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Obliquity Variations of  
Stars and Planets

𝛘p

The star/planet’s obliquity (𝛘*/𝛘p) is the angle between the 
spin axis of the star/planet and the orbit of star/planet.

𝛘*



Outline

• Stellar obliquity variations in extra solar planetary 
systems

• Due to hierarchical three-body dynamics

• Tidal re-alignment of the stellar obliquity

• Planetary obliquity variation



3374 confirmed planets
as of Aug. 18, 2016



Hot Jupiters



ROSSITER-MCLAUGHLIN METHOD  
(SPIN-ORBIT MISALIGNMENT)

e.g., Ohta et al. 2005, Winn 2006

Stellar-spin planetary orbit aligned case: 



ROSSITER-MCLAUGHLIN METHOD  
(SPIN-ORBIT MISALIGNMENT)

Asymmetric
=> misalignment

e.g., Ohta et al. 2005, Winn 2006



HD 209458 (Ohta et al. 2005)

ROSSITER-MCLAUGHLIN METHOD  
(SPIN-ORBIT MISALIGNMENT)

First stellar spin-planetary 
orbit misalignment 
measurement using MR 
effect.
λ~ -24.7 to 21.7 degree



OBSERVED SPIN-ORBIT MISALIGNMENT

RetrogradePrograde



CHALLENGES CLASSICAL PLANETARY 
FORMATION THEORIES

Classical planetary 
formation theory: 
Star and planets form 
in a molecular cloud, 
and share the same 
direction of rotation.



CHALLENGES CLASSICAL PLANETARY 
FORMATION THEORIES

Classical planetary 
formation theory: 
Star and planets form 
in a molecular cloud, 
and share the same 
direction of rotation.

Unexpected to have spin-orbit misalignment!



ORIGIN OF SPIN-ORBIT MISALIGNMENT

Star tilts through magnetic interaction
 
or stellar oscillation effects 

Smooth Migration: planets move close due to interaction with  
proto-planetary disk.

Disk tilts through inhomogeneous collapse of the 
molecular cloud 

or the torque from nearby stars.

 (Lai et al. 2011)

(Rogers et al. 2012, 2013)

(Bate et al. 2010; Thies et al. 2011; Fielding et al. 2015)

(Tremaine 1989; Batygin 2012; Xiang-Gruess & Papaloizou 2013)



ORIGIN OF SPIN-ORBIT MISALIGNMENT

Violent Migration (Dynamical Origin): planets move 
close due to interactions with companion stars/planets. 

Planetary orbit tilts under planet-
planet scattering 

or long-term secular dynamical effects 
between planets or stellar companion.

(e.g., Chatterjee et al. 2008, Petrovich 2014)

(e.g., Fabrycky and Tremaine 2007; Nagasawa et al. 2008; Naoz et al. 
2011, 2012; Wu and Lithwick 2011; Li et al. 2014; Valsecchi and Rasio 
2014)



ORIGIN OF SPIN-ORBIT MISALIGNMENT

• Violent Migration (Dynamical Origin): planets move 
close due to interactions with companion stars/planets. 

• Smooth Migration: planets move close due to interaction with  
proto-planetary disk.

v.s.

Next: 
Range of stellar obliquity achieved in violent migration 
(dynamics of hierarchical three-body interactions)



CONFIGURATION OF HIERARCHICAL 3-BODY SYSTEM 

m1

mJ

m2

Hierarchical: a1<<a2 (                  hierarchical parameter)

H = F
quad

(J, Jz,!) + ✏F
oct

(J, Jz,!,⌦)
text

✏ = a1
a2

e2

1�e

2
2

1



 
 Inner wires (1): formed by m1 

and mJ. 
 Outer wires (2): m2 orbits the 

center mass of m1 and mJ.
  J1/2: Specific orbital angular 

momentum of inner/outer wire.
 i: inclination between the two 

orbits.

CONFIGURATION OF HIERARCHICAL 3-BODY SYSTEM 

System is stationary and can be thought of as interaction 
between two orbital wires (secular approximation):

m1

mJ

m2

J2

J1

i



• Octupole level O((a1/a2)3) is zero.

• Quadrupole level O((a1/a2)2):

Kozai-Lidov Mechanism 
(e2 = 0, mJ →0) 

(Kozai 1962; Lidov 1962: 
Solar system objects)

Example of Kozai-Lidov Mechanism.
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i=>                                  conserved 
(axi-symmetric potential).

=> when i>40o, e1 and i oscillate with 
large amplitude.
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where Hquad = �Fquad and Hoct = �Fquad � ✏Foct, and
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. (3)

✏ characterizes the importance of the octupole order. The Hamiltonian is scaled with
mt
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(Lithwick and Naoz, 2011). J =
p

1� e21 is the angular momentum of the inner
orbit, ! is the argument of periapsis of the inner orbit, Jz =

p
1� e21 cos i1 is the

ẑ component of the inner orbit’s angular momentum J , and ⌦ is the longitude of
the ascending node of the inner orbit. Specifically, J , ! and Jz, ⌦ are conjugate
momentum and coordinate pairs. We denote e1 as the eccentricity of the inner orbit,
and i1 as the inclination of the inner orbit to the total angular momentum of the
system. In the test particle limit, i1 = i is the mutual inclination between the two
orbits.

In the quadrupole limit, the Hamiltonian is independent of ⌦, so Jz is constant,
and the system is integrable. In addition, the angle ! = $ � ⌦ is the resonant
angle of the system, where $ is the longitude of the periapsis. When i > 39.2�, the
solution admits a resonant region and e1 and i exhibit large amplitude oscillations.
Particularly, e1 may be excited to high values starting from e1 ⇠ 0 (e.g. Morbidelli,
2002).

As mentioned in the introduction, the octupole order adds variations in Jz which
allows the inner orbit to flip from prograde to retrograde, and the eccentricity to
be excited very close to 1 (Lithwick and Naoz, 2011; Katz et al., 2011; Naoz et al.,
2012, 2013). We work with the Hamiltonian at the octupole level of approximation
to analyze the surface of section and the chaotic behaviors in the next sections.

5

KOZAI-LIDOV MECHANISM 

Cannot produce retrograde hot 

Jupiters



e2 ≠ 0 (Eccentric Kozai-Lidov 
Mechanism) or mJ ≠ 0:
(e.g., Naoz et al. 2011, 2013, test particle case: 
Katz et al. 2011, Lithwick & Naoz 2011 ):

Cyan: quadrupole only. 
Red: quadrupole + octupole. Naoz et al 2013

Jz1

Jz2

i

1 -
 e

1

• Jz NOT constant, 
octupole ≠ 0.

• when i>40o: e1 →1.
• when i>40o: i crosses 90o

OCTUPOLE KOZAI-LIDOV MECHANISM 

Produce retrograde hot Jupiters



COPLANAR FLIP

• Starting with i ≈ 0, 
e1≥0.6, e2 ≠ 0:

(Li et al. 2014a)

=> Produces counter 
orbiting hot Jupiters. 

=> Enhance tidal disruption 
rates (Li et al. 2015).

e1→1, i flips by ≈180o 

(Li et al. 2014a).



DIFFERENCES BETWEEN HIGH/LOW I FLIP
• Low inclination flip

• For simplicity: 
take mj →0 => outer orbit 
stationary.

• z direction: angular 
momentum of the outer 
orbit.

• ⬆: direction of J1.

• ⬆: Jz1 => indicates flip.

• Colored ring: inner orbit. 
Color: mean anomaly.

Li et al. 2014a



DIFFERENCES BETWEEN HIGH/LOW I FLIP
• High inclination flip

• For simplicity: 
take mj →0 => outer orbit 
stationary.

• z direction: angular 
momentum of the outer 
orbit.

• ⬆: direction of J1.

• ⬆: Jz1 => indicates flip.

• Colored ring: inner orbit. 
Color: mean anomaly.

Li et al. 2014a



CO-PLANAR FLIP CRITERION

• Hamiltonian (at O(i)):
• Evolution of e1 only due to octupole terms:

=> e1 does not oscillate before flip

• Depend on only J1 and ϖ1=ω1+Ω1 
=> System is integrable.
 => e1(t) can be solved. 

  => The flip timescale can be derived.
=> The flip criterion can be derived.

