	5.9 1.4	42 33	34 29	10 7.3	38 27	51 12	36 27
19 GW191216_213338	32 GW191219_163120	76 CW191222_033537	82 GW191230_180458	11 GW200105_162426	61 GW200112_155838	7.2 cw200115_042309	71 GW200128_022011	60 GW200129_065458	17 GW200202_154313	63 GW200208_130117	61 GW200208_222617	60 cw200209_085452
24 2.8	51 30	38 28	87 61	39 28	40 33	19 14	38 20	28 15	36 14	34 28	13 7.8	34 14
27 GW200210_092254	78 GW200216_220804	62 GW200219_094415	14] cw200220_061928	64 GW200220_124850	69 _{GW200224_222234}	32 GW200225_060421	56 GW200302_015811	42 GW200306_093714	47 GW200308_173609	59 cw200311_115853	20 GW200316_215756	53 GW200322_091133

Now that the mask estimates where for a constraint entropy which is why the thus masks is constrained leady that the sam at the permany and estimately masks. In adjustic, the feat mask is image that the permanent permanent of the seminatery mask.

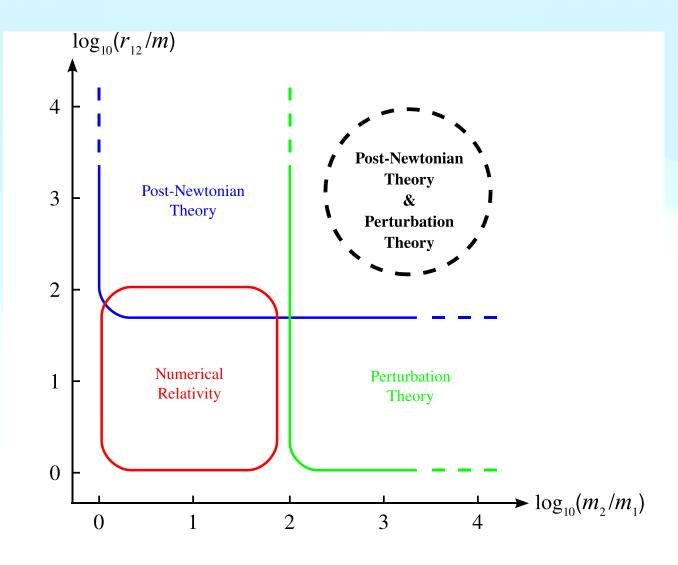
The experts label have pairs every fixed time transmits for uncertaint. Truy entrum have a predatility of label presentative and all of basis 1995, ary thing pairs a form adverse and terminate of here there? But Xyeres,

ARC Centre of Excellence for Gravitational Wave Discovery

Extensions to the Newtonian Chirp

- Eccentric orbits.
- Higher v/c and $GM/(rc^2)$ corrections to Newtonian physics.
- Finite-Size effects related to spins, tidal effects, and natures of neutron stars and black holes
- Mergers of the two objects to a final neutron star or black hole

Extensions to the Newtonian Chirp



[L. Blanchet, Living Reviews of Relativity]

Post-Newtonian Dynamics

Full Einstein's equation in "wave equation form"

$$\mathfrak{g}^{\alpha\beta} = \sqrt{-g} g^{\alpha\beta}, \quad \bar{h}^{\mu\nu} \equiv \eta^{\mu\nu} - \mathfrak{g}^{\mu\nu}$$

$$\mathfrak{g}^{\alpha\beta}\bar{h}^{\mu\nu}{}_{,\alpha\beta} = (-16\pi)\left[(-g)T^{\mu\nu} + (-g)t^{\mu\nu}_{\mathrm{LL}}\right] - \bar{h}^{\alpha\nu}{}_{,\beta}\bar{h}^{\mu\beta}{}_{,\alpha}$$

Landau-Lifshitz pseudotensor

$$(-g) t_{\rm L-L}^{\alpha\beta} = \frac{1}{16\pi} \Big\{ \mathfrak{g}^{\alpha\beta}{}_{,\lambda} \mathfrak{g}^{\lambda\mu}{}_{,\mu} - \mathfrak{g}^{\alpha\lambda}{}_{,\lambda} \mathfrak{g}^{\beta\mu}{}_{,\mu} + \frac{1}{2} g^{\alpha\beta} g_{\lambda\mu} \mathfrak{g}^{\lambda\nu}{}_{,\rho} \mathfrak{g}^{\rho\mu}{}_{,\nu} - (g^{\alpha\lambda} g_{\mu\nu} \mathfrak{g}^{\beta\nu}{}_{,\rho} \mathfrak{g}^{\mu\rho}{}_{,\lambda} + g^{\beta\lambda} g_{\mu\nu} \mathfrak{g}^{\alpha\nu}{}_{,\rho} \mathfrak{g}^{\mu\rho}{}_{,\lambda}) + g_{\lambda\mu} g^{\nu\rho} \mathfrak{g}^{\alpha\lambda}{}_{,\nu} \mathfrak{g}^{\beta\mu}{}_{,\rho} + \frac{1}{8} (2g^{\alpha\lambda} g^{\beta\mu} - g^{\alpha\beta} g^{\lambda\mu}) (2g_{\nu\rho} g_{\sigma\tau} - g_{\rho\sigma} g_{\nu\tau}) \mathfrak{g}^{\nu\tau}{}_{,\lambda} \mathfrak{g}^{\rho\sigma}{}_{,\mu} \Big\}$$
(20.22)

[Misner, Thorne and Wheeler; Landau and Lifshitz]

PN Binding Energy (Non-Spinning)

E

 Evolution of circular orbits can be obtained from adiabatic matching:

$$\frac{dx}{dt} = \frac{dE/dt}{dE/dx} = -\frac{\mathscr{F}(x)}{dE(x)/dx}$$

 Multipole waveform can also be obtained.

$$= -\frac{\mu c^2 x}{2} \left\{ 1 + \left(-\frac{3}{4} - \frac{\nu}{12} \right) x + \left(-\frac{27}{8} + \frac{19}{8} \nu - \frac{\nu^2}{24} \right) x^2 \right. \\ \left. + \left(-\frac{675}{64} + \left[\frac{34445}{576} - \frac{205}{96} \pi^2 \right] \nu - \frac{155}{96} \nu^2 - \frac{35}{5184} \nu^3 \right) x^3 \right. \\ \left. + \left(-\frac{3969}{128} + \left[-\frac{123671}{5760} + \frac{9037}{1536} \pi^2 + \frac{896}{15} \gamma_{\rm E} + \frac{448}{15} \ln(16x) \right] \nu \right. \\ \left. + \left[-\frac{498449}{3456} + \frac{3157}{576} \pi^2 \right] \nu^2 + \frac{301}{1728} \nu^3 + \frac{77}{31104} \nu^4 \right) x^4 \right. \\ \left. + \mathcal{O}\left(\frac{1}{c^{10}} \right) \right\}.$$

$$E_{\text{tail}}^{\log} = -\frac{\mu c^2 x}{2} \left\{ \frac{448}{15} v x^4 \ln x + \left(-\frac{4988}{35} - \frac{656}{5} v \right) v x^5 \ln x + \left(-\frac{1967284}{8505} + \frac{914782}{945} v + \frac{32384}{135} v^2 \right) v x^6 \ln x + \mathcal{O}\left(\frac{1}{c^{14}} \right) \right\}.$$

$$x \equiv \left(\frac{Gm\Omega}{c^3}\right)^{2/3} = \mathcal{O}\left(\frac{1}{c^2}\right).$$

[L. Blanchet, Living Reviews of Relativity]

PN Energy Flux (Non-Spinning)

 Evolution of circular orbits can be obtained from adiabatic matching:

