How much supernova fallback can invade newborn pulsar wind and magnetosphere?

Yici Zhong (UTAP MI)

With

Kazumi Kashiyama, Toshikazu Shigeyama, Saku Iwata, and Shinsuke Takasao

2020.08.18

The diversity of young neutron stars

- $(t_{age} < 1-10 \text{ kyr})$
- Formation rates ~ 1/100-1000 yr.

significantly small dipole magnetic field

Fallback accretion onto NS

The fallback typically starts when the neutrino luminosity significantly decreases after the core bounce.

$$\dot{M}_{\rm fb} = \frac{M_{\rm fb}}{3t_{\rm fb}} \left(\frac{t}{t_{\rm fb}}\right)^{-5/3} \sim 3 \times 10^{-6} \, M_{\odot} \, s^{-1} \, \left(\frac{M_{\rm fb}}{10^{-4} \, M_{\odot}}\right) \left(\frac{t_{\rm fb}}{10 \, \rm s}\right)^{-1}$$

The fallback mass is sensitive to the progenitor structure, the SN explosion mechanism, and so on.

$$M_{\mathrm{fb}} \sim 10^{-(2-4)}\,M_{\odot}$$
 e.g., Ugliano et al. 12; Ertl et al.16
$$\frac{10^{-(2-4)}\,M_{\mathrm{fb,err}}}{10^{-(2-4)}\,M_{\mathrm{b,cor}}} = \frac{10^{-(2-4)}\,M_{\mathrm{b,cor}}}{10^{-(2-4)}\,M_{\mathrm{b,cor}}} = \frac{10^{-(2-4)}\,M_{\mathrm{b,cor}}} = \frac{10^{-(2-4)}\,M_{\mathrm{b,cor}}}{10^{-(2-4$$

CCO formation

Fallback accretion may be crucial!

Fallback accretion can bury the B field if Mdot is smaller than

$$\dot{M}_{\rm crit, bury} \sim 10^{-5} \, M_{\odot} \, \rm s^{-1} \, \left(\frac{B_*}{10^{13} \, \rm G}\right)^{3/2}$$

e.g., Torres-Forne ´et al.16

OK, then how to make pulsars?

Relativistic outflow from NS

Extracting the rotation energy by the unipolar induction (Gunn & Ostriker 69; ...)

$$L_{\rm sd} \approx \frac{B_{\rm d}^2 \Omega^4 R^6}{4c^3} (1 + \sin \chi^2) \sim 4.3 \times 10^{35} \,\rm erg \, s^{-1} \, (1 + \sin \chi^2) \, B_{\rm d,14}^2 P_0^{-4}$$

Tchekhovskoy et al. 13

Numerical set-ups

 $\dot{M}_{\rm fb} \propto t^{-l}$, time scale~ $t_{\rm fb}$

 L_{out} : constant, spin-down time scale~ t_{out} (>> t_{fb})

$$\zeta \equiv (L_{\rm out}/\dot{M}_{\rm fb})_{\rm t=0}$$


```
With the Athena++ code
```

- **HLLC** Riemann solver
 - Spatial reconstruction: 2nd order PPM
- Time integration: 2nd order RK method
- CFL # of 0.1.

 \diamondsuit ζ , Γ , l and r_{enc}

- Hydrodynamics & special relativity: Relativistic HD
- Central gravity source $\sqrt{\ }$, self gravity \times
- Setting initial & boundary conditions based on \dot{M}_{fb} , L_{out} and r_{enc} numerically
- ***** evolution of accretion shock, e.g. shock structure, minimum fall-back radius r_{\min} ($r_{RSF,min}$)

Time evolution of the accretion shock: shock structure

Pressure equilibrium at FWF — FWF & CS (in thin shell) expands without contraction for