Li et al. 2014a



ANALYTICAL RESULTS V.S. NUMERICAL 
RESULTS 

• The flip criterion and the flip timescale from secular 
integration are consistent with the analytical results.

IC:  i=5o.

Li et al. 2014a



FORMATION OF MISALIGNED HOT JUPITERS (KL 
+ TIDE)

Orbital Flip

e1→
1, A

llo
ws 

Tida
l D

iss
ipati
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FORMATION OF COUNTER ORBITING HOT 
JUPITERS (KL + TIDE)

e1 ! 1 during the flip
=>  rp↓, tide dominates. => e1!0, a1↓, i, ψ ≈ 180o.

Li et al. 2014a



DIFFICULTY IN THE FORMATION OF COUNTER-
ORBITING HOT JUPITERS

Numerical simulations including short range forces.
Most systems are tidally disrupted and a small fraction turn out to be prograde. 
The formation of counter-orbiting HJs in a very restricted parameter region.

Xue & Suto 2016



Population synthesis 
study of interaction 
of two giant planets.

Petrovich 2015

FORMATION OF MISALIGNED HOT JUPITERS 
(KL + TIDE) BY POPULATION SYNTHESIS

 => a different 
mechanism is needed
(Petrovich 2015)



FORMATION OF MISALIGNED HOT JUPITERS 
(KL + STELLAR OBLATENESS + TIDE)

Mp < 3 MJ 
=> bimodal

Mp ～ 5MJ

=> low 
misalignment 
(solar-type stars)
=> higher 
misalignment 
(more massive 
stars)

Anderson et al. 2016



Stellar Obliquity v.s. Stellar 
Temperature

Winn & Fabrycky 2016

Sky-projected stellar obliquity as a function of stellar effective temperature 
for hot Jupiters. Obliquity small when T<6100K. (Winn et al. 2010)



Spin-Orbit Alignment
• Tides from close-in planet

• preference for cool stars with thick convective envelope

• Internal gravity waves in radiative zone tilt the star spin 
axis only for hot stars

• Ingestion from close-in planet

• Star/disk magnetic torques 

(e.g., Winn et al. 2010, Lai 2012,Dawson 2014, Xue et al. 2014)

(Spalding & Batygin 2015)

(Matsakos & Konigl 2015)

(Rogers et al. 2012)



Tidal Realignment? 
—Challenges

tdecay ~ talign => Cannot align stellar spin before orbital decay 
(Winn et al. 2010)

Tidal coupling and alignment of a thin shell of the star (Winn 
et al. 2010 & Dawson 2014). 

Inertial wave of the (1, 0) component allows tdecay > talign (Lai 
2012) 

=> PROBLEM: Retrograde configurations are driven to 90 or 
180 degrees instead of 0 degrees (Rogers & Lin 2013).



Tidal Realignment

Including both inertial 
wave dissipation and 
equilibrium tides, 
obliquity can be aligned 
from a retrograde 
configuration before 
engulfment (Xue et al. 
2014). 

Xue et al. 2014



Tidal Realignment

Spin axis can be aligned before engulfment for high spin rate and 
low Q value for the (1, 0) component of inertial wave dissipation.

Li & Winn 2016



Probe of  Spin-Orbit Misalignment 
— Photometric Variability

Photometric Variability due to rotating starspots depends on line of 
sight inclination (i★) of the stellar spin axis.

Rvar ∝sin(i★)

(Method introduced by Mazeh et al. 2015)

flux

time

P
rot

sin(i★) = 1

time

flux

P
rot

sin(i★) = 0.5



Probe of  Spin-Orbit Misalignment 
— Photometric Variability

Photometric Variability depends on line of sight inclination (i★) of 
the stellar spin axis.

For stellar host of KOIs, the planetary orbit direction perpendicular 
to the line of sight.

Rvar ∝sin(i★)

ψ

👀

cos(i★) = sin(ψ)cos(ɸ)

Rvar↑ => ψ ↓

(Method introduced by Mazeh et al. 2015)



Cool KOI v.s. Hot KOI

Photometric 
variability indicates 
that cool stars tend 
to be aligned.

Consistent with 
results by Rossiter-
McLaughlin 
effects.

ph
ot

om
et

ric
 v

ar
ia

bi
lit

y

stellar effective temperature [K]

Mazeh et al. 2015

(Mazeh et al. 2015)

(Schlaufman 2010; Winn et al. 2010; 
Albrecht et al. 2012.)



Re-examine Period Dependence
p = 6.03×10 -5

Li & Winn, 2015

There is a 
statistically 
significant linear 
relationship 
between Rvar & 
Porb.

Kendall’s 𝛕 
p-value = 
0.002

Spearman’s ϱ 
p-value = 
0.002



Period Dependence 
— Step function vs. Linear relation

Step function motivated by tidal model:
Tidal effects depends sensitively on orbital separation (ttide∝P10/3)

4 G. Li and J. Winn

Table 2
Binning results

bin
1

bin
2

bin
3

bin
4

period range (days) < 3.58 3.58-8.19 8.19-19.62 > 19.62
KS p-value w. non-KOIs 0.0042 3.7⇥ 10�5 0.037 0.89
KS p-value w. bin

1

0.76 0.52 0.20
WRS p-value w/ non-KOIs 0.00022 3.8⇥ 10�5 0.011 0.40
WRS p-value w. bin

1

0.83 0.33 0.036
median 3.90± 0.02 3.93± 0.02 3.87± 0.02 3.83± 0.02

bin
1

bin
2

bin
3

bin
4

bin
5

bin
6

period range (days) < 2.46 2.46-4.77 4.77-8.11 8.11-14.41 14.41-34.44 > 34.44
KS p-value w/ non-KOIs 0.0025 0.016 0.0035 0.12 0.016 0.91
KS p-value w. bin

1

0.72 0.50 0.33 0.39 0.026
WRS p-value w/ non-KOIs 0.00057 0.0019 0.0022 0.0510 0.0179 0.74
WRS p-value w. bin

1

0.63 0.59 0.21 0.32 0.0056
median 3.93± 0.02 3.90± 0.02 3.93± 0.03 3.85± 0.02 3.91± 0.02 3.78± 0.02

Table 3
Binning results using fitted distribution as shown in Figure 3.

bin
1

bin
2

bin
3

bin
4

period range (days) < 3.54 3.54-9.31 9.31-24.46 > 24.46
KS p-value w. non-KOIs 0.0044 2.4⇥ 10�5 0.032 0.8
KS p-value w. bin

1

0.82 0.43 0.16
WRS p-value w/ non-KOIs 0.00021 9.4⇥ 10�6 0.015 0.73
WRS p-value w. bin

1

0.85 0.31 0.017
median 3.90± 0.02 3.92± 0.02 3.88± 0.02 3.80± 0.02

bin
1

bin
2

bin
3

bin
4

bin
5

bin
6

period range (days) < 2.31 2.31-5.04 5.04-9.30 9.30-17.16 17.16-36.76 > 36.76
KS p-value w. non-KOIs 0.0014 0.0099 0.0066 0.22 0.030 0.93
KS p-value w. bin

1

0.73 0.69 0.083 0.40 0.0096
WRS p-value w/ non-KOIs 0.0002 0.0014 0.0035 0.12 0.014 0.74
WRS p-value w. bin

1

0.41 0.33 0.062 0.39 0.0032
median 3.95± 0.02 3.90± 0.02 3.89± 0.02 3.85± 0.02 3.92± 0.03 3.77± 0.02

(WRS) p-values, which di↵ers from the KS test by specif-
ically investigating whether one sample tends to have
larger values than the other, rather than whether the
cumulative distributions are di↵erent in any way. The
results (also given in Tables 2 and 3) are consistent with
the KS tests.
Mazeh et al. (2015) did not perform the preceding

tests. Instead, they divided the KOIs into two bins (1�5
days and 5� 50 days), and calculated the relevant KS p-
values. We replicate these tests. In comparing the KOIs
with the non-KOIs, we find p = 0.0012 for the short-
period bin and and 1.3 ⇥ 10�4 for the long period bin.
In comparing the short-period and long-period KOIs, we
find p = 0.22. Thus, we confirm that the two-bin results
of Mazeh et al. (2015) do not identify any significant pe-
riod dependence. We have uncovered such a dependence
by using more narrowly divided samples in period, and
by performing correlation tests on the entire sample.