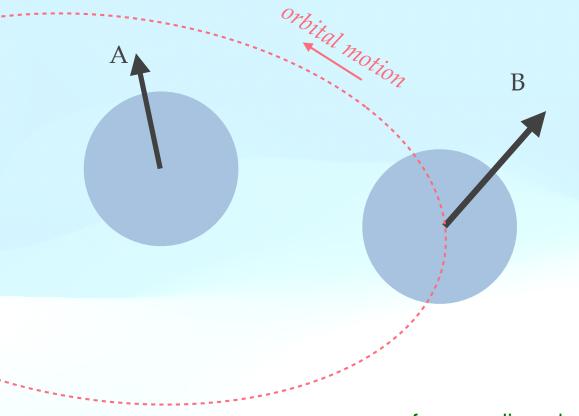
$$\frac{dx}{dt} = \frac{dE/dt}{dE/dx} = -\frac{\mathscr{F}(x)}{dE(x)/dx}$$

 Multipole waveform can also be obtained.

$$\begin{split} \mathcal{F} &= \frac{32c^5}{5G} v^2 x^5 \left\{ 1 + \left(-\frac{1247}{336} - \frac{35}{12} v \right) x + 4\pi x^{3/2} \right. \\ &+ \left(-\frac{44711}{9072} + \frac{9271}{504} v + \frac{65}{18} v^2 \right) x^2 + \left(-\frac{8191}{672} - \frac{583}{24} v \right) \pi x^{5/2} \\ &+ \left[\frac{6643739519}{69854400} + \frac{16}{3} \pi^2 - \frac{1712}{105} \gamma_{\rm E} - \frac{856}{105} \ln(16x) + \left(-\frac{134543}{7776} + \frac{41}{48} \pi^2 \right) v \right. \\ &- \frac{94403}{3024} v^2 - \frac{775}{324} v^3 \right] x^3 \\ &+ \left(-\frac{16285}{504} + \frac{214745}{1728} v + \frac{193385}{3024} v^2 \right) \pi x^{7/2} \\ &+ \left[-\frac{323105549467}{3178375200} + \frac{232597}{4410} \gamma_{\rm E} - \frac{1369}{126} \pi^2 + \frac{39931}{294} \ln 2 - \frac{47385}{1568} \ln 3 \right. \\ &+ \frac{232597}{8820} \ln x \\ &+ \left(-\frac{1452202403629}{1466942400} + \frac{41478}{245} \gamma_{\rm E} - \frac{267127}{4608} \pi^2 + \frac{479062}{2205} \ln 2 + \frac{47385}{392} \ln 3 \right. \\ &+ \frac{20739}{245} \ln x \right) v \\ &+ \left(\frac{1607125}{6804} - \frac{3157}{384} \pi^2 \right) v^2 + \frac{6875}{504} v^3 + \frac{5}{6} v^4 \right] x^4 \\ &+ \left[\frac{265978667519}{745113600} - \frac{6848}{105} \gamma_{\rm E} - \frac{3424}{105} \ln(16x) + \left(\frac{2062241}{22176} + \frac{41}{12} \pi^2 \right) v \right. \\ &- \frac{133112905}{290304} v^2 - \frac{3719141}{38016} v^3 \right] \pi x^{9/2} + \mathcal{O}\left(\frac{1}{c^{10}} \right) \right\}. \end{split}$$

[L. Blanchet, Living Reviews of Relativity]

Effects of Spins



Leading-order dynamical effects superimpose with each other.

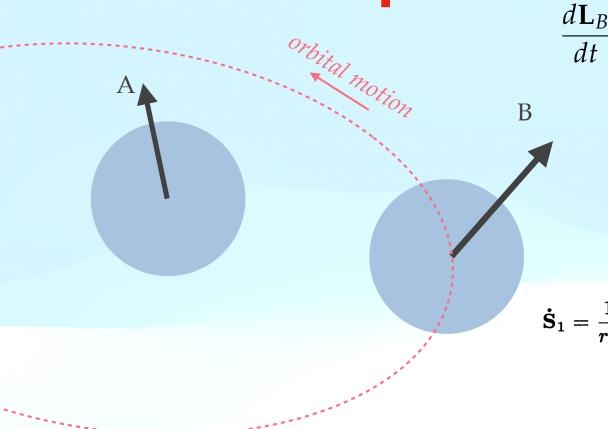
described by gravito-magnetism

For aligned spins, both binding energy and radiation flux are affected by spinorbit and spin-spin coupling.

for non-aligned spins

- 1. Orbital motion of B around A causes S_B to precess [spin-orbit]
- 2. S_A causes S_B to precess [spin-spin]
- 3. S_A causes orbit of B to precess [spin-orbit]
- 4. S_B causes orbit of B to precess [spin-orbit]

Effects of Spins



$$\frac{\mathbf{L}_{B}}{lt} = \frac{2}{r^{3}} \mathbf{S}_{A} \times \mathbf{L}_{B} + \frac{3}{2} \frac{m_{A}}{m_{B}} \frac{\mathbf{S}_{B} \times \mathbf{L}_{B}}{r_{AB}^{3}}$$

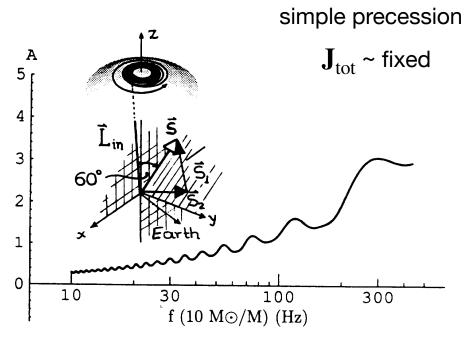
$$\xrightarrow{\sim \mathbf{H} \times \mathbf{v}_{B}}$$
gravitomagnetic precession of orbit spin-curvature coupling

 $\dot{\mathbf{S}}_{1} = \frac{1}{r^{3}} \left\{ (\mathbf{L}_{N} \times \mathbf{S}_{1}) \left(2 + \frac{3}{2} \frac{m_{2}}{m_{1}} \right) - \mathbf{S}_{2} \times \mathbf{S}_{1} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{2}) \hat{\mathbf{n}} \times \mathbf{S}_{1} \right\}, \qquad (2.4a)$

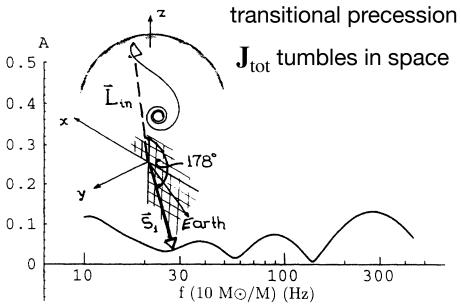
$$\dot{\mathbf{S}}_{2} = \frac{1}{r^{3}} \left\{ (\mathbf{L}_{\mathrm{N}} \times \mathbf{S}_{2}) \left(2 + \frac{3}{2} \frac{m_{1}}{m_{2}} \right) - \mathbf{S}_{1} \times \mathbf{S}_{2} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{1}) \hat{\mathbf{n}} \times \mathbf{S}_{2} \right\},$$
(2.4b)

