Cosmic Particles in the Multi-Messenger Era

Kohta Murase

Penn State University

Gamma Rays & Blazars as Examples

First Gamma-Ray Sky

- Third Orbiting Solar Observatory OSO-3 (Kraushaar et al. 1972)
- Sensitive to >50 MeV γ rays, 1 source (i.e. Milky Way)

Gamma-Ray Astrophysics in the Fermi Era

Extragalactic Gamma-Ray Background

Blazars: Main Extragalactic Sources in the y-ray Sky

48 months of observations : 2192 TS>25, |b|>10° sources 3LAC: 1563 sources 1444 AGNs in the clean sample 415 FSRQs 602 BL Lacs 413 of unknown type 23 other AGNs

Local (z=0) luminosity density

BL Lacs:

2x10⁴⁵ erg Mpc⁻³ yr⁻¹ FSRQs:

~(1-4)x10⁴⁴ erg Mpc⁻³ yr⁻¹

UHECR:

~10⁴⁴ erg Mpc⁻³ yr⁻¹

Candidate sources of UHECRs

Blazars: Success of Multiwavelength Observations

Spectral energy distribution (SED): typically "two hump" structure

Leptonic Scenario

HE radiation: relativistic electrons accelerated in inner jets (magnetic reconnection, shock acc., shear acc., turbulence etc.)

• BL Lacs: synchrotron + synchrotron self-Compton (SSC)

• FSRQ: external Compton (EC) bloadline regions (BLR), dust torus, accretion disk

Intra-Source Cascades

VHE γ /e injection by cosmic rays

Bethe-Heitler process

pγ meson production

 $\gamma + \gamma \rightarrow e^+ + e^-$

(Lepto-)Hadronic Scenario?

- Nonthermal synchrotron radiation from primary electrons for radio through optical (low-energy hump)
- Cascades via photomeson production $p+\gamma \rightarrow p/n, \ \pi \rightarrow p/n, \ \nu, \ \gamma, \ e$
- Proton and ion synchrotron radiation $p+B \rightarrow p+\gamma$

"SEDs can usually be fitted by both leptonic and leptohadronic scenarios" caveats:

- large CR power is necessary $(L_p \sim 10^{47} 10^{49} \text{ erg/s} \sim 10^3 10^6 \text{ L}_e)$
- much more free parameters

smoking gun? -> neutrinos!

Fate of Gamma Rays Escaping from the Sources

EBL Attenuation

>TeV γ rays interact with CMB & extragalactic background light (EBL) $\gamma + \gamma_{\text{CMB/EBL}} \rightarrow e^+ + e^-$ ex. $\lambda_{\gamma\gamma}(\text{TeV}) \sim 300 \text{ Mpc}$ $\lambda_{\gamma\gamma}(\text{PeV}) \sim 10 \text{ kpc} \sim \text{distance to Gal. Center}$

Intergalactic Cascades

UHECR-Induced Intergalactic Cascades

Alternative explanation for gamma rays from blazars: neutrino and hadronic gamma-ray production *outside* sources

Gamma-Ray Smoking Gun: High-Energy Tail

KM, Dermer, Takami & Migliori 12 ApJ Takami, KM & Dermer 13 ApJL Aharonian+ 13 PRD

Need CTA for the discrimination

Neutrinos

Neutrinos: Weak Interaction

How big should a detector be? A crude estimate at PeV energies

$$\mathcal{N} \sim (\varepsilon_{\nu} \Phi_{\varepsilon}) \sigma_{\nu N} (2\pi N_A \rho V) \simeq 10 \text{ yr}^{-1} \left(\frac{\varepsilon_{\nu}^2 \Phi_{\varepsilon}}{10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}} \right) \left(\frac{V}{\text{km}^3} \right)$$

IceCube: Gton Neutrino Detector

How to Detect Neutrinos?

3 main event types

"Track" (detected)

"Double-bang & others" (not detected)

 $\nu_{\mu}\text{+}\text{N} \rightarrow \mu\text{+}\text{X}$

~2 energy res. <1 deg ang res.

 ν_e +N \rightarrow e+X ν_x +N \rightarrow ν_x +X

~15% energy res. ~10 deg ang res. seen at >100 TeV $\nu_{\tau}\text{+}\text{N}\rightarrow\tau\text{+}\text{X}$

observable at higher E

Background: Atmospheric Neutrinos & Muons

Upgoing & Downgoing Neutrinos

ν

ν

CR

Downgoing neutrinos

caveat: atm. muons (rapidly decreasing as E) good: avoid attenuation by Earth

Upgoing neutrinos

good: avoid atmospheric "muons" caveat: attenuation by Earth at > 0.1-1 PeV

Discovery: Results Published in 2012-2013

- Consistent w. flavor ratio $v_e:v_{\mu}:v_{\tau}=1:1:1$
- Favoring cutoff at ~2 PeV for E_v^{-2} or steeper than $E_v^{-2.2}$

Dawn of Neutrino Astrophysics

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 5 SEPTEMBER 2014

Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data

Upgoing Muon Tracks: Hard Spectra?

- 6-yr Upgoing muon ν (29 events at >200 TeV): only bkg. rejected at 5.9σ
- Best-fit index: $s=2.13\pm0.13$
- Muon v flux above 100 TeV: $E_v^2 \Phi_v = (0.82 + 0.3 - 0.26)$

x10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹

- Consistent w. low-energy analyses but there is a 2-3 σ tension

Lowering the Threshold: Medium-Energy Excess?

