Edited: unpublished material removed

Planetary Lander Cameras & Rosetta@67P

Stefan Schröder

Takayama Summer School

25 Aug 2016

Planetary lander cameras

Martin Tomasko

ROLIS on Philae

Stefano Mottola

Camera on MASCOT

Ralf Jaumann

Landed on Saturn's moon Titan Landed on comet 67P

Will land on Ryugu!?

DISR: Cassini / Huygens

Saturn's largest moon Titan

Radius: 2575 km Density: 1.88 g cm⁻³ Surface temperature: 94 K Atmosphere: 95% N₂, 5% CH₄, Ar, H₂, C₂H₆, C₂H₂, NH₃, ...

	Earth		Titan
km		km	160 K
50	280 K	500	Nitrogen Methane Argon
40	Nitrogen Oxygen Argon	400	7 11 5 011
30	240 K	300	
	Ozone		Photochemical smog
20		200	160 K
	210 K		Particulate rain
10		100	120 K
	290 K Water		72 KMethane94 K

Owen (2005)

938 nm (methane window)

420, 889, 938 nm (haze, methane band, methane window)

Descent Imager / Spectral Radiometer

Descent Imager/Spectral Radiometer

DISR top view

ISR		Sola	r Aureole:4 @ 6x50 pixels	1	ŋ
	High-Resolution	Side-Looking	Medium-Resolution		П
	Imager	Imager	Imager		Π
	160 x 254 pixels 0.06° (1 mrad)/pixel azimuth range: 9.6° elevation range: 15.0° covering angles 6.5° to 21.5° from nadir	128 x 254 pixels 0.20° (3.5 mrad)/pixel azimuth range: 25.6° elevation range: 50.8° covering angles 45.2° to 96° from nadir	176 x 254 pixels 0.12° (2 mrad)/pixel azimuth range: 21.1° elevation range: 30.5° covering angles 15.75° to 46.25° from nadir		
MRI					
HRI	Upward-Looking Visible Spectrometer: $8x200$ pixels J				

Pre-launch imaging tests

Rooftop test

"Triplet" (Mercator projection)

Helicopter test

On board raw image (reconstructed)

Divided by corrected flat field 2007 calibration

2016 calibration

Mosaic construction: Major challenges

- Low bandwidth required high image compression
- Illumination was weak
- Titan's surface is dark and of low contrast
- Each image triplet has 6 free parameters: longitude, latitude, pitch, roll, yaw (altitude is known)
- Image brightness and contrast changed with altitude and viewing direction
- Half the images were lost (partial triplets)
- Rotation was reverse to that expected
- Sun sensor failed to lock most of the time

Reconstructions

Erich Karkoschka, LPL

Karkoschka mosaic

DLVS/DLIS surface coverage

Schröder & Keller (2009)

Keller et al. (2008)

Color maps

Landing site

All Downward Looking Visible Spectrometer footprints (20-1 km altitude)

Karkoschka & Schröder (2016)

935 nm methane window

True color and contrast under Titan illumination

Surface reflectance spectrum

Titan surface reflectance spectrum reconstructed by *Tomasko et al. (2005), Schröder & Keller (2008)* and *Karkoschka et al. (2012)*

Spectrum is well modeled by a layer of water ice grains overlaid by a moist layer of weakly compacted photochemical aggregated aerosols (*Rannou et al. 2015*)

Tholins (Bernard et al. 2006)

Surface images: Dew drop

Dew drop diameter (mm)

501d anodized exterior

Length 10.8 cm

Height 13.4 cm

Width 8.1 cm

Aperture

Color LEDs

Stray light baffle

Sensor	Star1000 CMOS
Size	$1024\!\times1024$ pixels
Square FOV	55°
Focal length	14.8 mm
F#	16
Pixel pitch	15 µm
Spectral range	panchromatic (0.4-1.0 μm)
LED (4×36)	Blue (470 nm) Green (530 nm) Red (640 nm) NIR (870 nm)

Ryugu shape model (Kawakami)

CMOS non-linearity

Jaumann et al. (2016)

LED illumination

Jaumann et al. (2016)

MASCOT LEDs

RGB, corrected for color "flat fields"

el,

ROLIS camera

bensor	TH7888A CCD
Size	1024 × 1024 pixels
Square FOV	57.7°
Focal length (without IFL)	13.0 mm
F#	5
Pixel pitch	14 µm
Spectral range	panchromatic (0.4-1.0 μm)
.ED (4×36)	Blue (470 nm) Green (530 nm) Red (640 nm) NIR (870 nm)

1

Philae's landing site

First ROLIS image

ROLIS descent image #1

5 m

"Wind" tails

Mottola et al. (2015)

ROLIS descent image #7

Probably "airfall" particles (*Thomas et al. 2015*)

Surface is granular at the resolution of 0.95 cm/pixel

Mottola et al. (2015)

Surroundings (CIVA)

Surroundings (CIVA)

Bibring et al. (2015)

Seasons

Organic composition

OSIRIS camera (Fornasier et al. 2015)

VIRTIS spectrometer (Capaccioni et al. 2015)

Fig. 3. The spectrum of the head shown in Fig. 1 is compared (in the spectral range 0.5 to 2.5 μ m) to the spectra of several other compounds described in the text. Enstatite, pyrrothite, and troilite spectra are scaled down by 100, 75, and 50%, respectively. The Murchison IOM is from (16), enstatite spectrum from (29), troilite and carbon black spectra from (30), and pyrrothite spectrum from (31).

Water ice

High reflectivity of these bright patches indicates an areal mixture; intimate mixtures darken very rapidly (*Clark 1981*): evidence for heterogeneity

Pommerol et al. (2016)

Where does our water come from?

Diamonds represent data obtained by means of in situ mass spectrometry measurements, and circles refer to data obtained with astronomical methods. 67P value is from Rosetta's ROSINA mass spectrometer (*Altwegg et al. 2015*).

Activity & jets

At the beginning of the mission it was necessary to stretch the images to see the activity...

The entire comet surface is active (Keller et al. 2015)

Particles

Fulle et al. (2015)

COSIMA (Langevin et al. 2016)

Larger particles (> 100 μ m) mostly originate from the disruption of large aggregates (> 1mm)

The End

Rosetta landing: 30 September 2016