Kidder, 1995

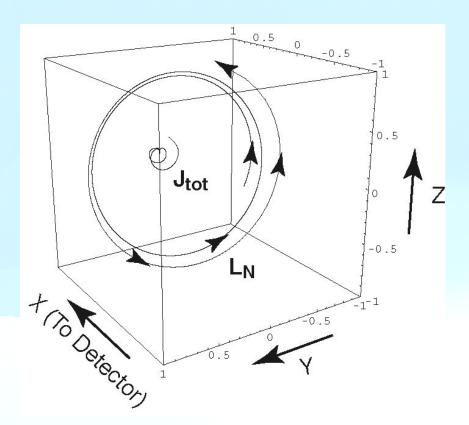
Waveforms from Precessing Binaries

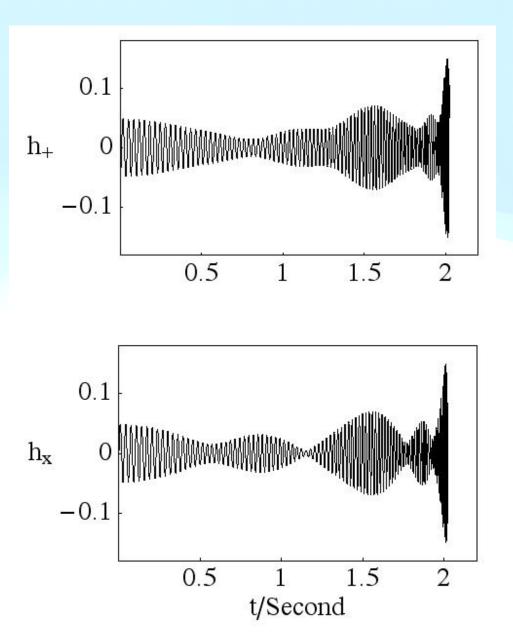


[Apostolatos et al., 1994]

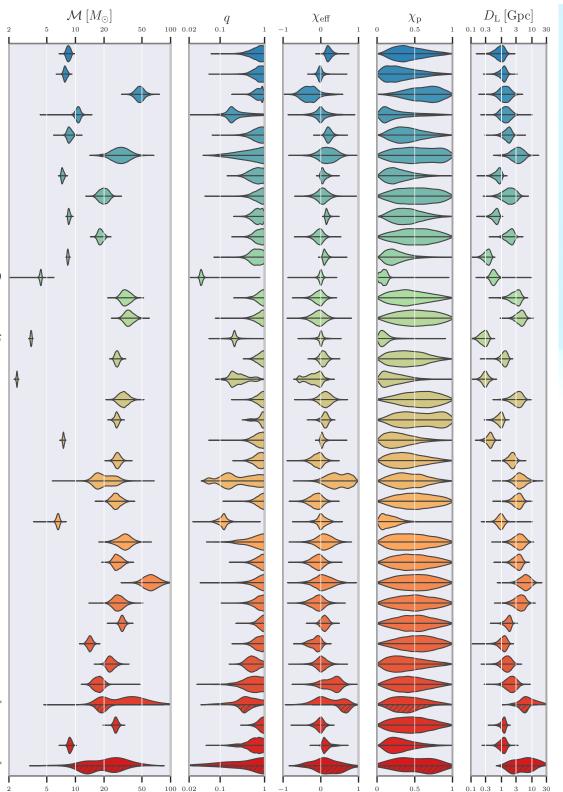


Waveforms from Precessing Binaries





GW191103_012549 GW191105_143521 GW191109_010717 GW191113_071753 GW191126_115259 GW191127_050227 GW191129_134029 GW191204_110529 GW191204_171526 GW191215_223052 GW191216_213338 *GW191219_163120* GW191222_033537 GW191230_180458 GW200105_162426 GW200112_155838 GW200115_042309 GW200128_022011 GW200129_065458 GW200202_154313 GW200208_130117 GW200208_222617 GW200209_085452 GW200210_092254 GW200216_220804 GW200219_094415 GW200220_061928 GW200220_124850 GW200224_222234 GW200225_060421 GW200302_015811 GW200306_093714 GW200308_173609* GW200311_115853 GW200316_215756 GW200322_091133*

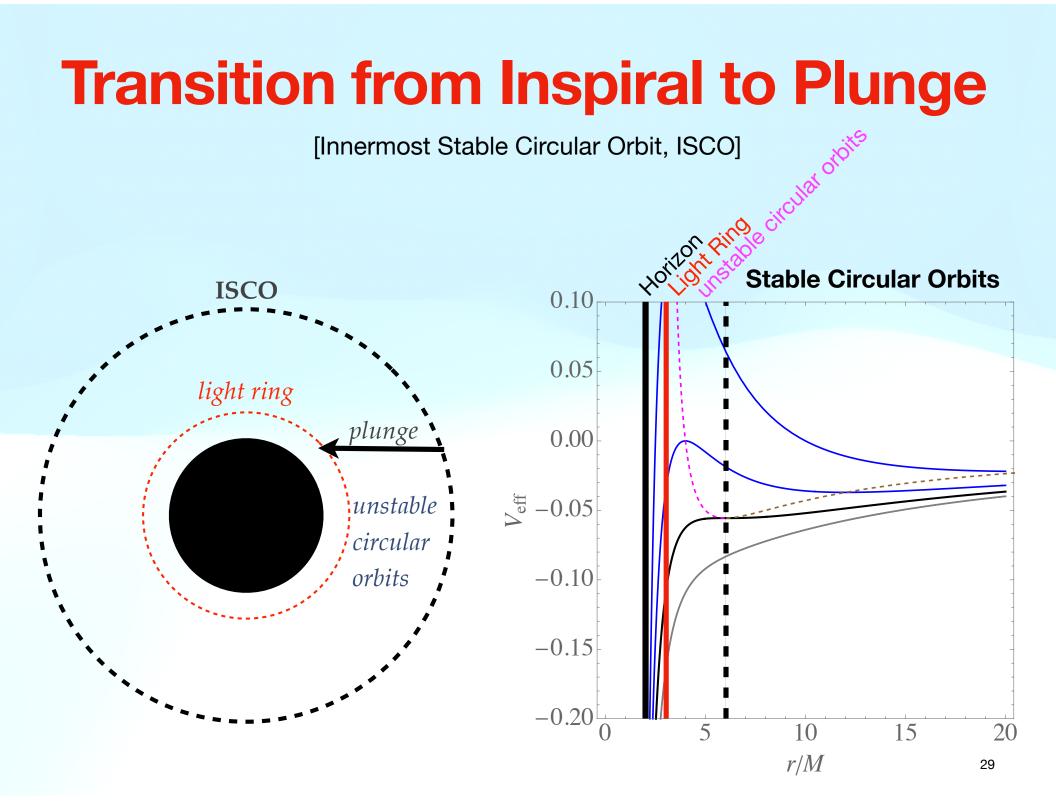


Effect of phase cumulation

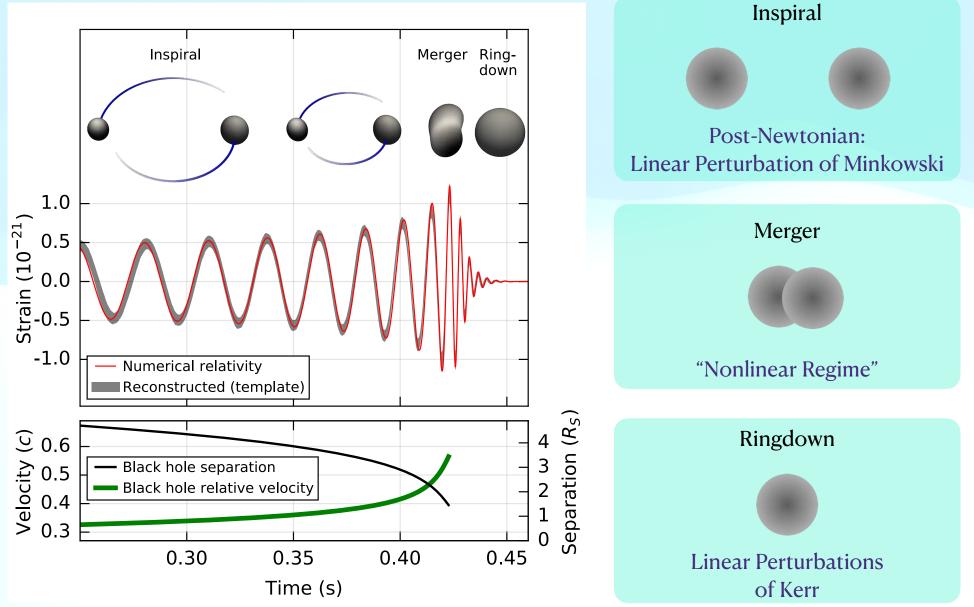
$$\chi_{\rm eff} = \frac{(m_1 \vec{\chi}_1 + m_2 \vec{\chi}_2) \cdot \hat{L}_{\rm N}}{M},$$