2.1.3. Linear Relation vs. Step Function

In principle, the particular form of the period-
dependence of the photometric variability (whether lin-
ear, nonlinear, or some other functional form) might be a
revealing clue about the mechanism for spin-orbit align-
ment and misalignment. For instance, tidal dissipation
rates are expected to be very strong functions of the star-
planet distance, and might therefore produce a sharp
drop-o↵ in photometric variability as a function of pe-
riod. Here, we examine whether the period-dependence

of the photometric variability is better fitted by a linear
relation, or by a step function (representing an abrupt
decrease of photometric variability at a certain orbital
period).
To test the applicability of the step function, we per-

form a linear regression of the photometric variability
data with the function

logR
var

= �
0

+ �
1

I<P
orb,c(Porb

) + ✏ (3)

where the indicator function I<P
orb,c(Porb

) is defined as

I<P
orb,c(Porb

) =

⇢
1, if P

orb

< P
orb,c

0, otherwise.
(4)

The p-value for �
1

is plotted in the upper panel of Fig-
ure 4, as a function of the critical period P

orb,c. The
p-value is less than 0.05 everywhere outside of the rela-
tively narrow range P

orb,c = 2-5 days.
To compare the linear model (with respect to logP

orb

)
with the step-function model, we perform a multiple lin-
ear regression,

logR
var

= �0
0

+ �0
1

I<P
orb,c(Porb

) + �0
2

logP
orb

+ ✏. (5)

The p-values for �0
1

and �0
2

are shown in Figure 4, as a
function of the critical period. Whenever the p-value of
�0
2

is less than about 0.05, the test suggests there is a sta-
tistically significant linear relation between logR

var

and
logP

orb

even after taking into account any step-function
dependence. On the other hand, when the p-value of �0

1Linear relation fits 

better than step 

function
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Li & Winn, 2015

p<0.05
significant 

dependence



Are Tidal Effects Responsible For 
Spin-Orbit Alignment?

The statistically significant correlation between the 
photometric variability (Rvar) and the orbital period of 
cool KOIs (Porb) qualitatively agrees with tidal re-
alignment.

Linear fit posts challenges on the tidal model.

Other mechanisms need to be involved to produce the 
overall period dependence.



ON THE OBLIQUITY OF 
PLANETS



Planet’s Obliquity

The Earth’s obliquity (𝛘) is the angle between the spin axis of 
the Earth and the orbit of Earth.

𝛘
Spin

Orbit



Connection to Climate
• Obliquity variation is very important for the climate of a 

planet (e.g., Armstrong et al. 2014).

• obliquity changes affect the latitudinal distribution of stellar 
radiation.



Obliquity Variation of  Earth
• Obliquity varies from 

22.1-24.5o

• Period ~ 41000yrs

• Milankovitch Cycles: 
changes in Earth’s orbital 
and orientation 
parameters affect the 
climate (e.g., Imbrie 1982)

• Dated evidence:
• oxygen isotopic ratio 

in calcite shells or ice 
cores.

wikipedia



• Chaotic from 0-60o

• Mars obliquity variation 
may cause the collapse of 
atmosphere (Toon et al. 
1980, Nakamura & Tajika 2003, 
Soto et al. 2012)

• Atmosphere precipitation 
origin of glacierlike 
landforms at obliquity of 
45o ~Myr ago (Forget et al. 
2006).

Obliquity Variation of  Mars

NASA



Obliquity Variation of a Moonless Earth



Puzzle of  the Obliquity of  a 
Moonless Earth

•  Without the Moon, the Earth’s obliquity is Chaotic between 
0o to ~85o  (Laskar et al. 1993) . 

Results from  frequency 
analysis

ɛ > 54°, climatic zonation would 
be reversed, low to equatorial 
latitudes would be glaciated 

(Williams 1993) 



Puzzle of  the Obliquity of  a 
Moonless Earth

•  Without the Moon, the Earth’s obliquity is Chaotic between 0o 
to ~85o (Laskar et al. 1993) . 

No 
Moon

Obliquity variation 
large at ～20 degree  
without the Moon

Chaotic from 0 to 85 
degree

Laskar et al., 1993



Puzzle of  the Obliquity of  a 
Moonless Earth

•  Without the Moon, the Earth’s obliquity is Chaotic between 0o 
to ~85o (Laskar et al. 1993) . 

With 
Moon

No 
Moon

Laskar et al., 1993



Puzzle of  the Obliquity of  a 
Moonless Earth

•  Without the Moon, the Earth’s obliquity is Chaotic between 0o 
to ~85o (Laskar et al. 1993) . 

No 
Moon

With 
Moon

Moon important!

Laskar et al., 1993



Puzzle of  the Obliquity of  a 
Moonless Earth

• Recently, N-body simulations show that over ~4Billion years, 
obliquity constrained between 0-~45o (Lissauer et al. 2012). 



Puzzle of  the Obliquity of  a 
Moonless Earth

• Recently, N-body simulations show that over ~4Billion years, 
obliquity constrained between 0-~45o (Lissauer et al. 2012). 

Question: How important is the Moon?

=> timescale to cross bridge



• The Sun torques the Earth’s quadrupole moment:

Physical Picture



• The Sun torques the Earth’s quadrupole moment:

Physical Picture
2 G. Li and K. Batygin

we begin by considering a simplified description of the
system.
Without the Moon, the Earth’s obliquity is found to

be chaotic in the range 0 � 85o , where there are two
large chaotic regions: 0o � 45o & 65o � 85o. There also
exists a moderately chaotic bridge that connects the two
regions: 45o � 65o (Laskar et al. 1993; Morbidelli 2002).
The dynamical analysis is simpler in the large chaotic
regions. Thus, we treat them first.

2.1. Large chaotic regions: 0o � 45o & 65o � 85o

The Hamiltonian describing the evolution of plane-
tary obliquity is well documented in the literature (e.g.
Colombo (1966); Laskar & Robutel (1993); Touma &
Wisdom (1993); Neron de Surgy & Laskar (1997)):

H(�, , t)=
1

2
↵�2 +

p
1� �2 (1)

⇥ (A(t) sin +B(t) cos )),

where  is the longitude of the spin-axis, � = cos ", "
is the obliquity, and ↵ is an approximately constant pa-
rameter. Specifically,

↵=
3G

2!

h m�

(a�
q

1� e2�)
3

(2)

+
m

M

(a
M

p
1� e2

M

)3
(1� 3

2
sin2 i

M

)
i
E

d

,

where m� is the mass of the Sun, a� and e� are the semi
major axis and the eccentricity of the Earth’s orbit, m

M

is the mass of the moon, a
M

, e
M

and i
M

are the semi
major axis, eccentricity and inclination of the Moon’s
orbit around the Earth, E

d

is the dynamical ellipticity
of Earth, and ! is the spin of the Earth. ↵ character-
izes the intrinsic precession of the Earth’s spin axis, and
is obtained by averaging the torques from the Sun and
Moon over their respective orbits. For a moonless Earth,
↵ = 0.0001yr�1 (Neron de Surgy & Laskar 1997). In
addition,

A(t) = 2(q̇ + p(qṗ� pq̇))/
p

1� p2 � q2, (3)

B(t) = 2(ṗ� q(qṗ� pq̇))/
p

1� p2 � q2, (4)

where p = sin i/2 sin⌦ and q = sin i/2 cos⌦, i is the
inclination of the Earth with respect to the fixed ecliptic
and ⌦ is the longitude of the node.
The inclination and the longitude of node of the Earth

change as the other planets in the solar system perturb
the Earth’s orbit. The evolution of i and ⌦ can be ob-
tained by direct numerical integration or in the low-e,i
regime via perturbative methods such as the Lagrange-
Laplace secular theory. Specifically, within the context
of the latter, a periodic solution represented by a super-
position of linear modes can be obtained.

i cos⌦ =
X

i
k

cos (s
k

t+ �
k

), (5)

i sin⌦ =
X

i
k

sin (s
k

t+ �
k

). (6)

The amplitudes and the frequencies of the modes
have been computed in classic works (Le Verrier 1855;

