
Recent results on R2 and related models of

inflation

Alexei A. Starobinsky

Landau Institute for Theoretical Physics RAS,
Moscow – Chernogolovka, Russia

APCosPA-Planet2 RESCEU Summer School
Program

Takayama city, Japan, 27-28.08.2016



Present status of inflation

Visualizing small differences in the number of e-folds

Smooth reconstruction of inflationary models in f (R) gravity

Generality of inflation

Occurrence of R2 inflation in non-local UV-complete gravity

Conclusions



Main epochs of the Universe evolution
H ≡ ȧ

a
where a(t) is a scale factor of an isotropic

homogeneous spatially flat universe (a
Friedmann-Lemâitre-Robertson-Walker background):

ds2 = dt2 − a2(t)(dx2 + dy 2 + dz2) + small perturbations

The history of the Universe in one line: four main epochs

? −→ DS=⇒FLRWRD=⇒FLRWMD=⇒DS −→ ?

Geometry

|Ḣ | << H2=⇒ H =
1

2t
=⇒ H =

2

3t
=⇒ |Ḣ | << H2

Physics

p ≈ −ρ =⇒ p = ρ/3 =⇒ p � ρ =⇒ p ≈ −ρ

Duration in terms of the number of e-folds ln(afin/ain)

> 60 ∼ 55 7.5 0.5



Inflation

The inflationary scenario is based on the two main cornerstone
ideas (hypothesis):

1. Existence of inflation (or, quasi-de Sitter stage) – a stage of
accelerated, close to exponential expansion of our Universe in
the past preceding the hot Big Bang with decelerated,
power-law expansion.

2. The origin of all inhomogeneities in the present Universe is
the effect of gravitational creation of particles and field
fluctuations during inflation from the adiabatic vacuum
(no-particle) state for Fourier modes covering all observable
range of scales (and possibly somewhat beyond).

NB The latter effect requires breaking of the weak and null
energy conditions for matter inhomogeneities.



Present status of inflation
Now we have numbers: P. A. R. Ade et al., arXiv:1502.01589

The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum ns = 1 in
the first order in |ns − 1| ∼ N−1 has been discovered (using
the multipole range ` > 40):

< ζ2(r) >=

∫
Pζ(k)

k
dk , Pζ(k) =

(
2.21+0.07

−0.08

)
10−9

(
k

k0

)ns−1

k0 = 0.05Mpc−1, ns − 1 = −0.035± 0.005

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant).
Existing inflationary models can predict (and predicted, in
fact) one of them, namely ns − 1, relating it finally to
NH = ln kBTγ

~H0
≈ 67.2.



From ”proving” inflation to using it as a tool
Present status of inflation: transition from ”proving” it in
general and testing some of its simplest models to applying
the inflationary paradigm to investigate particle physics at
super-high energies and the actual history of the Universe in
the remote past using real observational data on ns(k)− 1 and
r(k).

The reconstruction approach – determining curvature and
inflaton potential from observational data.

The most important quantities:
1) for classical gravity – H , Ḣ
2) for super-high energy particle physics – m2

infl .

Simple (one-parameter, in particular) models may be good in
the first approximation (indeed so), but it is difficult to expect
them to be absolutely exact, small corrections due to new
physics should exist (indeed so).



Physical scales related to inflation

”Naive” estimate where I use the reduced Planck mass
M̃Pl = (8πG )−1.

I. Curvature scale

H ∼
√

PζM̃Pl ∼ 1014GeV

II. Inflaton mass scale

|minfl | ∼ H
√
|1− ns | ∼ 1013GeV

New range of mass scales significantly less than the GUT scale.



Outcome of inflation

In the super-Hubble regime in the coordinate representation:

ds2 = dt2 − a2(t)(δlm + hlm)dx ldxm, l , m = 1, 2, 3

hlm = 2ζ(r)δlm +
2∑

a=1

g (a)(r) e
(a)
lm

e
l(a)
l = 0, g

(a)
,l e

l(a)
m = 0, e

(a)
lm e lm(a) = 1

ζ describes primordial scalar perturbations, g – primordial
tensor perturbations (primordial gravitational waves (GW)).



In fact, metric perturbations hlm are quantum (operators in
the Heisenberg representation) and remain quantum up to the
present time. But, after omitting of a very small part,
decaying with time, they become commuting and, thus,
equivalent to classical (c-number) stochastic quantities with
the Gaussian statistics (up to small terms quadratic in ζ, g).