Effect of precessions

$$\chi_{\rm p} = \max\left\{\chi_{1,\perp}, \frac{q(4q+3)}{4+3q}\chi_{2,\perp}\right\},$$



Inspiral, Merger and Ringdown



zenodo

Q Upload

oad Communities

🖈 Log in 🛛 🐼 Sign u

30,145

🛓 downloads

September 16, 2019

Dataset Open Access

Binary black-hole surrogate waveform catalog

Scott E. Field; Chad R. Galley; Jan S. Hesthaven; Jason Kaye; Manuel Tiglio; Jonathan Blackman; Béla Szilágyi; Mark A. Scheel; Daniel A. Hemberger; Patricia Schmidt; Rory Smith; Christian D. Ott; Michael Boyle; Lawrence E. Kidder; Harald P. Pfeiffer; Vijay Varma

This repository contains all publicly available numerical relativity surrogate data for waveforms produced by the Spectral Einstein Code. The base method for building surrogate models can be found in Field et al., PRX 4, 031006 (2014).

Several numerical relativity surrogate models are currently available in this catalog:

- Current models
 - NRSur7dq4.h5 This is a surrogate model for binary black hole mergers with generic spins and mass ratios up to 4. A paper describing it can be found at Varma et al., arxiv:1905.09300. It is evaluated with the gwsurrogate Python package, which can be found on PyPI. Instructions for evaluating this surrogate can be found at this example IPython code.
 - 2. NRHybSur3dq8.h5 This is a surrogate model for binary black hole systems with generic mass ratios but restricted to nonprecessing spins. Before constructing the surrogate, the NR waveforms are hybridized with post-Newtonian waveforms to include the early inspiral. Therefore this model covers the full stellar mass range for ground-based detectors. A paper describing it can be found at Varma et al., PRD 99, 064045 (2019). It is evaluated with the gwsurrogate Python package, which can be found on PyPI. Instructions for evaluating this surrogate can be found this example IPython code.
 - 3. NRSur7dq4Remnant This is a surrogate model for mass, spin, and recoil kick velocity of the remnant BH left behind in generically precessing binary black hole mergers, with mass ratios up to 4. A paper describing it can be found at Varma et al., arxiv:1905.09300. It is evaluated with the surfinBH Python package, which can be found on PyPI. Installation instructions and an ipython help notebook can be found in the same link.
- Older models
 - SpEC_q1_10_NoSpin_nu5thDegPoly_exclude_2_0.h5 A surrogate model for binary black hole mergers with non-spinning black holes. This is described in Blackman et al., PRL 115, 121102 (2015). It is evaluated with the gwsurrogate python package, which can be found on PyPI. Instructions for evaluating this surrogate can be found in tutorials included with the gwsurrogate package and in this example IPython code.
 - 2. NRSur4d2s_FDROM_grid12.h5 and NRSur4d2s_TDROM_grid12.h5 These are fast frequency-domain and time-domain (respectively) surrogate models for binary black hole mergers where the black holes may be spinning, but the spins are restricted to a parameter subspace which includes some but not all precessing configurations. NRSur4d2s_FDROM_grid12.h5 is the NRSur4d2s_FDROM model described in Blackman et al., PRD 95, 104023, (2017), and NRSur4d2s_TDROM_grid12.h5 is built from the underlying (slower) NRSur4d2s time-domain model in the same way but without the FFTs. These surrogates are also evaluated using gwsurrogate, and a tutorial can be found in this example IPython code.
 - 3. NRSur7dq2.h5 This is a surrogate model for binary black hole mergers with generic spins. A paper

See more details...

Publication date:

20,751

views

September 16, 2019

DOI:

DOI 10.5281/zenodo.3629749

Related identifiers:

Supplement to 10.1103/PhysRevX.4.031006 10.1103/PhysRevLett.115.121102 10.1103/PhysRevD.95.104023 10.1103/PhysRevD.96.024058 arXiv:1809.09125 10.1103/PhysRevD.99.064045 arXiv:1905.09300

Communities:

Manalan

Simulating eXtreme Spacetimes Zenodo

License (for files):

Creative Commons Attribution 4.0 International

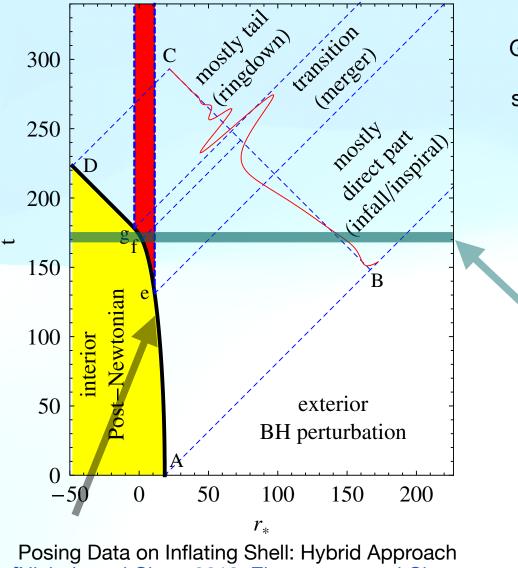
SXS Gravitational Waveform Database

Completed Simulations

st updated Tue	e, 29 Sep 2020 02	2:23:24 GMT	Downloa	ad complete tabl	e data		Toggle	e search fiel
Name	$\ \vec{\Omega}^{\rm orb\ ini}\ $	$M^{ m ini,1}/M^{ m ini,2}$	$\chi_{ m eff}$	$\chi^{ m ref,1}_{ot}$	$\chi^{ m ref,2}_{ot}$	e^{ref}	$N^{ m orbits}$	Files
	From:	From:	From:	From:	From:	From:	From:	
	To:	To:	To:	To:	To:	To:	To:	
SXS:BBH:0001	1.220×10 ⁻²	1.000	1.216×10 ⁻⁷	9.733×10 ⁻¹⁰	1.430×10 ⁻⁹	2.569×10 ⁻⁴	28.12	C
SXS:BBH:0002	1.129×10 ⁻²	1.000	9.399×10 ⁻⁸	7.182×10 ⁻¹⁰	1.473×10 ⁻⁹	1.746×10 ⁻⁴	32.42	
SXS:BBH:0003	1.128×10 ⁻²	1.000	2.707×10 ⁻⁴	0.4994	7.429×10 ⁻⁸	2.869×10 ⁻⁴	32.34	Ľ
SXS:BBH:0004	1.131×10 ⁻²	1.000	-0.2498	5.018×10 ⁻¹¹	1.403×10 ⁻⁹	3.802×10 ⁻⁴	30.19	
SXS:BBH:0005	1.217×10 ⁻²	1.000	0.2498	6.905×10 ⁻¹¹	2.745×10 ⁻⁹	2.355×10 ⁻⁴	30.19	
SXS:BBH:0006	1.446×10 ⁻²	1.345	-0.1351	0.2770	0.1115	2.485×10 ⁻⁴	20.08	G
SXS:BBH:0007	1.220×10 ⁻²	1.500	1.140×10 ⁻⁷	7.405×10 ⁻¹⁰	3.566×10 ⁻¹⁰	4.338×10 ⁻⁴	29.09	G
SXS:BBH:0008	1.443×10 ⁻²	1.500	1.831×10 ⁻⁷	1.870×10 ⁻⁹	8.263×10 ⁻⁹	1.586×10 ⁻³	21.28	
SXS:BBH:0009	1.737×10 ⁻²	1.500	0.2998	1.206×10 ⁻¹⁰	5.697×10 ⁻⁹	<9.500×10 ⁻⁵	17.10	C
SXS:BBH:0010	1.448×10 ⁻²	1.500	-0.2596	0.2499	5.689×10 ⁻⁸	4.385×10 ⁻⁴	19.40	Ľ
SXS:BBH:0011	1.438×10 ⁻²	1.500	0.2599	0.2489	2.302×10 ⁻⁸	6.030×10 ⁻⁵	23.42	G
SXS:BBH:0012	1.449×10 ⁻²	1.500	-0.2998	3.793×10 ⁻¹¹	1.406×10 ⁻⁹	5.960×10 ⁻⁵	19.08	

