Obliquity Variations of Stars and Planets

Gongjie Li (Harvard)

Main Collaborators: Avi Loeb (Harvard), Smadar Naoz (UCLA), Konstantin Batygin (Caltech), Josh Winn (Princeton), Matt Holman (Harvard), Bence Kocsis (IAS/Eotvos), Jason Steffen (UNLV)

RESCEU Summer School, 2016

Obliquity Variations of Stars and Planets

The star/planet's obliquity (χ_*/χ_p) is the angle between the spin axis of the star/planet and the orbit of star/planet.

Outline

- Stellar obliquity variations in extra solar planetary systems
 - Due to hierarchical three-body dynamics
 - Tidal re-alignment of the stellar obliquity

• Planetary obliquity variation

ROSSITER-MCLAUGHLIN METHOD (SPIN-ORBIT MISALIGNMENT)

Stellar-spin planetary orbit aligned case:

e.g., Ohta et al. 2005, Winn 2006

ROSSITER-MCLAUGHLIN METHOD (SPIN-ORBIT MISALIGNMENT)

First stellar spin-planetary orbit misalignment measurement using MR effect.

λ~ -24.7 to 21.7 degree

OBSERVED SPIN-ORBIT MISALIGNMENT

#

CHALLENGES CLASSICAL PLANETARY FORMATION THEORIES

Classical planetary formation theory: Star and planets form in a molecular cloud, and share the same direction of rotation.

CHALLENGES CLASSICAL PLANETARY FORMATION THEORIES

Classical planetary formation theory: Star and planets form in a molecular cloud, "band share the same direction of rotation.

ORIGIN OF SPIN-ORBIT MISALIGNMENT

* **Smooth Migration:** planets move close due to interaction with proto-planetary disk.

Star tilts through magnetic interaction

(Lai et al. 2011)

or stellar oscillation effects

(Rogers et al. 2012, 2013)

Disk tilts through inhomogeneous collapse of the molecular cloud (Bate et al. 2010; Thies et al. 2011; Fielding et al. 2015)

or the torque from nearby stars. (Tremaine 1989; Batygin 2012; Xiang-Gruess & Papaloizou 2013)

ORIGIN OF SPIN-ORBIT MISALIGNMENT

• Violent Migration (Dynamical Origin): planets move close due to interactions with companion stars/planets.

Planetary orbit tilts under planetplanet scattering

(e.g., Chatterjee et al. 2008, Petrovich 2014)

or long-term secular dynamical effects between planets or stellar companion.

(e.g., Fabrycky and Tremaine 2007; Nagasawa et al. 2008; Naoz et al. 2011, 2012; Wu and Lithwick 2011; Li et al. 2014; Valsecchi and Rasio 2014)

ORIGIN OF SPIN-ORBIT MISALIGNMENT

• **Smooth Migration:** planets move close due to interaction with proto-planetary disk.

V.S.

• Violent Migration (Dynamical Origin): planets move close due to interactions with companion stars/planets.

Next: Range of stellar obliquity achieved in violent migration (dynamics of hierarchical three-body interactions)

CONFIGURATION OF HIERARCHICAL 3-BODY SYSTEM

Hierarchical: $a_1 << a_2$ ($\epsilon = \frac{a_1}{a_2} \frac{e_2}{1-e_2^2}$ bierarchical parameter)

CONFIGURATION OF HIERARCHICAL 3-BODY SYSTEM

System is stationary and can be thought of as interaction between two orbital wires (secular approximation):

m

• Inner wires (1): formed by m_1 and m_j .

• Outer wires (2): m_2 orbits the center mass of m_1 and m_J .

J_{1/2}: Specific orbital angular momentum of inner/outer wire.
 i: inclination between the two orbits.

KOZAI-LIDOV MECHANISM

Kozai-Lidov Mechanism

 $(e_2 = 0, m_J \rightarrow 0)$

(Kozai 1962; Lidov 1962: Solar system objects)

- Octupole level $O((a_1/a_2)^3)$ is zero.
- Quadrupole level $O((a_1/a_2)^2)$:

=> $Jz = \sqrt{1 - e_1^2} \cos i_1$ conserved (axi-symmetric potential).

=> when i>40°, e₁ and i oscillate with large amplitude.

Example of Kozai-Lidov Mechanism.