Brouwer & van Woerkom 1950). We use the latest up-
date of these values from Laskar (1990).
In adopting equations (5) and (6) as a description of

the Earths inclination dynamics, we force the disturbing
function in Hamiltonian (1) to be strictly periodic. In
fact, it is well known that the orbital evolution of the
terrestrial planets is chaotic with a characteristic Lya-
punov time of ⇠ 5Myr (Laskar 1989; Sussman & Wisdom
1992). Consequently, our model does not account for the
stochastic forcing of the obliquity by the di↵usion of the
Earths inclination vector (see Laskar et al. 1993). Such a
simplification is only appropriate for systems where the
intrinsic Chirikov di↵usion is faster than that associated
with the disturbing function. As will be shown below,
the assumption holds for the system at hand.
As already mentioned above, in absence of the Moon,

rapid chaos spans two well-separated regions, which are
joined by a weakly chaotic bridge (Laskar et al. 1993).
In each of the highly chaotic regions, irregularity arises
from overlap of a distinct pair of secular resonances (see
Chirikov (1979)). As shown in Figure (1), the overlap
of s1 and s2 causes the chaotic region in " ⇠ 65o � 85o

(“C2”) and the overlap of s3 and s4 causes the chaotic
region in " ⇠ 0o � 45o (“C1”). Including only the terms
associated with these four frequencies in Hamiltonian (1),
the chaotic region of " ⇠ 0o�85o can be well reproduced
(Morbidelli 2002). Accordingly in the following analysis,
we retain only the four essential modes to analyze the
two chaotic regions and the “bridge” that connects them
sequentially.
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Figure 1. The minimum/mean/maximum of the obliquity
reached in 18Myr as a function of the initial obliquity. The
grey lines represent the results including all the frequencies, the
black lines represent the results including s1, s2, s3 and s4, the
red lines represent the results including s1 and s2, and the blue
lines represent the results including s3 and s4. The four frequen-
cies reproduces the results including all the frequencies. Between
"0 ⇠ 65o � 85o and ⇠ 0o � 45o, the chaotic behavior of obliquity is
caused by s1 and s2, and s3 and s4 separately. Between 45o�65o,
the evolution of the obliquity is also not regular, and is caused by
a nonlinear coupling among the resonant doublets (s1,2 and s3,4).

Substituting the expansion for i cos⌦ and i sin⌦ and
keeping only the four frequencies (s1�4), we can rewrite
the Hamiltonian as
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• Spin precession rate: α cos(ε). (ε: obliquity)

Precession ↑: 
Earth spin (ω)↑, m☉ ↑,	𝑎☉ ↓

ω: Earth spin, 
Ed: Dynamical ellipticity (Ed ∝ω2).



Physical Picture
• The other planets perturb the Earth’s orbit:

• Earth orbital variation:

2 G. Li and K. Batygin

we begin by considering a simplified description of the
system.
Without the Moon, the Earth’s obliquity is found to

be chaotic in the range 0 � 85o , where there are two
large chaotic regions: 0o � 45o & 65o � 85o. There also
exists a moderately chaotic bridge that connects the two
regions: 45o � 65o (Laskar et al. 1993; Morbidelli 2002).
The dynamical analysis is simpler in the large chaotic
regions. Thus, we treat them first.

2.1. Large chaotic regions: 0o � 45o & 65o � 85o

The Hamiltonian describing the evolution of plane-
tary obliquity is well documented in the literature (e.g.
Colombo (1966); Laskar & Robutel (1993); Touma &
Wisdom (1993); Neron de Surgy & Laskar (1997)):

H(�, , t)=
1

2
↵�2 +

p
1� �2 (1)

⇥ (A(t) sin +B(t) cos )),

where  is the longitude of the spin-axis, � = cos ", "
is the obliquity, and ↵ is an approximately constant pa-
rameter. Specifically,
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where m� is the mass of the Sun, a� and e� are the semi
major axis and the eccentricity of the Earth’s orbit, m

M

is the mass of the moon, a
M

, e
M

and i
M

are the semi
major axis, eccentricity and inclination of the Moon’s
orbit around the Earth, E

d

is the dynamical ellipticity
of Earth, and ! is the spin of the Earth. ↵ character-
izes the intrinsic precession of the Earth’s spin axis, and
is obtained by averaging the torques from the Sun and
Moon over their respective orbits. For a moonless Earth,
↵ = 0.0001yr�1 (Neron de Surgy & Laskar 1997). In
addition,

A(t) = 2(q̇ + p(qṗ� pq̇))/
p

1� p2 � q2, (3)

B(t) = 2(ṗ� q(qṗ� pq̇))/
p

1� p2 � q2, (4)

where p = sin i/2 sin⌦ and q = sin i/2 cos⌦, i is the
inclination of the Earth with respect to the fixed ecliptic
and ⌦ is the longitude of the node.
The inclination and the longitude of node of the Earth

change as the other planets in the solar system perturb
the Earth’s orbit. The evolution of i and ⌦ can be ob-
tained by direct numerical integration or in the low-e,i
regime via perturbative methods such as the Lagrange-
Laplace secular theory. Specifically, within the context
of the latter, a periodic solution represented by a super-
position of linear modes can be obtained.
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The amplitudes and the frequencies of the modes
have been computed in classic works (Le Verrier 1855;

Brouwer & van Woerkom 1950). We use the latest up-
date of these values from Laskar (1990).
In adopting equations (5) and (6) as a description of

the Earths inclination dynamics, we force the disturbing
function in Hamiltonian (1) to be strictly periodic. In
fact, it is well known that the orbital evolution of the
terrestrial planets is chaotic with a characteristic Lya-
punov time of ⇠ 5Myr (Laskar 1989; Sussman & Wisdom
1992). Consequently, our model does not account for the
stochastic forcing of the obliquity by the di↵usion of the
Earths inclination vector (see Laskar et al. 1993). Such a
simplification is only appropriate for systems where the
intrinsic Chirikov di↵usion is faster than that associated
with the disturbing function. As will be shown below,
the assumption holds for the system at hand.
As already mentioned above, in absence of the Moon,

rapid chaos spans two well-separated regions, which are
joined by a weakly chaotic bridge (Laskar et al. 1993).
In each of the highly chaotic regions, irregularity arises
from overlap of a distinct pair of secular resonances (see
Chirikov (1979)). As shown in Figure (1), the overlap
of s1 and s2 causes the chaotic region in " ⇠ 65o � 85o

(“C2”) and the overlap of s3 and s4 causes the chaotic
region in " ⇠ 0o � 45o (“C1”). Including only the terms
associated with these four frequencies in Hamiltonian (1),
the chaotic region of " ⇠ 0o�85o can be well reproduced
(Morbidelli 2002). Accordingly in the following analysis,
we retain only the four essential modes to analyze the
two chaotic regions and the “bridge” that connects them
sequentially.
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Figure 1. The minimum/mean/maximum of the obliquity
reached in 18Myr as a function of the initial obliquity. The
grey lines represent the results including all the frequencies, the
black lines represent the results including s1, s2, s3 and s4, the
red lines represent the results including s1 and s2, and the blue
lines represent the results including s3 and s4. The four frequen-
cies reproduces the results including all the frequencies. Between
"0 ⇠ 65o � 85o and ⇠ 0o � 45o, the chaotic behavior of obliquity is
caused by s1 and s2, and s3 and s4 separately. Between 45o�65o,
the evolution of the obliquity is also not regular, and is caused by
a nonlinear coupling among the resonant doublets (s1,2 and s3,4).

Substituting the expansion for i cos⌦ and i sin⌦ and
keeping only the four frequencies (s1�4), we can rewrite
the Hamiltonian as

H
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sk: frequencies of the 
modes due to the 
perturbation.



Physical Picture
• Hamiltonian: 

2 G. Li and K. Batygin

we begin by considering a simplified description of the
system.
Without the Moon, the Earth’s obliquity is found to

be chaotic in the range 0 � 85o , where there are two
large chaotic regions: 0o � 45o & 65o � 85o. There also
exists a moderately chaotic bridge that connects the two
regions: 45o � 65o (Laskar et al. 1993; Morbidelli 2002).
The dynamical analysis is simpler in the large chaotic
regions. Thus, we treat them first.