Black-Hole: Ringdown

potential barrier (light ring)



[Nichols and Chen, 2010; Zimmerman and Chen, 2011]

Richard Price (1970s):

GW at the end of gravitational collapse is made up from QNMs, because the star no longer sources radiation that can escape the potential barrier

Close-Limit Approximation [Campanelli, Lousto, Baker, Price, et al., 1990s]

Black-Hole: Quasi-Normal Modes

down-going toward future horizon

past notiton

 \mathcal{H}

future horizon

out-going toward future null infinity

Past null infinity

FUTURE AUII INFINITY

Waves will reach the future horizon, and distort it.

but the horizon simply passively receives the radiation.

The horizon will not radiate.

Teukolsky Equation

$$\nabla^{\alpha}\nabla_{\alpha}h_{\mu\nu} + 2^{B}R^{\alpha}{}_{\mu\nu}{}^{\beta}h_{\alpha\beta} = 0$$

too many components!

In 1973, Teukolsky found decoupled equation for Weyl scalars ψ_0 and ψ_4 .

TABLE 1Field Quantities ψ , Spin-Weight s, and SourceTerms T for Equation (4.7)

ψ	S	Т
Φ	0	$\Box \Phi = 4\pi T$
$\sum_{\rho^{-1}\chi_1}^{\chi_0}$	$-\frac{\frac{1}{2}}{-\frac{1}{2}}$	See references in Appendix B
$\phi_0^{}_{ ho^{-2}\phi_2}$	1 -1	J_0 (eq. [3.6]) $\rho^{-2}J_2$ (eq. [3.8])
$\psi_0^B ho^{-4} \psi_4^B$	$-\frac{2}{2}$	$2T_0$ (eq. [2.13]) $2\rho^{-4}T_4$ (eq. [2.15])

$$\begin{bmatrix} \frac{(r^{2} + a^{2})^{2}}{\Delta} - a^{2} \sin^{2} \theta \end{bmatrix} \frac{\partial^{2} \psi}{\partial t^{2}} + \frac{4Mar}{\Delta} \frac{\partial^{2} \psi}{\partial t \partial \varphi} + \begin{bmatrix} \frac{a^{2}}{\Delta} - \frac{1}{\sin^{2} \theta} \end{bmatrix} \frac{\partial^{2} \psi}{\partial \varphi^{2}} \\ - \Delta^{-s} \frac{\partial}{\partial r} \left(\Delta^{s+1} \frac{\partial \psi}{\partial r} \right) - \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) - 2s \begin{bmatrix} \frac{a(r-M)}{\Delta} + \frac{i \cos \theta}{\sin^{2} \theta} \end{bmatrix} \frac{\partial \psi}{\partial \varphi} \\ - 2s \begin{bmatrix} \frac{M(r^{2} - a^{2})}{\Delta} - r - ia \cos \theta \end{bmatrix} \frac{\partial \psi}{\partial t} + (s^{2} \cot^{2} \theta - s)\psi = 4\pi \Sigma T. \quad (4.7)$$

Black-Hole: Quasi-Normal Modes

$$\psi = e^{-i\omega t} e^{im\varphi} S(\theta) R(r)$$

Separation of Variables

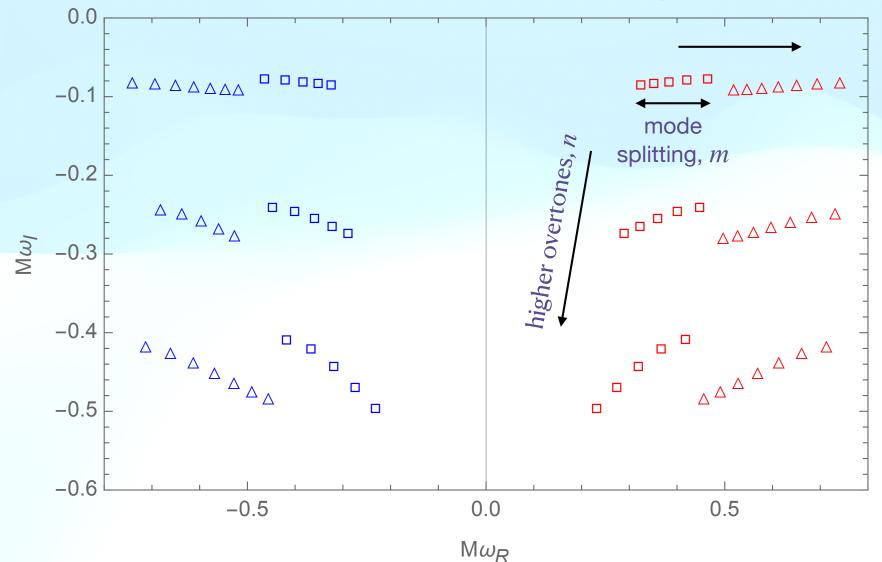
$$\Delta^{-s} \frac{d}{dr} \left(\Delta^{s+1} \frac{dR}{dr} \right) + \left(\frac{K^2 - 2is(r-M)K}{\Delta} + 4is\omega r - \lambda \right) R = 0,$$
$$K \equiv (r^2 + a^2)\omega - am$$
Radial Equation

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dS}{d\theta} \right) + \left(a^2 \omega^2 \cos^2\theta - \frac{m^2}{\sin^2\theta} - 2a\omega s \cos\theta - \frac{2ms\cos\theta}{\sin^2\theta} - s^2\cot^2\theta + s + A \right) S = 0,$$
Angular Equation (Spin-Weighted Spheroidal Harmonics)

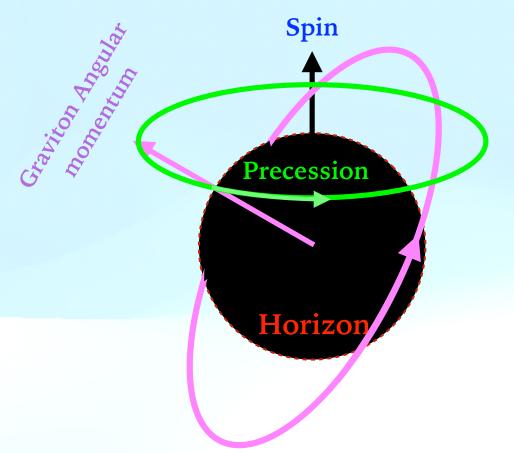
Quasi-Normal Mode Spectrum

a/M = 0.7

higher harmonics, ℓ



Black-Hole: Quasi-Normal Modes



$$\omega_R = L\left(\omega_{\rm orb} + \frac{m}{L}\omega_{\rm prec}\right) \quad \gamma = (n + \frac{1}{2})\gamma_L$$