Remaining quantum coherence: deterministic correlation
between k and −k modes - shows itself in the appearance of
acoustic oscillations (primordial oscillations in case of GW).



Dynamical origin of scalar perturbations

Local duration of inflation in terms of Ntot = ln
(

a(tfin)
a(tin)

)
is

different in different points of space: Ntot = Ntot(r). Then

ζ(r) = δNtot(r)

Correct generalization to the non-linear case: the space-time
metric after the end of inflation at super-Hubble scales

ds2 = dt2 − a2(t)e2Ntot(r)(dx2 + dy 2 + dz2)

First derived in A. A. Starobinsky, Phys. Lett. B 117, 175

(1982) in the case of one-field inflation.



CMB temperature anisotropy

Tγ = (2.72548± 0.00057)K

∆T (θ, φ) =
∑
`m

a`mY`m(θ, φ)

< a`ma`′m′ >= C`δ``′δmm′

Theory: averaging over realizations.
Observations: averaging over the sky for a fixed `.

For scalar perturbations, generated mainly at the last
scattering surface (the surface or recombination) at
zLSS ≈ 1090 (the Sachs-Wolfe, Silk and Doppler effects), but
also after it (the integrated Sachs-Wolfe effect).
For GW – only the ISW works.



Visualizing small differences in the number of

e-folds

For ` . 50, neglecting the Silk and Doppler effects, as well as
the ISW effect due the presence of dark energy,

∆T (θ, φ)

Tγ

= −1

5
ζ(rLSS , θ, φ) = −1

5
δNtot(rLSS , θ, φ)

For ns = 1,

`(` + 1)C`,s =
2π

25
Pζ

For ∆T
T
∼ 10−5, δN ∼ 5× 10−5, and for H ∼ 1014 GeV,

δt ∼ 5tPl !

Planck time intervals are seen by the naked eye!





First step: comparison with simple smooth models
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Inflation in f (R) gravity
The simplest model of modified gravity (= geometrical dark
energy) considered as a phenomenological macroscopic theory
in the fully non-linear regime and non-perturbative regime.

S =
1

16πG

∫
f (R)

√
−g d4x + Sm

f (R) = R + F (R), R ≡ Rµ
µ

Here f ′′(R) is not identically zero. Usual matter described by
the action Sm is minimally coupled to gravity.

Vacuum one-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f (R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) ms ≈ const.

Metric variation is assumed everywhere. Palatini variation
leads to a different theory with a different number of degrees
of freedom.



Field equations

1

8πG

(
Rν

µ −
1

2
δν
µR

)
= −

(
T ν

µ (vis) + T ν
µ (DM) + T ν

µ (DE)

)
,

where G = G0 = const is the Newton gravitational constant
measured in laboratory and the effective energy-momentum
tensor of DE is

8πGT ν
µ (DE) = F ′(R) Rν

µ−
1

2
F (R)δν

µ+
(
∇µ∇ν − δν

µ∇γ∇γ
)
F ′(R) .

Because of the need to describe DE, de Sitter solutions in the
absence of matter are of special interest. They are given by
the roots R = RdS of the algebraic equation

Rf ′(R) = 2f (R) .

The special role of f (R) ∝ R2 gravity: admits de Sitter
solutions with any curvature.



Duality to the GR+scalar field dynamics
In the Einstein frame, free particles of usual matter do not
follow geodesics and atomic clocks do not measure proper
time.
From the Jordan (physical) frame to the Einstein one:

gE
µν = f ′g J

µν , κφ =

√
3

2
ln f ′, V (φ) =

f ′R − f

2κ2f ′2

where κ2 = 8πG .
Inverse transformation:

R =

(√
6κ

dV (φ)

dφ
+ 4κ2V (φ)

)
exp

(√
2

3
κφ

)

f (R) =

(√
6κ

dV (φ)

dφ
+ 2κ2V (φ)

)
exp

(
2

√
2

3
κφ

)
V (φ) should be at least C 1.