2.1. Large chaotic regions: 0o � 45o & 65o � 85o

The Hamiltonian describing the evolution of plane-
tary obliquity is well documented in the literature (e.g.
Colombo (1966); Laskar & Robutel (1993); Touma &
Wisdom (1993); Neron de Surgy & Laskar (1997)):

H(�, , t)=
1
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↵�2 +

p
1� �2 (1)

⇥ (A(t) sin +B(t) cos )),

where  is the longitude of the spin-axis, � = cos ", "
is the obliquity, and ↵ is an approximately constant pa-
rameter. Specifically,
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where m� is the mass of the Sun, a� and e� are the semi
major axis and the eccentricity of the Earth’s orbit, m

M

is the mass of the moon, a
M

, e
M

and i
M

are the semi
major axis, eccentricity and inclination of the Moon’s
orbit around the Earth, E

d

is the dynamical ellipticity
of Earth, and ! is the spin of the Earth. ↵ character-
izes the intrinsic precession of the Earth’s spin axis, and
is obtained by averaging the torques from the Sun and
Moon over their respective orbits. For a moonless Earth,
↵ = 0.0001yr�1 (Neron de Surgy & Laskar 1997). In
addition,

A(t) = 2(q̇ + p(qṗ� pq̇))/
p

1� p2 � q2, (3)

B(t) = 2(ṗ� q(qṗ� pq̇))/
p

1� p2 � q2, (4)

where p = sin i/2 sin⌦ and q = sin i/2 cos⌦, i is the
inclination of the Earth with respect to the fixed ecliptic
and ⌦ is the longitude of the node.
The inclination and the longitude of node of the Earth

change as the other planets in the solar system perturb
the Earth’s orbit. The evolution of i and ⌦ can be ob-
tained by direct numerical integration or in the low-e,i
regime via perturbative methods such as the Lagrange-
Laplace secular theory. Specifically, within the context
of the latter, a periodic solution represented by a super-
position of linear modes can be obtained.
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The amplitudes and the frequencies of the modes
have been computed in classic works (Le Verrier 1855;

Brouwer & van Woerkom 1950). We use the latest up-
date of these values from Laskar (1990).
In adopting equations (5) and (6) as a description of

the Earths inclination dynamics, we force the disturbing
function in Hamiltonian (1) to be strictly periodic. In
fact, it is well known that the orbital evolution of the
terrestrial planets is chaotic with a characteristic Lya-
punov time of ⇠ 5Myr (Laskar 1989; Sussman & Wisdom
1992). Consequently, our model does not account for the
stochastic forcing of the obliquity by the di↵usion of the
Earths inclination vector (see Laskar et al. 1993). Such a
simplification is only appropriate for systems where the
intrinsic Chirikov di↵usion is faster than that associated
with the disturbing function. As will be shown below,
the assumption holds for the system at hand.
As already mentioned above, in absence of the Moon,

rapid chaos spans two well-separated regions, which are
joined by a weakly chaotic bridge (Laskar et al. 1993).
In each of the highly chaotic regions, irregularity arises
from overlap of a distinct pair of secular resonances (see
Chirikov (1979)). As shown in Figure (1), the overlap
of s1 and s2 causes the chaotic region in " ⇠ 65o � 85o

(“C2”) and the overlap of s3 and s4 causes the chaotic
region in " ⇠ 0o � 45o (“C1”). Including only the terms
associated with these four frequencies in Hamiltonian (1),
the chaotic region of " ⇠ 0o�85o can be well reproduced
(Morbidelli 2002). Accordingly in the following analysis,
we retain only the four essential modes to analyze the
two chaotic regions and the “bridge” that connects them
sequentially.
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Figure 1. The minimum/mean/maximum of the obliquity
reached in 18Myr as a function of the initial obliquity. The
grey lines represent the results including all the frequencies, the
black lines represent the results including s1, s2, s3 and s4, the
red lines represent the results including s1 and s2, and the blue
lines represent the results including s3 and s4. The four frequen-
cies reproduces the results including all the frequencies. Between
"0 ⇠ 65o � 85o and ⇠ 0o � 45o, the chaotic behavior of obliquity is
caused by s1 and s2, and s3 and s4 separately. Between 45o�65o,
the evolution of the obliquity is also not regular, and is caused by
a nonlinear coupling among the resonant doublets (s1,2 and s3,4).

Substituting the expansion for i cos⌦ and i sin⌦ and
keeping only the four frequencies (s1�4), we can rewrite
the Hamiltonian as

H
C1,2(�, , t)=
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𝛘: cos(ε); 
ψ: longitude of the spin axis.
α: precession coefficient; 
A(t), B(t): depends on the Earth inclination.

(Laskar et al. 1993)

Resonances Arise if Frequencies Match (spin precession 
rate & Earth’s inclination variation frequency) 
=> Cause Large Obliquity Variation
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• Hamiltonian: 

2 G. Li and K. Batygin

we begin by considering a simplified description of the
system.
Without the Moon, the Earth’s obliquity is found to

be chaotic in the range 0 � 85o , where there are two
large chaotic regions: 0o � 45o & 65o � 85o. There also
exists a moderately chaotic bridge that connects the two
regions: 45o � 65o (Laskar et al. 1993; Morbidelli 2002).
The dynamical analysis is simpler in the large chaotic
regions. Thus, we treat them first.

2.1. Large chaotic regions: 0o � 45o & 65o � 85o

The Hamiltonian describing the evolution of plane-
tary obliquity is well documented in the literature (e.g.
Colombo (1966); Laskar & Robutel (1993); Touma &
Wisdom (1993); Neron de Surgy & Laskar (1997)):
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where m� is the mass of the Sun, a� and e� are the semi
major axis and the eccentricity of the Earth’s orbit, m

M

is the mass of the moon, a
M

, e
M

and i
M

are the semi
major axis, eccentricity and inclination of the Moon’s
orbit around the Earth, E

d

is the dynamical ellipticity
of Earth, and ! is the spin of the Earth. ↵ character-
izes the intrinsic precession of the Earth’s spin axis, and
is obtained by averaging the torques from the Sun and
Moon over their respective orbits. For a moonless Earth,
↵ = 0.0001yr�1 (Neron de Surgy & Laskar 1997). In
addition,

A(t) = 2(q̇ + p(qṗ� pq̇))/
p

1� p2 � q2, (3)

B(t) = 2(ṗ� q(qṗ� pq̇))/
p

1� p2 � q2, (4)

where p = sin i/2 sin⌦ and q = sin i/2 cos⌦, i is the
inclination of the Earth with respect to the fixed ecliptic
and ⌦ is the longitude of the node.
The inclination and the longitude of node of the Earth

change as the other planets in the solar system perturb
the Earth’s orbit. The evolution of i and ⌦ can be ob-
tained by direct numerical integration or in the low-e,i
regime via perturbative methods such as the Lagrange-
Laplace secular theory. Specifically, within the context
of the latter, a periodic solution represented by a super-
position of linear modes can be obtained.

i cos⌦ =
X

i
k

cos (s
k

t+ �
k

), (5)

i sin⌦ =
X

i
k

sin (s
k

t+ �
k

). (6)

The amplitudes and the frequencies of the modes
have been computed in classic works (Le Verrier 1855;

Brouwer & van Woerkom 1950). We use the latest up-
date of these values from Laskar (1990).
In adopting equations (5) and (6) as a description of

the Earths inclination dynamics, we force the disturbing
function in Hamiltonian (1) to be strictly periodic. In
fact, it is well known that the orbital evolution of the
terrestrial planets is chaotic with a characteristic Lya-
punov time of ⇠ 5Myr (Laskar 1989; Sussman & Wisdom
1992). Consequently, our model does not account for the
stochastic forcing of the obliquity by the di↵usion of the
Earths inclination vector (see Laskar et al. 1993). Such a
simplification is only appropriate for systems where the
intrinsic Chirikov di↵usion is faster than that associated
with the disturbing function. As will be shown below,
the assumption holds for the system at hand.
As already mentioned above, in absence of the Moon,

rapid chaos spans two well-separated regions, which are
joined by a weakly chaotic bridge (Laskar et al. 1993).
In each of the highly chaotic regions, irregularity arises
from overlap of a distinct pair of secular resonances (see
Chirikov (1979)). As shown in Figure (1), the overlap
of s1 and s2 causes the chaotic region in " ⇠ 65o � 85o

(“C2”) and the overlap of s3 and s4 causes the chaotic
region in " ⇠ 0o � 45o (“C1”). Including only the terms
associated with these four frequencies in Hamiltonian (1),
the chaotic region of " ⇠ 0o�85o can be well reproduced
(Morbidelli 2002). Accordingly in the following analysis,
we retain only the four essential modes to analyze the
two chaotic regions and the “bridge” that connects them
sequentially.
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Figure 1. The minimum/mean/maximum of the obliquity
reached in 18Myr as a function of the initial obliquity. The
grey lines represent the results including all the frequencies, the
black lines represent the results including s1, s2, s3 and s4, the
red lines represent the results including s1 and s2, and the blue
lines represent the results including s3 and s4. The four frequen-
cies reproduces the results including all the frequencies. Between
"0 ⇠ 65o � 85o and ⇠ 0o � 45o, the chaotic behavior of obliquity is
caused by s1 and s2, and s3 and s4 separately. Between 45o�65o,
the evolution of the obliquity is also not regular, and is caused by
a nonlinear coupling among the resonant doublets (s1,2 and s3,4).