QNMs are features of the photosphere [Huan Yang *et al.*, PRD **86**, 104006 (2012)]

Photosphere: Graviton Circular Orbits

 $e^{iS} = e^{-iEt + im\phi + iR(r) + i\Theta(\theta)}$

$$g^{\alpha\beta}\frac{\partial S}{\partial x^{\alpha}}\frac{\partial S}{\partial x^{\beta}} = 0$$

L and m: number of nodes in the angular directions

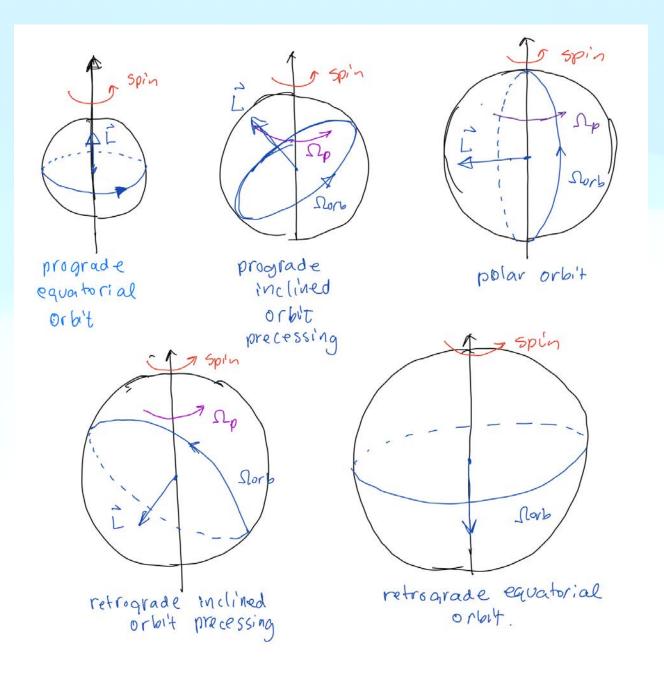
n: radial pattern

 $\omega_{\rm orb}$: orbital frequency

 $\omega_{\rm prec}$: precession frequency (splitting)

 γ_L : orbital Lyapunov exponent

Black-Hole: Quasi-Normal Modes



Excitation of QNMs

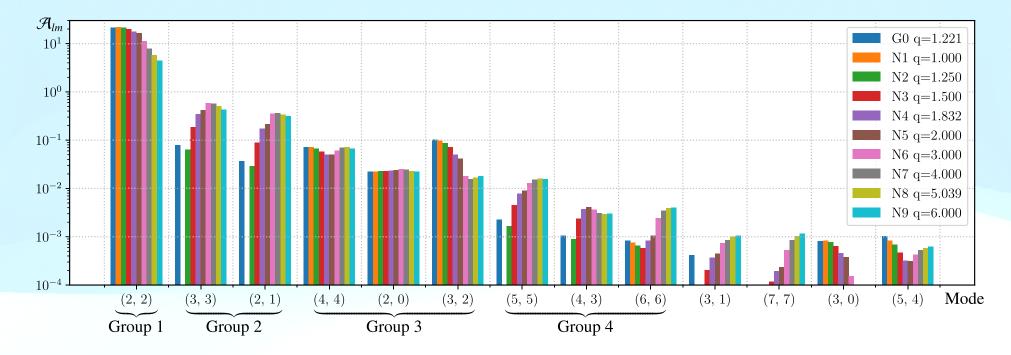
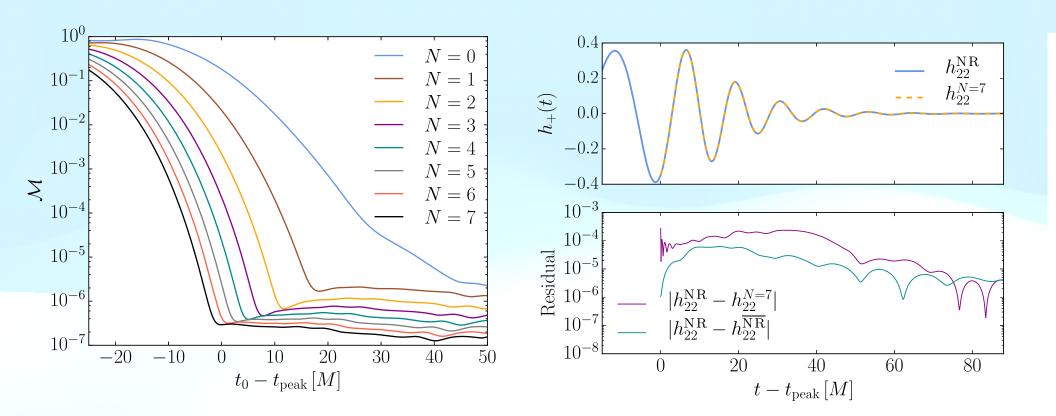


FIG. 4. The relative importance A_{lm} , defined in Eq. (16) as the strain component in spin-weighted spherical mode (l, m) squared and integrated from t_{peak} to $t_{\text{peak}} + 100M$. Groups 1–4 of the (l, m) modes are defined according to their relative importance in the QNM expansion and are added to the fitting models in order. See details in Sec. III A.

[Xiang Li et al., 2021]

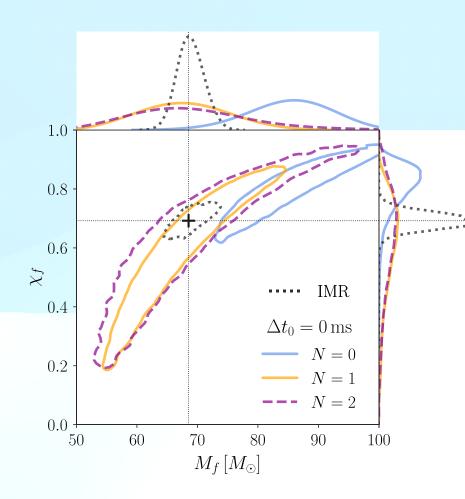
Overtones in Ringdown Waves: Theory

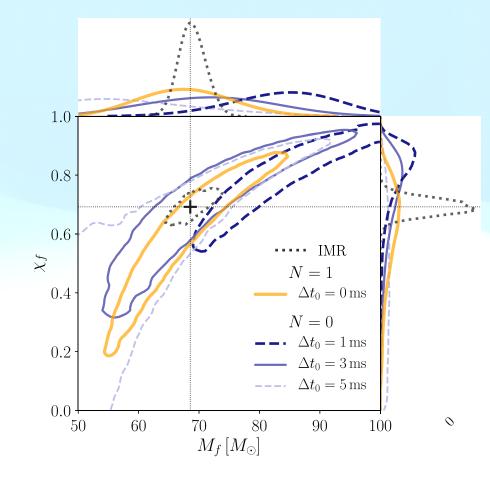


"Mismatch" between numerical waveform and sums of QNM overtones for (l, m) = (2, 2)

[Giesler, Isi, Scheel and Teukolsky, 2019]