Background FRW equations in f (R) gravity

ds2 = dt2 − a2(t)
(
dx2 + dy 2 + dz2

)
H ≡ ȧ

a
, R = 6(Ḣ + 2H2)

The trace equation (4th order)

3

a3

d

dt

(
a3 df ′(R)

dt

)
− Rf ′(R) + 2f (R) = 8πG (ρm − 3pm)

The 0-0 equation (3d order)

3H
df ′(R)

dt
− 3(Ḣ + H2)f ′(R) +

f (R)

2
= 8πGρm



Reduction to the first order equation

In the absence of spatial curvature and ρm = 0, it is always
possible to reduce these equations to a first order one using
either the transformation to the Einstein frame and the
Hamilton-Jacobi-like equation for a minimally coupled scalar
field in a spatially flat FLRW metric, or by directly
transforming the 0-0 equation to the equation for R(H):

dR

dH
=

(R − 6H2)f ′(R)− f (R)

H(R − 12H2)f ′′(R)



Analogues of large-field (chaotic) inflation: F (R) ≈ R2A(R)
for R →∞ with A(R) being a slowly varying function of R ,
namely

|A′(R)| � A(R)

R
, |A′′(R)| � A(R)

R2
.

Analogues of small-field (new) inflation, R ≈ R1:

F ′(R1) =
2F (R1)

R1
, F ′′(R1) ≈

2F (R1)

R2
1

.

Thus, all inflationary models in f (R) gravity are close to the
simplest one over some range of R .



Perturbation spectra in slow-roll f (R) inflationary

models
Let f (R) = R2 A(R). In the slow-roll approximation
|R̈ | � H |Ṙ |:

Pζ(k) =
κ2Ak

64π2A′2
k R2

k

, Pg (k) =
κ2

12Akπ2

N(k) = −3

2

∫ Rk

Rf

dR
A

A′R2

where the index k means that the quantity is taken at the
moment t = tk of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(tk)H(tk).

NB The slow-roll approximation is not specific for inflation
only. It was first used in A. A. Starobinsky, Sov. Astron. Lett.
4, 82 (1978) for a bouncing model (a scalar field with

V = m2φ2

2
in the closed FLRW universe).



Slow-roll inflation reconstruction in GR+scalar field

models
In the slow-roll approximation |φ̈| � H |φ̇|:

V 3

V ′2 = CPζ(k(t(φ))), C =
12π2

κ6

Changing variables for φ to N(φ) and integrating, we get:

1

V (N)
= − κ4

12π2

∫
dN

Pζ(N)

κφ =

∫
dN

√
d ln V

dN

Here, N � 1 stands both for ln(kf /k) at the present time and
the number of e-folds back in time from the end of inflation.
First derived in H. M. Hodges and G. R. Blumenthal, Phys.
Rev. D 42, 3329 (1990).



Slow-roll inflation reconstruction in f (R) gravity

A = const − κ2

96π2

∫
dN

Pζ(N)

ln R = const +

∫
dN

√
−2 d ln A

3 dN

The additional ”aesthetic” assumptions that Pζ ∝ Nβ and
that the resulting f (R) can be analytically continued to the
region of small R without introducing a new scale, and it has
the linear (Einstein) behaviour there, leads to β = 2 and the
R + R2 inflationary model with r = 12

N2 = 3(ns − 1)2

unambiguously.



For Pζ = P0N
2 (”scale-free reconstruction”):

A =
1

6M2

(
1 +

N0

N

)
, M2 ≡ 16π2N0Pζ

κ2

Two cases:
1. N � N0 always.

A =
1

6M2

1 +

(
R0

R

)√3/(2N0)


For N0 = 3/2, R0 = 6M2 we return to the simplest R + R2

inflationary model.

2. N0 � 1.

A =
1

6M2

1 +
(

R0

R

)√3/(2N0)

1−
(

R0

R

)√3/(2N0)

2



The simplest models producing the observed scalar

slope

f (R) = R +
R2

6M2

M = 2.6× 10−6

(
55

N

)
MPl ≈ 3.2× 1013 GeV

ns − 1 = − 2

N
≈ −0.036, r =

12

N2
≈ 0.004

HdS(N = 55) = 1.4× 1014 GeV

The same prediction from a scalar field model with
V (φ) = λφ4

4
at large φ and strong non-minimal coupling to

gravity ξRφ2 with ξ < 0, |ξ| � 1, including the
Brout-Englert-Higgs inflationary model.



The Lagrangian density for the simplest 1-parametric model:

L =
R

16πG
+

N2

288π2Pζ(k)
R2 =

R

16πG
+ 5× 108 R2

1. The specific case of the fourth order gravity in 4D

L =
R

16πG
+ AR2 + BCαβγδC

αβγδ + (small rad. corr.)

for which A� 1, A� |B |.
2. Another, completely different way: a non-minimally coupled
scalar field with a large negative coupling ξ (ξconf = 1

6
):

L =
R

16πG
− ξRφ2

2
+

1

2
φ,µφ

,µ − V (φ), ξ < 0, |ξ| � 1 .