Substituting the expansion for i cos⌦ and i sin⌦ and
keeping only the four frequencies (s1�4), we can rewrite
the Hamiltonian as

H
C1,2(�, , t)=
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Resonances Arise if Frequencies Match (spin precession 
rate & Earth’s inclination variation frequency) 
=> Cause Large Obliquity Variation

𝛘: cos(ε); 
ψ: longitude of the spin axis.
α: precession coefficient; 
A(t), B(t): depends on the Earth inclination.Not always require a moon.



Numerical Results

• Two chaotic zones connected with a chaotic bridge 
(Laskar et al. 1993, Morbidelli 2000).
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Numerical Results

• Two chaotic zones connected with a chaotic bridge 
(Laskar et al. 1993, Morbidelli 2000).
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Numerical Results

• Two chaotic zones connected with a chaotic bridge 
(Laskar et al. 1993, Morbidelli 2000)
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Numerical Results
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Need to understand the diffusion in the bridge



Resonances

Li & Batygin, 2014a

• Averaging the Hamiltonian over the primary 
resonances with canonical transformation to obtain the 
secondary resonances.

Overlap of the 
secondary resonances 
causes the diffusion 
cross the bridge. 
(Chirikov 1979).



Diffusion by Overlap of  
Resonances

• Overlap of resonances 
cause chaos.

• Large separation

Diffusion Coefficient ↓
Diffusion time ↑, 

Lyapunov Exponent ↓
Chaos ↓.

Chirikov 1979



Diffusion
• Diffusion coefficient:

• Diffusion coefficient 
lower in the bridge.

• Diffusion timescale ~ 
2Gyr in the bridge

• Numerical Results consistent with analytical 
estimations. Li & Batygin, 2014a



Numerical Runs

• It takes ≳ Gyrs to cross the bridge.
Li & Batygin 2014



Numerical Runs

Li & Batygin 2014

Moon not important to keep 
obliquity ≲50 degree in Gyr timescales

• It takes ≳ Gyrs to cross the bridge.



Application to Exoplanetary 
Systems



Application to Exoplanetary 
Systems

Kepler-36: a super-Earth 
and a mini-Neptune with 
a differ by only 0.013 AU.

Steffen & Li 2016

credit: 
David Aguilar

Scale over which biological material may be transmitted via 
collision ejecta



Application to Exoplanetary 
Systems

Steffen & Li 2016

Inner substitute planet

Outer substitute planet

Substitute Earth by two 
closely separated planets



Planetary obliquity 
variations

• Moonless Earth: the secondary resonances are 
responsible for the obliquity to cross the chaotic bridge 
(45o ~ 65o). It takes over ~2Gyr to cross the chaotic 
bridge.

• Extra-solar planets: closely separated planets do not tend 
to cause significant obliquity variations



Summaries
Extra solar planetary systems exhibit a large variety of spin-
orbit misalignments, including retrograde configurations. 
Perturbations from a farther object can produce various stellar 
obliquities and a large fraction of tidal disruption events.

Tidal re-alignment and other mechanisms together may 
explain the stellar obliquity features for cool stars.

Planetary obliquity variations can be caused by the resonance 
between the planetary spin precession and inclination 
variations.



Thank you!



Obliquity Of  the Sun

Bailey et al. 2016

Solar Obliquity ～ 6 degrees relative to inner orbits



UNDERLYING RESONANCES

• Resonant zones: points fill 1-D lines.
trajectories are quasi-periodic.

• Chaotic zones: points fill a higher dimension.

(Li et al. 2014b)



SURFACE OF SECTION

Quadrupole 
order 

dominates

Octupole 
order 

stronger

Low i High i ( 40-60o) i~90o

Quadrupole resonances: 
centers at low e1, ω=π/2 and 3π/2 (e.g., Kozai 1962)

low e

high e

Octupole resonances: 
centers at high e1, ω=π or π/2 and 3π/2 Li et al. 2014b

quadrupole 
resonances

octupole 
resonances

octupole 
resonanceschaos



• The Hamiltonian up to the Octupole order: 

• Hamiltonian has two degrees of freedom in test particle limit:
           (                     ,                                , ω, Ω )  

2 conjugate pairs: J & ω, Jz & Ω

ANALYTICAL OVERVIEW
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where Hquad = �Fquad and Hoct = �Fquad � ✏Foct, and
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✏ characterizes the importance of the octupole order. The Hamiltonian is scaled with
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(Lithwick and Naoz, 2011). J =
p

1� e21 is the angular momentum of the inner
orbit, ! is the argument of periapsis of the inner orbit, Jz =

p
1� e21 cos i1 is the

ẑ component of the inner orbit’s angular momentum J , and ⌦ is the longitude of
the ascending node of the inner orbit. Specifically, J , ! and Jz, ⌦ are conjugate
momentum and coordinate pairs. We denote e1 as the eccentricity of the inner orbit,
and i1 as the inclination of the inner orbit to the total angular momentum of the
system. In the test particle limit, i1 = i is the mutual inclination between the two
orbits.

In the quadrupole limit, the Hamiltonian is independent of ⌦, so Jz is constant,
and the system is integrable. In addition, the angle ! = $ � ⌦ is the resonant
angle of the system, where $ is the longitude of the periapsis. When i > 39.2�, the
solution admits a resonant region and e1 and i exhibit large amplitude oscillations.
Particularly, e1 may be excited to high values starting from e1 ⇠ 0 (e.g. Morbidelli,
2002).

As mentioned in the introduction, the octupole order adds variations in Jz which
allows the inner orbit to flip from prograde to retrograde, and the eccentricity to
be excited very close to 1 (Lithwick and Naoz, 2011; Katz et al., 2011; Naoz et al.,
2012, 2013). We work with the Hamiltonian at the octupole level of approximation
to analyze the surface of section and the chaotic behaviors in the next sections.
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and i1 as the inclination of the inner orbit to the total angular momentum of the
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In the quadrupole limit, the Hamiltonian is independent of ⌦, so Jz is constant,
and the system is integrable. In addition, the angle ! = $ � ⌦ is the resonant
angle of the system, where $ is the longitude of the periapsis. When i > 39.2�, the
solution admits a resonant region and e1 and i exhibit large amplitude oscillations.
Particularly, e1 may be excited to high values starting from e1 ⇠ 0 (e.g. Morbidelli,
2002).

As mentioned in the introduction, the octupole order adds variations in Jz which
allows the inner orbit to flip from prograde to retrograde, and the eccentricity to
be excited very close to 1 (Lithwick and Naoz, 2011; Katz et al., 2011; Naoz et al.,
2012, 2013). We work with the Hamiltonian at the octupole level of approximation
to analyze the surface of section and the chaotic behaviors in the next sections.
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H = F
quad

(J, Jz,!) + ✏F
oct

(J, Jz,!,⌦)

1

Quadrupole order: 
Independent of Ω 

=> Jz constant

: hierarchical 
parameter:

H = F
quad

(J, Jz,!) + ✏F
oct

(J, Jz,!,⌦)
text

✏ = a1
a2

e2

1�e

2
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H = F
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(J, Jz,!) + ✏F
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(J, Jz,!,⌦)
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2
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1

Octupole order: 
Depend on both 
Ω & ω => J and 
Jz not constant



DIFFICULTY IN THE FORMATION OF COUNTER-
ORBITING HOT JUPITERS

Xue & Suto 2016

The analytical flip condition by Li et al. (2014) is also an approximation 
for the necessary condition for the migration



FORMATION OF MISALIGNED HOT JUPITERS 
(KL + TIDE) BY POPULATION SYNTHESIS

• 15% of systems produce hot Jupiters
• EKL may account for about 30% of hot Jupiters 
(Naoz et al. 2011)

Naoz et al. 2011



Population synthesis 
study of interaction 
of two giant planets.