Time evolution of the accretion shock: FWF, CS & RSF

 $\Gamma=30$

Time evolution of the accretion shock: r_{min}

Analytical model of fall-back accretion

The thin shell approximation

A simplified ver. of hydro Eqs. for the contact surface

$$\frac{dM_{\rm s}}{dt} = -4\pi r^2 \rho (v - v_{\rm s}),$$

$$\frac{d}{dt}(M_{\rm s}v_{\rm s}) = 4\pi r_{\rm s}^2 P - \dot{M}(v - v_{\rm s}),$$

$$3\frac{d}{dt}(PV) + P\frac{dV}{dt} = L,$$

nvasion radius
$$r_{\rm s,min} = r_0 \zeta^{2/3} \left(\frac{r_0}{r_{\rm Sch}}\right)^{1/3} f(t_{\rm min}),$$

$$f(t) = \left[1 + \frac{c \int_0^t dt' r_s(t')^3}{r_0^4}\right]^{2/3}$$

a functional d.o.f to be fitted by the numerical results

The invasion radius

The thin shell approximation

A simplified ver. of hydro Eqs. for the contact surface

$$\frac{dM_{\rm s}}{dt} = -4\pi r^2 \rho (v - v_{\rm s}),$$

$$\frac{d}{dt}(M_{\rm s}v_{\rm s}) = 4\pi r_{\rm s}^2 P - \dot{M}(v - v_{\rm s}),$$

$$3\frac{d}{dt}(PV) + P\frac{dV}{dt} = L,$$

$$r_{\rm s,min} = r_0 \zeta^{2/3} \left(\frac{r_0}{r_{\rm Sch}}\right)^{1/3} f(t_{\rm min}),$$

$$f(t) = \left[1 + \frac{c \int_0^t dt' r_s(t')^3}{r_0^4}\right]^{2/3}$$

a functional d.o.f to be fitted by the numerical results

Based on the numerical experiments so far,

$$f(t) \approx \xi (r_0/r_{\rm Sch})^{1/3}$$
 where $\xi \sim 0.2$

$$r_{\rm s,min} \approx r_0 \xi \zeta^{2/3} \left(\frac{r_0}{r_{\rm Sch}}\right)^{2/3}$$

Implications on the NS diversity

The invasion condition down to the light cylinder

$$\dot{M}_{\rm fb} > \dot{M}_{\rm fb,lc} \equiv 2 \times 10^{-7} \, M_{\odot} \, \text{s}^{-1} \, \left(\frac{\xi}{0.2}\right)^{3/2} B_{13} P_{-2}^{-11/2} t_{\rm fb,1}^{10/3}$$

The invasion condition down to the NS surface
$$\dot{M}_{\rm fb} > \dot{M}_{\rm fb,R} \equiv 7 \times 10^{-5} \, M_{\odot} \, {\rm s}^{-1} \, \left(\frac{\xi}{0.2}\right)^{3/2} B_{13}{}^2 P_{-2}{}^{-4} t_{\rm fb,1}{}^{10/3} \, .$$

e.g., the magnetosphere of a Crab-like pulsar can be marginally invaded with a typical fallback, which may indicate that the Crab is at around the bifurcation point of NS sequences...

Summary

What do we want to know?

• The origin of the diversity of young neutron star

What do we do?

 To Investigate the impact of fallback accretion onto the magnetized wind and magnetosphere of a newborn neutron star

What have we done?

 I-D Numerical and analytical calculations of a fallback accretion confronting with a relativistic wind

What have we learned?

• The "invasion radius" by the fallback matter can be determined by the luminosity ratio of the in- and outflow and the encounter radius -> connection to the diversity of young neutron star?

Future work

- Keep digging into "invasion radius" and its implication to NS diversity
- Enlarging the r_{enc} (shorter t_{fb} would be more realistic)
- Applying results to specific astrophysical problem: neutron star formation in crablike pulsar
- 2-D simulations: multi-dimensional effect on the ID result, e.g. a region in the corresponding I-D shock structure that is unstable with respect to the RT instability

•