In this limit, the Higgs-like scalar tree level potential

V (φ) =
λ(φ2−φ2

0)
2

4
just produces f (R) = 1

16πG

(
R + R2

6M2

)
with

M2 = λ/24πξ2G and φ2 = |ξ|R/λ (plus small corrections
∝ |ξ|−1).



Post-inflationary evolution in the R + R2 model
First order equation:

x = H3/2, y =
1

2
H−1/2Ḣ , dt =

dx

3x2/3y

dy

dx
= − M2

12x1/3y
− 1

The y -axis corresponds to inflection points ȧ = ä = 0,
...
a 6= 0.

A curve reaching the y -axis at the point (0, y0 < 0) continues
from the point (0,−y0) to the right.
Late-time asymptotic:

a(t) ∝ t2/3

(
1 +

2

3Mt
sin M(t − t1)

)
, R ≈ −8M

3t
sin M(t−t1)

< R2 >=
32M2

9t2
, 8πGρs,eff =

3 < R2 >

8M2
=

4

3t2
∝ a−3



Scalaron decay and creation of matter

Transition to the FLRWRD stage: occurs through the same
mechanism which has been used for generation of
perturbations: creation of particle-antiparticle pairs of all
quantum matter fields by fast oscillations of R . Technically:
one-loop quantum corrections from all matter quantum fields
have to be added to the action of the R + R2 gravity. In the
particle interpretation: scalaron decays into particles and
particles with the energy E = M/2.

Thus, the viable f (R) inflationary model is (weakly) non-local
already!



The most effective decay channel: into minimally coupled
scalars with m � M . Then the formula obtained in Ya. B.
Zeldovich and A. A. Starobinsky, JETP Lett. 26, 252 (1977)
can be used:

1√
−g

d

dt
(
√
−gns) =

R2

576π

The corresponding (partial) decay rate is
Γ = GM3

24
∼ 1024 s−1, that leads to the maximal temperature

T ≈ 3× 109 GeV at the beginning of the FLRWRD stage and
to N ≈ 53 for the reference scale in the CMB measurements
(k/a(t0) = 0.05 Mpc−1), see D. S. Gorbunov, A. G. Panin,
Phys. Lett. B 700, 157 (2011) and F. Bezrukov, D. Gorbunov,
Phys. Lett. B 713, 365 (2012) for more details.



Generality of inflation

Theorem. In these models, there exists an open set of classical
solutions with a non-zero measure in the space of initial
conditions at curvatures much exceeding those during inflation
which have a metastable inflationary stage with a given
number of e-folds.

For the GR inflationary model this follows from the generic
late-time asymptotic solution for GR with a cosmological
constant found in A. A. Starobinsky, JETP Lett. 37, 55
(1983). For the R + R2 model, this was proved in
A. A. Starobinsky and H.-J. Schmidt, Class. Quant. 4, 695
(1987).



Generic late-time asymptote of classical solutions of GR with a
cosmological constant Λ both without and with hydrodynamic
matter (also called the Fefferman-Graham expansion):

ds2 = dt2 − γikdx idxk

γik = e2H0taik + bik + e−H0tcik + ...

where H2
0 = Λ/3 and the matrices aik , bik , cik are functions of

spatial coordinates. aik contains two independent physical
functions (after 3 spatial rotations and 1 shift in time +
spatial dilatation) and can be made unimodular, in particular.
bik is unambiguously defined through the 3-D Ricci tensor
constructed from aik . cik contains a number of arbitrary
physical functions (two - in the vacuum case, or with
radiation).



Generic initial conditions near a curvature singularity in these
models: anisotropic and inhomogeneous (though
quasi-homogeneous locally).
1. Modified gravity models (the R + R2 and Higgs ones).
Structure of the singularity at t → 0:

ds2 = dt2−
3∑

i=1

|t|2pi a
(i)
l a(i)

m dx ldxm, 0 < s < 3/2, u = s(2−s)

where s =
∑

i pi , u =
∑

i p
2
i and a

(i)
l , pi are functions of r.