Petrovich 2015

FORMATION OF MISALIGNED HOT JUPITERS 
(KL + TIDE) BY POPULATION SYNTHESIS

 => a different 
mechanism is needed
(Petrovich 2015)



FORMATION OF MISALIGNED HOT JUPITERS 
(KL + STELLAR OBLATENESS + TIDE)

Storch et al. 2014

SL 

If the host star is spinning and oblate, gravity from the planet makes 
stellar spin precess around L, and can cause chaos under Kozai-Lidov 
oscillations (Storch et al. 2014).

Chaos: precession period ～ Kozai-Lidov oscillation period 



FORMATION OF MISALIGNED HOT JUPITERS 
(KL + STELLAR OBLATENESS + TIDE)

Mp < 3 MJ 
=> bimodal

Mp ～ 5MJ

=> low 
misalignment 
(solar-type stars)
=> higher 
misalignment 
(more massive 
stars) Anderson et al. 2016

Anderson et al. 2016: 



Period Dependence of  Rvar?
Mazeh et al. 2015 find that Rvar shows no significant 
difference between Porb =1-5 days & Porb =5-50 days

Rvar doesn’t depend on planetary orbital period.

→ Inconsistent with 
alignment involving 
tidal effects. 



Period Dependence 
— Selection Effect？

Selection effect: low Rvar may be required to observe long Porb planets

Compare long period Rvar with simulated long period Rvar,s, which is 
only affected by selection effect  

P: long period KOIs; R: short period KOIs.

Ri: Simulated long period sample:
We associate with each planet from P with a randomly-selected 
star from R that has S/N >10, and include the chosen stellar Rvar 
in Ri.

Photometric Spin-Orbit Misalignment 5

Table 2
Binning results

bin
1

bin
2

bin
3

bin
4

period range (days) < 3.58 3.58-8.19 8.19-19.62 > 19.62
KS p-value w. non-KOIs 0.0042 3.7⇥ 10�5 0.037 0.89
KS p-value w. bin

1

0.76 0.52 0.20
WRS p-value w/ non-KOIs 0.00022 3.8⇥ 10�5 0.011 0.40
WRS p-value w. bin

1

0.83 0.33 0.036
median 3.90± 0.02 3.93± 0.02 3.87± 0.02 3.83± 0.02

bin
1

bin
2

bin
3

bin
4

bin
5

bin
6

period range (days) < 2.46 2.46-4.77 4.77-8.11 8.11-14.41 14.41-34.44 > 34.44
KS p-value w/ non-KOIs 0.0025 0.016 0.0035 0.12 0.016 0.91
KS p-value w. bin

1

0.72 0.50 0.33 0.39 0.026
WRS p-value w/ non-KOIs 0.00057 0.0019 0.0022 0.0510 0.0179 0.74
WRS p-value w. bin

1

0.63 0.59 0.21 0.32 0.0056
median 3.93± 0.02 3.90± 0.02 3.93± 0.03 3.85± 0.02 3.91± 0.02 3.78± 0.02

Table 3
Binning results using fitted distribution as shown in Figure 3.

bin
1

bin
2

bin
3

bin
4

period range (days) < 3.54 3.54-9.31 9.31-24.46 > 24.46
KS p-value w. non-KOIs 0.0044 2.4⇥ 10�5 0.032 0.8
KS p-value w. bin

1

0.82 0.43 0.16
WRS p-value w/ non-KOIs 0.00021 9.4⇥ 10�6 0.015 0.73
WRS p-value w. bin

1

0.85 0.31 0.017
median 3.90± 0.02 3.92± 0.02 3.88± 0.02 3.80± 0.02

bin
1

bin
2

bin
3

bin
4

bin
5

bin
6

period range (days) < 2.31 2.31-5.04 5.04-9.30 9.30-17.16 17.16-36.76 > 36.76
KS p-value w. non-KOIs 0.0014 0.0099 0.0066 0.22 0.030 0.93
KS p-value w. bin

1

0.73 0.69 0.083 0.40 0.0096
WRS p-value w/ non-KOIs 0.0002 0.0014 0.0035 0.12 0.014 0.74
WRS p-value w. bin

1

0.41 0.33 0.062 0.39 0.0032
median 3.95± 0.02 3.90± 0.02 3.89± 0.02 3.85± 0.02 3.92± 0.03 3.77± 0.02

and to be negligible beyond about 10 days. Quan-
titatively, then, it may prove di�cult for tidal ef-
fects to explain the preference for a linear period-
dependence over a step-function dependence, or
the seemingly abrupt decrease of photometric
variability for periods & 100 days. The data seem
to be pointing toward a mechanism that varies
more continuously with period, out to ⇡100 days.
It is also possible that there are several mecha-
nisms a↵ecting spin-orbit alignment, with the net
e↵ect producing the dependence on orbital pe-
riod.

2.1.4. Selection E↵ects

Next we consider the possibility that the correlation
between R

var

and P
orb

is purely a consequence of selec-
tion e↵ects. The di�culty of detecting transiting planets
increases with orbital period, as transits become less fre-
quent. Photometric variability is also a source of noise
that potentially interferes with transit detection. There-
fore, it is possible that the long-period KOIs have sys-
tematically lower photometric variability than shorter-
period KOIs because transits are easier to detect around
low-variability stars. To investigate this possibility we
employ a test similar to the one Mazeh et al. (2015)
performed to check on whether selection e↵ects are re-
sponsible for the reduced R

var

of hot KOIs relative to
non-KOIs.
We denote by P the sample of KOIs with P

orb

>

30 days, and we denote by R the sample of KOIs with
P < 30 days. We have seen that P and R have di↵ering
distributions of photometric variability, and we wish to
know if selection e↵ects are wholly responsible. To this
end we create simulated samples Ri of long-period KOIs
for which the photometric variability distribution di↵ers
from that of R entirely due to selection e↵ects, through
the procedure described below. We then compare the
median R

var

of the simulated KOIs with the median R
var

of the actual long-period KOIs. These will be indistin-
guishable, if selection e↵ects are wholly responsible for
the di↵erences in R

var

between P and R.
To construct the simulated sample Ri, we associate

with each planet drawn from P a randomly-selected star
from R that has favorable enough properties for the
planet to have been detected by Kepler. In this way, the
stars within Ri have a distribution of R

var

that is purely
a↵ected by selection e↵ects, and not by any geometrical
e↵ects. To decide whether a particular star-planet com-
bination is detectable, we calculate the signal-to-noise
ratio, by looking up the signal-to-noise ratio for the ac-
tual system from P, and scaling it according to

S/N /

1

�̄
CDPP

R3/2
?

, (6)

using the values of �
CDPP

and R? of the randomly-
selected star from R. Here, �

CDPP

is the RMS of the
combined di↵erential photometric precision on a 3-hour
timescale, and R? is the stellar radius. For each star, we

(method introduced by Mazeh et al. 2015)

Li & Winn, 2015



log10(Rvar)
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Period Dependence 
— Selection Effect？

Selection effect: low Rvar may be required to observe long Porb planets

Simulate long period Rvar 
requiring s/n > 10. 

It’s unlikely that the low 
value of long period Rvar is 
due to purely selection 
effects. ~0.5%

observed 
long period simulated

Li & Winn, 2015

observed 
short period



Reexamine Period Dependence
No significant difference b.t. long period (≳20 days) KOIs & non-KOIs 
Significant difference b.t. long period (≳30 days) & short period (≲2 days) 
KOIs Rvar↑ when Porb ↓

Li & Winn, 2015



Resonances and Chaotic Regions 

• The Hamiltonian Hres takes form of a pendulum.

Libration

• Two dynamical regions: libration region and circulation 
region.

Circulation

θ

dθ/dt

θ

dθ/dt

Image credit: wikipedia Image credit: wikipedia



Resonances and Chaotic Regions 

• The Hamiltonian Hres takes form of a pendulum.
• Two dynamical regions: libration region and circulation 

region, separated by separatrix.