 Medium-energy starting events E_{dep}>~1 TeV (2010-2016) IceCube 17 ICRC

best-fit simple PL: $s=2.69\pm0.08$ systematics is not included Shower analyses E_{dep}: 0.4 TeV-10 PeV (2010-2015)

-3 σ tension w. v_{μ} : hint about the structure in neutrino spectra?

Latest News (Neutrino 2018)

Neutrino Oscillation

Mass²

m, A famous example (Nobel prize 15) $2.5 \times 10^{-3} \text{ eV}^2$ "atmospheric neutrino oscillation" $7.6 \times 10^{-5} \text{ eV}^2$ m Super-Kamiokande 848 days Preliminary multi-GeV e-like multi-GeV mu-like (FC+PC) Normal Inverted 150 neutrino 1 100 neutrino 2 neutrino 3 Data 50 Predicted numu–nutau osc. beat Π -0.6 -0.2 0.2 0.6 -0.6 -0.2 0.2 0.6 1 - 1-1 cos(zenith angle) cos(zenith angle) ex. 2 flavor oscillation μ neutrino μ neutrino τ neutrino $P_{\alpha \to \beta, \alpha \neq \beta} = \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 L}{E} \frac{[\text{eV}^2]\,[\text{km}]}{[\text{GeV}]}\right)$

Neutrino Mixing

$$|\nu(t)\rangle = \sum_{i} U_{\alpha i}^{(\nu)} |\nu_i\rangle e^{-iEt}$$

$$P_{\alpha \to \beta}(t) = \left| \sum_{k=1}^{n} U_{\beta k}^{*} \exp(-iEt) U_{\alpha k} \right|^{2}$$

U: lepton mixing matrix (Maki-Nakagawa-Sakata)

L=ct $\rightarrow \infty$ limit: $v_e:v_{\mu}:v_{\tau} \sim 1:1:1$ (if no astrophysical complications)

$$\begin{split} \phi_{\nu_e+\overline{\nu}_e} &= \frac{10}{18} \phi^0_{\nu_e+\overline{\nu}_e} + \frac{4}{18} (\phi^0_{\nu_\mu+\overline{\nu}_\mu} + \phi^0_{\nu_\tau+\overline{\nu}_\tau}), \\ \phi_{\nu_\mu+\overline{\nu}_\mu} &= \frac{4}{18} \phi^0_{\nu_e+\overline{\nu}_e} + \frac{7}{18} (\phi^0_{\nu_\mu+\overline{\nu}_\mu} + \phi^0_{\nu_\tau+\overline{\nu}_\tau}), \end{split}$$

Latest News (Neutrino 2018)

- Two double bang candidates could be CC interaction by v_{τ}

$m_{\tau} = 1.77 \text{ GeV}$ $\tau_{\tau} = 2.9 \times 10^{-13} \text{ s}$

Double cascade Event #1

Double cascade Event #2

Go to Higher Energies

Glashow Search

The neutrino spectrum is soft or has a cutoff due to the absence of GR

Latest News in 2017-2018

- 5.9 PeV event (deposited) in PEPE (PeV Energy Partially-contained Events)
- Finally we could detect a Glashow event at E=6.3 PeV?

Hunting Neutrino Sources

compatible w. isotropic distribution no significant clustering

0 SOURCE in time-integrated search

tentative 1 source in time-dependent search

What Can We Learn from the Neutrino Sky?

For powerful neutrino sources, searches for event clustering is powerful

1. Non-detection of v event clustering (absence of v "multiplet" sources)

$$N_s = b_{m,L} \left(\frac{\Delta\Omega}{3}\right) n_0^{\rm eff} d_{\rm lim}^3 < 1 \quad \begin{array}{l} {\rm d_{lim}: \ detectable \ distance \ for \ a \ source \ with \ L}} \\ {\rm b_{m,L}: \ depends \ on \ analysis \ details} \\ ({\rm powerful \ for \ placing \ "upper \ limits"}) \end{array}$$

"upper" limits $n_0 < 10^{-7} - 10^{-6} Mpc^{-3} (L_v/10^{42} erg/s)^{-3/2}$

2. IceCube flux ($E_v^2 \Phi_v \sim 3x10^{-8}$ GeV cm⁻² s⁻¹ sr⁻¹) tells us the v energy generation rate

 $n_0 L_v \sim 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$ (for no redshift evolution)

3. Lower limits can be placed from the information 1+2

"lower" limits $n_0 > 10^{-5} - 10^{-6} Mpc^{-3}$

BL Lac objects: n_{tot}~(1-3)x10⁻⁷ Mpc⁻³ w. weak redshift evolution implying that blazars are subdominant sources in the diffuse neutrino intensity #model-dependence (e.g., cosmic evolution, luminosity weight, spectrum)

Open Questions in HE Neutrino Astrophysics

- Origin of cosmic neutrinos?
- production mechanism: pp or $p\gamma$?
- connection to UHECRs?
- connection to γ rays?
- Galactic contribution?
- transients?
- flavors?
- new physics?

Neutrinos & γ rays: Summary

- Gamma-ray background?
- main sources above 10 GeV are blazars
- ~15-30% (above 50 GeV) or more may come from non-blazars
- intra-source cascades & intergalactic cascades
- leptonic sceanrio = self-Compton or external inverse-Compton
- hadronic scenario = p-induced cascade or p-synchrotron
- UHECR-induced intergalactic cascade

Neutrino background?

origins are unknown: spectrum may not be a power law flavor ratios are consistent w. the standard model expectation bulk of the neutrinos seems to come from some abundant sources

Theoretical implications will be discussed on the 3rd day