Overtones in Ringdown Waves: GW150914



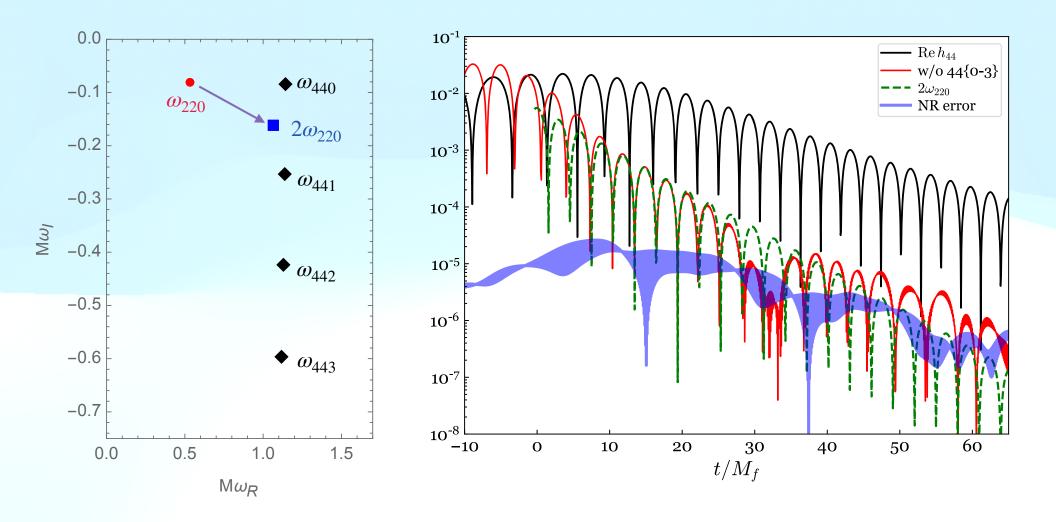


With early starting time, more overtones are better!

With additional overtone, better to start early!

Extracting overtone frequencies allow "no-hair" test!

Nonlinearity

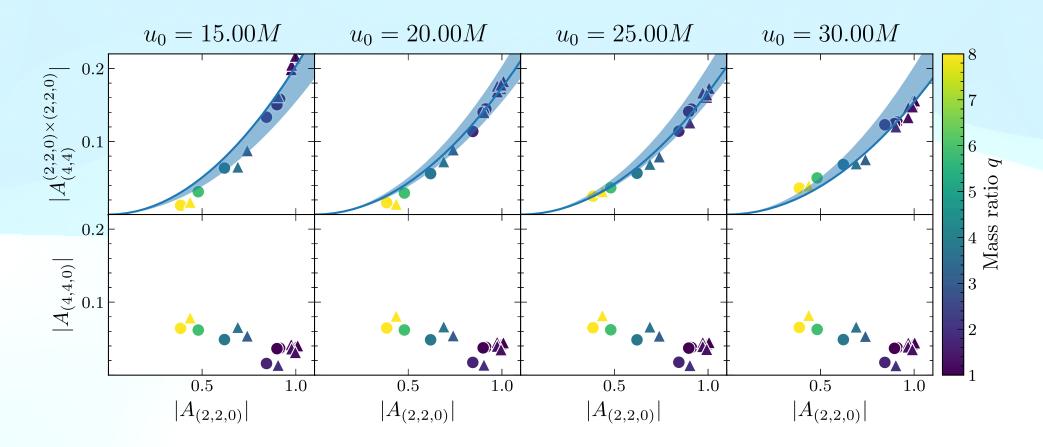


Effective Stress-Energy of the 220 mode will drive a (4,4) spatial mode with $2\omega_{220}$ frequency!

[Keefe Mitman et al., 2023; Sizheng Ma et al., 2022]

Nonlinearity

across different binaries: amplitude of $2\omega_{22}$ mode is quadratic in $\omega_{2,2}$ mode



[Mitman et al., 2023]

Other Tests of Relativity

Alternative Theories

- Scalar-Tensor Theory
- Higher-Derivative Terms
- Chern-Simons Gravity
- Stars phase-transition instead of forming BHs

Parametrized Deviations

- How many polarizations?
- Speed of GW?
- Waveform's Amplitude/ Phase deviates from GR?

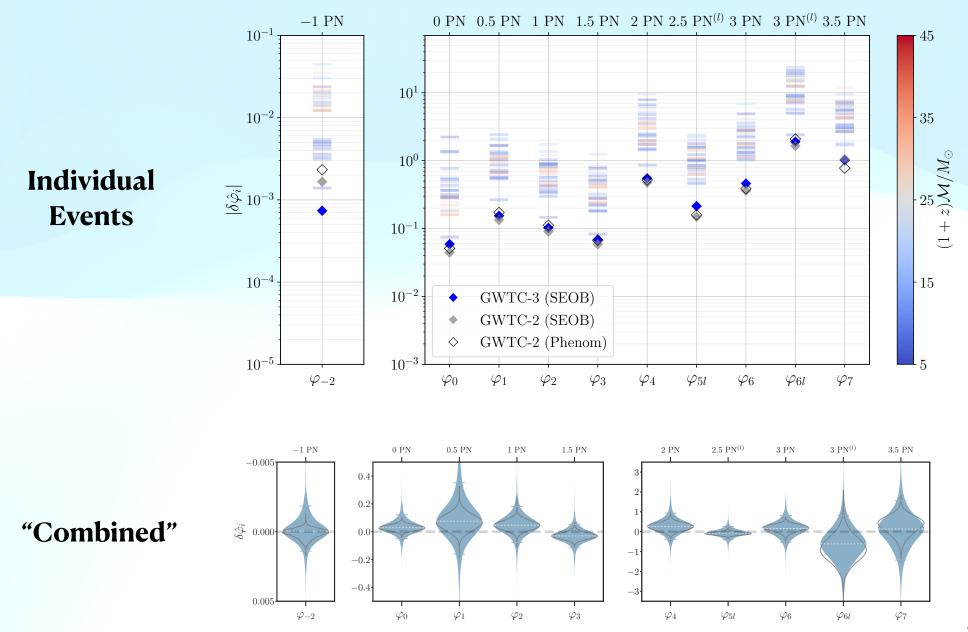
Confirm Phenomena

- Is Energy/Angular Momentum Lost during Merger?
- GW Memory?
- Is Horizon Black?
- Are there quantum fluctuations around BH?

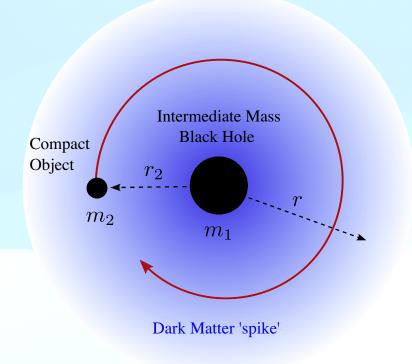
Environment?

- Is there a third object around our binary?
- Are there other things? Like Dark-Matter Halo, Axion Cloud, etc?