Libration

Circulation
Separatrix

θ

dθ/dt
Phase Diagram: 



Resonances and Chaotic Regions 

• The Hamiltonian Hres takes form of a pendulum.
• Two dynamical regions: libration region and circulation 

region, separated by separatrix.
Libration

Circulation
Separatrix

θ

dθ/dt

Overlap of resonances can 
cause chaos

−2

0

2

4

p

resonant angle (q)



Diffusion by Overlap of  
Resonances

• Overlap of resonances 
cause chaos.

• Large separation

Diffusion Coefficient ↓
Diffusion time ↑, 

Lyapunov Exponent ↓
Chaos ↓.

Chirikov 1979



Diffusion by Overlap of  
Resonances

Chirikov 1979

Lyapunov Exponent:

Difusion coefficient: 

Closely 
overlapped
Marginally 
overlapped

Closely 
overlapped
Marginally 
overlapped



• Lyapunov exponent (λ):

λ↑, more chaotic.

• C1,C2: λ～ 10-6

Bridge: λ～5⨉10-7

≥85o Regular

• Analytical results 
consistent with numerical 
results.

Chaotic FeaturesSpin Axis Dynamics of a Moonless Earth 5

triplet with the same width:

H̃
B

(�,�, t)=
↵

2
�2 (19)

+ ✏2ã3(cos(s2,1t+ �2,1 + 2�)

+cos (s2,2t+ �2,2 + 2�)

+cos (s2,3t+ �2,3 + 2�)),

where ↵ = 0.0001yr�1, ✏ = 10�7, ã3 = 664633yr�1, �
s

=
6.21769⇥ 10�6.
Because the resonances are not closely overlapped as

shown in Figure (2), the Lyapunov exponent can be es-
timated as 2!

L

/(2⇡), where the libration frequency is
!
L

=
p
2↵(✏2ã) (the angle is 2� instead of �). Thus, the

Lyapunov exponent is roughly ⇠ 3.7 ⇥ 10�7yr�1. Then
the di↵usion coe�cient can be estimated as �2⌫

L

⇠
5⇥ 10�11yr�1, and t

bridge

⇠ 2 Gyr.
The stark di↵erences in the estimates of the crossing

times obtained above place the results of Lissauer et al.
(2012) into a broader context. That is, our calculations
explicate the fact that the long-term confinement of the
obliquity to either the “C1” or the “C2” regions observed
in direct numerical simulations arises from the distinction
in the underlying resonances that drive chaotic evolution.
Because the di↵usion in the bridge is facilitated by sec-
ondary resonances, it is considerably slower, allowing the
stochastic variation in obliquity to remain limited.

3.2. Numerical Results

To validate the analytical results, we numerically es-
timate the Lyapunov exponent. We follow the method
discussed in Ch. 5 of Morbidelli (2002). Specifically,
we linearize the Hamiltonian and evolve the di↵erence
(�

traj

(t)) of two initially nearby trajectories in phase
space. The initial separation is set to 10�6. The Lya-
punov exponent is calculated as:

� = lim
t!1

1

t
ln

�
traj

(t)

�
traj

(0)
. (20)

We start our runs with di↵erent initial obliquity to
probe the di↵erent chaotic/regular regions. We check the
convergence of our results using two di↵erent running
times (t = 500 Myr and t = 1 Gyr). In the regular
regions, the Lyapunov exponent approaches zero, and is
limited only by the integration time. As shown in Figure
(3), the Lyapunov exponents in the two large chaotic
zones are �

C1 ⇠ �
C2 ⇠ 10�6yr�1 and the Lyapunov

exponents in the bridge zone is �
bridge

⇠ 5⇥ 10�7yr�1.
Then, we follow the numerical method discussed in

Chirikov (1979) to calculate the di↵usion coe�cient.
Specifically, to eliminate the oscillations caused by the
libration of the resonances, we average � in bins with
the same bin size �t. Then, we take the di↵erence (��)
between neighboring bins. The di↵usion coe�cient is es-
timated by averaging ��2/�t. The bin size �t needs to
be bigger than the libration period of the resonances but
smaller than the saturation timescale in the chaotic zone
and the bridge. Here, we set �t = 0.5 Myr, and run the
simulation for 500 Myr. The results are plotted in the
right panel of Figure (3). Unsurprisingly, the di↵usion
coe�cient is much smaller in the bridge than that in the
chaotic zones.
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Figure 3. The numerical result of the Lyapunov exponent and
the di↵usion coe�cient with di↵erent initial obliquity. Left panel:
the Lyapunov exponent. The red circles represent the Lyapunov
exponent calculated for t = 500 Myr, and the blue crosses represent
that calculated for t = 1 Gyr. The Lyapunov exponent converges in
the chaotic region for the di↵erent running times and in the regular
region the Lyapunov exponent approaches zero as the running time
increases. Right panel: the di↵usion coe�cient estimated by taking
averages over bins of 0.5 Myr before taking the di↵erence in �. The
di↵usion coe�cient in the bridge is much smaller than that in the
chaotic zones. The dashed lines in the two panels are the results
using the analytical method.

We compare the analytical results with the numerical
estimation. In Figure (3), the analytical results are rep-
resented by black dashed lines. Roughly, the analytical
results are consistent with the numerical results. To fur-
ther elucidate the qualitative agreement, we integrated
the full Hamiltonian (equation (1)) and the resulting evo-
lutionary sequences are shown in Figure (4).
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Figure 4. The evolution of the obliquity as a function of time by
integrating the full secular Hamiltonian numerically (equation (1)).
The di↵erent panels represent di↵erent initial obliquities: from top
to bottom: "0 = 10o, "0 = 30o, "0 = 50o, "0 = 70o. "0 = 90o.
 0 = 0 for all the panels.

Note that the time to cross “C1” and “C2” are about
⇠few Myr, and the time to cross the bridge is much
longer: & Gyr. This is fully consistent with our analyti-
cal arguments. Furthermore, as already mentioned above
our results are consistent with Lissauer et al. (2012), who
noticed that the Earth’s obliquity is constrained in “C1”
within �2 Gyr to 2 Gyr. Although the di↵usion time
we calculated for the bridge is ⇠ 2 Gyr, the di↵usion
time only roughly characterizes the timescale it takes to
cross the bridge, and the exact crossing time depends on
the specific initial condition. Thus, as 2 Gyr is on the
similar timescale of the integration time used in Lissauer
et al. (2012), it is probable that the obliquity would reach

Li & Batygin, 2014a



Application to Exoplanetary 
Systems

Steffen & Li 2016

Relative fraction of successful panspermia transfer 



Application to Exoplanetary 
Systems

Steffen & Li 2016

Inclination variation modes in first order resonant v.s. 
non-resonant systems



Application to Exoplanetary 
Systems

Steffen & Li 2016

Obliquity variation in 3:2 resonant systems



How Primordial is Earth’s Obliquity?



Pre-late Heavy Bombardment 
Evolution of  the Earth's Obliquity

• Formation of the Kuiper belt 
(Levison et al. 2008; Batygin et al. 2011), 
• Chaotic capture of Jupiter and Neptune trojan populations
(Morbidelli et al. 2005; Nesvorny et al. 2007)
• Triggering LHB 
(Gomes et al. 2005).

Nice Model:



Pre-late Heavy Bombardment 
Evolution of  the Earth's Obliquity

Nice Model:

Batygin & 
Brown 2010



Pre-late Heavy Bombardment 
Evolution of  the Earth's Obliquity

Solar system starts 
more compact 

(Nice model).

=>

Changes in mode 
frequencies.

Li & Batygin, 2014b



Pre-late Heavy Bombardment 
Evolution of  the Earth's Obliquity

Frequencies can slightly shift

e.g., s3 ~ 18 arcsec/yr

Li & Batygin, 2014b

Laskar 1993



Moon was closer

=> Change in precession 
frequency 

Pre-late Heavy Bombardment 
Evolution of  the Earth's Obliquity

Two frequencies do 
not match prior to 
LHB except at high 
obliquity (~85o)

Li & Batygin, 2014b



• Obliquity varies only in the high obliquity regime prior to 
LHB.

• Earth obtained its obliquity during the formation of the 
Moon.

Pre-late Heavy Bombardment 
Evolution of  the Earth's Obliquity

Direct Integration

Li & Batygin, 2014b



Application to Exoplanetary 
Systems

Steffen & Li 2016

Inclination variation modes in first order resonant v.s. 
non-resonant systems



Application to Exoplanetary 
Systems

Steffen & Li 2016

Obliquity variation in 3:2 resonant systems


