Afterglows Can Reveal SGRBs' Features

- relativistic jet -> beaming-corrected energy scale
- estimation of surrounding medium
- * weakness*
- Fainter ($\sim \mu$ Jy-mJy)
- Directivity of prompt emissions
 - -> ~100 detected in X-ray to radio, only 4 in radio
- Difficult to confirm afterglows without prompt emissions

Orphan Afterglows: Less Biased to Jet Directions

(https://astronomy.swin.edu.au/cosmos/O/Orphan+Afterglow)

 Observation of orphan afterglows may increase the number of detected SGRBs drastically

CHIME: Powerful Observatory for Orphan Afterglows

(https://chime-experiment.ca/en#a8)

- Originally designed for making
 3D map of neutral Hydrogen
- Greatly contributes to fast radio bursts

CHIME: Powerful Observatory for Orphan Afterglows

- Originally designed for making
 3D map of neutral Hydrogen
- Greatly contributes to fast radio bursts

If the progenitor of SGRBs is binary neutron star mergers, 100 thousand at most orphan afterglows can be detected!!

Aim of My Work

- Analyze CHIME's data to detect orphan afterglows from SGRBs with CHIME
- discuss a mystery of SGRBs, e.g. their drive mechanism and origins

Develop an analysis pipeline to detect orphan afterglows from SGRBs with CHIME

Scheme of Analysis Pipeline

- Prepare templates of light curves of afterglows
- Simulate point sources whose brightness changes with time
- Recover light curves from the simulation
- Assess "false detection rate" as a function of apparent luminosity

Scheme of Analysis Pipeline

- Prepare templates of light curves of afterglows
- Simulate point sources whose brightness changes with time
- Recover light curves from the simulation
- Assess "false detection rate" as a function of apparent luminosity

Template Light Curve

Point Source in the simulated sky with "cora"

Point Source in the simulated sky with "cora"

Point Source with Time-dependent Brightness

Point Source with Time-dependent Brightness

"Ringmap" with "caput": FFT of visibility

3.6 "Elevation" (Dec – CHIME's latitude) 3.4 - 3.2 - 3.0 -2.8 2.6 -30 180 270

 Visibility: cross-correlation between two antenna signals

$$V_{ij} = \frac{1}{\Omega_{ij}} \int d^2 \hat{\boldsymbol{n}} A_i(\hat{\boldsymbol{n}}) A_j^*(\hat{\boldsymbol{n}}) e^{2\pi i \hat{\boldsymbol{n}} \cdot \boldsymbol{u}_{ij}} T(\hat{\boldsymbol{n}})$$

RA(Degree)

"Ringmap" with "caput": FFT of visibility

CHIME's latitude)

(Dec

"Ringmap" with "caput": FFT of visibility

CHIME's latitude)

Dec

Timeseries of "Ringmap" Follows the Template

Recovered Light Curve

Comparison with Template

Comparison with Template

Successfully recovered the same shape of light curve as the template

Summary & Future Work

- Automated some processes using CHIME's open software
 - Making a time-series of simulated skymaps with time-dependent brightness temperature
 - Recovering light curves from the simulation data
- Prepare a "template bank" of afterglow light curves
 - Using analytic models with smart calculations of complicated structure of relativistic jets (Lin+2018)
- Assess "false detection rate" as a function of apparent luminosity