Here R ∝ |t|1−s →∞ (for 1 < s < 3/2, otherwise it
approaches a constant) and R2 � RαβRαβ. No infinite
number of BKL oscillations.
2. GR model with a very flat potential.
A similar behaviour but with s = 1, u < 1 and with negligible
potential.



In both cases, spatial gradients may become important for
some period before the beginning of inflation.

Thus, the appearance of an inflating patch does not require
that all parts of this patch should be causally connected at the
beginning of inflation. What is needed instead in classical
(modified) gravity, is:
1) the existence of a sufficiently large compact expanding
(K > 0) region of space with the Riemann curvature much
exceeding that during the end of inflation (∼ M2) ;
2) the average value < R > over this region positive and
much exceeding ∼ M2, too;
3) the average spatial curvature over the region is either
negative, or not too positive.

On the other hand, causal connection is certainly needed to
have a ”graceful exit” from inflation, i.e. to have practically
the same amount of the total number of e-folds during
inflation Ntot in some sub-domain of this inflating patch.



Weakly non-local UV-complete gravity models

R + R2 gravity interacting with quantum matter fields is
renormalizable in the scalar sector and can be even
asymptotically free. However, in the tensor sector a ghost
appears due to the squared Weyl term.

To avoid it, a subclass of weakly non-local (quasi-polynomial)
UV-complete quadratic in curvature generalizations of gravity
is considered which do not have ghosts and are
super-renormalizable (or even finite). Their action is:

S =

∫
d4x
√
−g
[M2

P

2
R + RF(�)R + CµνρσFC(�)Cµνρσ

]
where zF (z) and zFC(z) are exponentials of entire functions

up to constants.



R2 inflation as a particular solution of non-local

gravity

A. S. Koshelev, L. Modesto, L. Rachwal and
A. A. Starobinsky, Occurrence of exact R2 inflation in
non-local UV-complete gravity, arXiv:1604.03127

For the R + R2 model, �R = M2R . Thus, its solutions are
also particular solutions of this non-local gravity if, in symbolic
notation,

F(M2) =
M2

P

12M2
, F ′(M2) = 0

Spectrum of scalar perturbations: the same is in the local
R +R2 model. For proving it, the fact that these perturbations
are conformally flat (Φ + Ψ = 0) at the inflationary stage in
the leading slow-roll approximation plays a crucial role.



Tensor perturbations are different. The absence of the tensor
ghost requires:

1 +
12M2

M2
P

(
�̄− R̄

3

)
FC

(
�̄ +

R̄

3

)
= exp(2ω(�̄))

where ω(z) is some entire function and the bar means a
background solution. As a result:

r =
12

N2
exp

(
2ω

(
R̄

6

))



Conclusions
I First quantitative observational evidence for small

quantities of the first order in the slow-roll parameters:
ns(k)− 1 and r(k).

I The typical inflationary predictions that |ns − 1| is small
and of the order of N−1

H , and that r does not exceed
∼ 8(1− ns) are confirmed. Typical consequences
following without assuming additional small parameters:
H55 ∼ 1014 GeV, minfl ∼ 1013 GeV.

I Though the Einstein gravity plus a minimally coupled
inflaton remains sufficient for description of inflation with
existing observational data, modified (in particular,
scalar-tensor or f (R)) gravity can do it as well.

I From the scalar power spectrum Pζ(k), it is possible to
reconstruct an inflationary model both in the Einstein and
f (R) gravity up to one arbitrary physical constant of
integration.



I In the f (R) gravity, the simplest R + R2 model is
one-parametric and has the preferred values ns − 1 = − 2

N

and r = 12
N2 = 3(ns − 1)2. The first value produces the

best fit to present observational CMB data.

I Even without using the observed value of ns − 1, the
assumptions of the absence of any new physical scale
both during inflation and after it and of the model
applicability up to the zero values of space-time curvature
distinguish the case Pζ(k) ∝ ln2(kf /k) and R + R2 model
unambiguously.

I Thus, it has sense to search for primordial GW from
inflation at the level r > 10−3!



I Inflation is generic in the R + R2 inflationary model and
close ones. Thus, its beginning does not require causal
connection of all parts of an inflating patch of space-time
(similar to spacelike singularities). However, graceful exit
from inflation requires approximately the same number of
e-folds during it for a sufficiently large compact set of
geodesics. To achieve this, causal connection inside this
set is necessary (though still may appear insufficient).

I Solutions of the R + R2 inflationary model can also be
particular solutions of some non-local UV-complete
modifications of gravity without ghosts.
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