Parametrized Test of GR

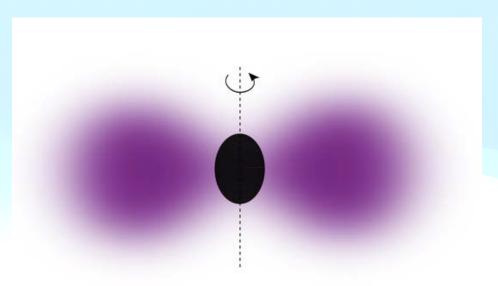


Superradiance of Black Holes and Dark Matter



Dark matter around BH causes change in waveform

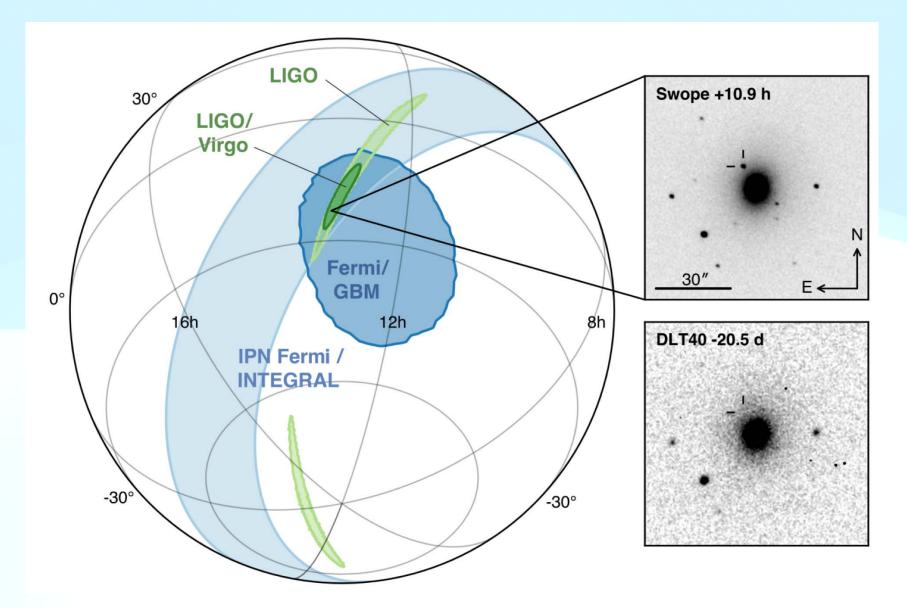
[Kavanagh et al., 2020]



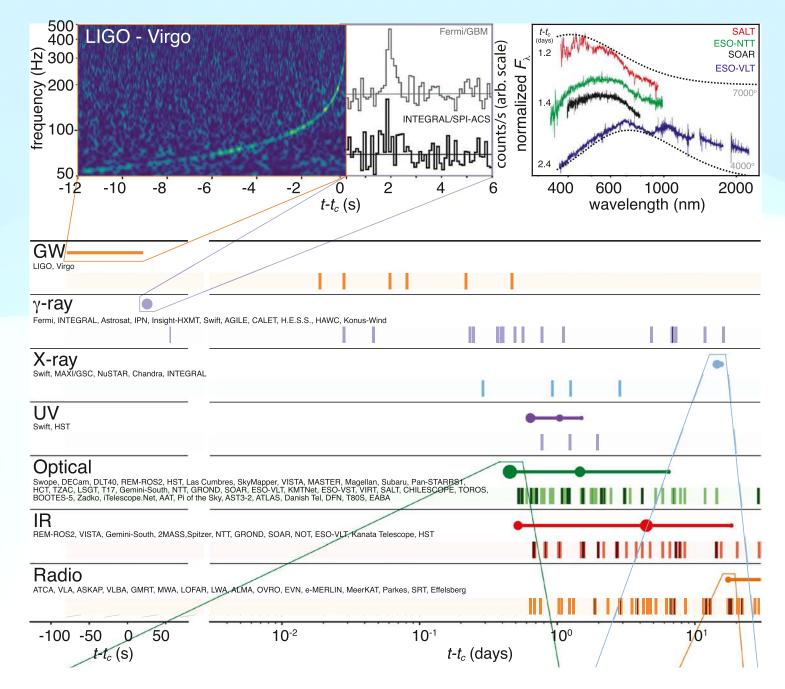
Cloud may spontaneously form around spinning black hole, extracting rotation energy if Compton wavelength comparable to size of black hole.

[Arvanitaki et al., 2010-2011]

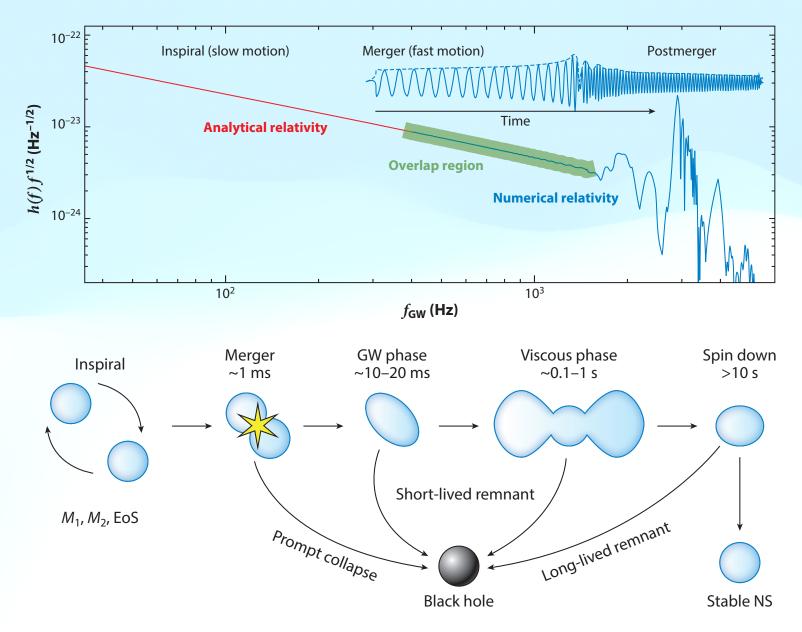
GW170817: Merger of Binary Neutron Stars



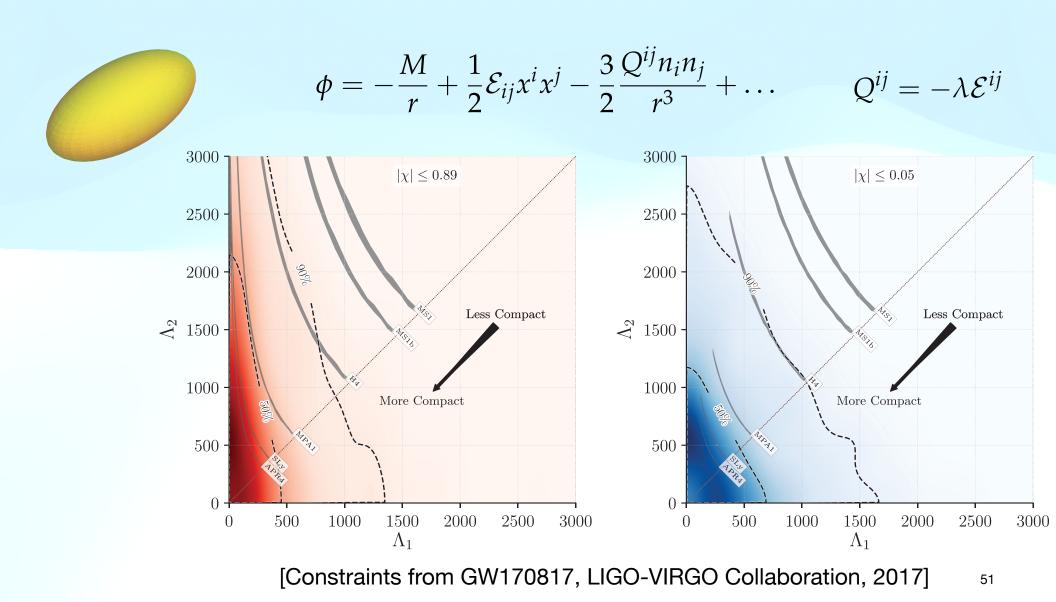
EM Counterparts



GW from Neutron Star Binaries



Neutron-Star Tidal Deformability



Summary of Lecture 1

- General relativity describes gravity using space-time geometry
- Confirmed by waveforms from binary black holes
 - Weak-field effects: spin/orbital precession.
 - Strong-field effects: black-hole quasi-normal modes.
 - Precision tests require improved sensitivity.
- Neutron star binary merger
 - probes state of matter at high densities