OCTUPOLE KOZAI-LIDOV MECHANISM

e₂ ≠ 0 (Eccentric Kozai-Lidov Mechanism) or m_J ≠ 0:

(e.g., Naoz et al. 2011, 2013, test particle case: Katz et al. 2011, Lithwick & Naoz 2011):

- Jz NOT constant, octupole ≠ 0.
- when $i > 40^\circ$: $e_I \rightarrow 1$.
- when *i*>40°: *i* crosses 90°

Produce retrograde hot Jupiters Cyan: quadrupole only. Red: quadrupole + octupole. Naoz et al 2013

COPLANAR FLIP

• Starting with $i \approx 0$, $e_1 \ge 0.6, e_2 \neq 0$: $e_1 \rightarrow 1, i$ flips by $\approx 180^{\circ}$ (*Li et al. 2014a*).

=> Produces counter orbiting hot Jupiters.
=> Enhance tidal disruption rates (*Li et al. 2015*).

(Li et al. 2014a)

DIFFERENCES BETWEEN HIGH/LOW I FLIP • Low inclination flip

• For simplicity:

take $m_j \rightarrow 0 =>$ outer orbit stationary.

- z direction: angular momentum of the outer orbit.
- \uparrow : direction of $J_{I.}$
- \uparrow : $Jz_1 =>$ indicates flip.
- Colored ring: inner orbit. Color: mean anomaly.

Li et al. 2014a

DIFFERENCES BETWEEN HIGH/LOW I FLIPHigh inclination flip

• For simplicity:

take $m_j \rightarrow 0 =>$ outer orbit stationary.

- z direction: angular momentum of the outer orbit.
- \uparrow : direction of $J_{I.}$
- \uparrow : $Jz_1 =>$ indicates flip.
- Colored ring: inner orbit. Color: mean anomaly.

Li et al. 2014a

CO-PLANAR FLIP CRITERION

- Hamiltonian (at O(i)):
 - Evolution of e₁ only due to octupole terms:
 => e₁ does not oscillate before flip
 - Depend on only J_{I} and $\varpi_{I} = \omega_{I} + \Omega_{I}$
 - => System is integrable.
 - $=> e_1(t)$ can be solved.
 - => The flip timescale can be derived.
 => The flip criterion can be derived.

$$\varepsilon > \frac{8}{5} \frac{1 - e_1^2}{7 - e_1 (4 + 3e_1^2) \cos(\omega_1 + \Omega_1)}$$

Li et al. 2014a

ANALYTICAL RESULTS V.S. NUMERICAL RESULTS 1010t_{flip} (yr) ω × e = 0.7695 10 e = 0.8675 × Flip Nonflip at 10⁴t × e = 0.99 0.02Analytical Analytical Flip Estimation Criteria 100.02 0.04 0.06 0.08 0.10.6 0.70.80.9 IC: i=5°.

• The flip criterion and the flip timescale from secular integration are consistent with the analytical results. Li et al. 2014a

FORMATION OF COUNTER ORBITING HOT JUPITERS (KL + TIDE)

 $=> r_p \downarrow$, tide dominates.

DIFFICULTY IN THE FORMATION OF COUNTER-ORBITING HOT JUPITERS

Numerical simulations including short range forces.

Most systems are tidally disrupted and a small fraction turn out to be prograde. The formation of counter-orbiting HJs in a very restricted parameter region.

FORMATION OF MISALIGNED HOT JUPITERS (KL + TIDE) BY POPULATION SYNTHESIS

Population synthesis study of interaction of two giant planets.

=> a different mechanism is needed (Petrovich 2015)

FORMATION OF MISALIGNED HOT JUPITERS (KL + STELLAR OBLATENESS + TIDE)

Mp < 3 M_J => bimodal

 $Mp \sim 5M_J$

=> low
misalignment
(solar-type stars)
=> higher
misalignment
(more massive
stars)

Anderson et al. 2016

Stellar Obliquity v.s. Stellar Temperature

Sky-projected stellar obliquity as a function of stellar effective temperature for hot Jupiters. Obliquity small when T<6100K. (Winn et al. 2010)

Spin-Orbit Alignment

- Tides from close-in planet
 - preference for cool stars with thick convective envelope (e.g., Winn et al. 2010, Lai 2012, Dawson 2014, Xue et al. 2014)
- Internal gravity waves in radiative zone tilt the star spin axis only for hot stars (Rogers et al. 2012)
- Ingestion from close-in planet (Matsakos & Konigl 2015)
- Star/disk magnetic torques

(Spalding & Batygin 2015)

Tidal Realignment? —Challenges

- * t_{decay} t_{align} => Cannot align stellar spin before orbital decay (Winn et al. 2010)
- * Tidal coupling and alignment of a thin shell of the star (Winn et al. 2010 & Dawson 2014).
- * Inertial wave of the (1, 0) component allows t_{decay} > t_{align} (Lai 2012)

=> PROBLEM: Retrograde configurations are driven to 90 or 180 degrees instead of 0 degrees (Rogers & Lin 2013).

Tidal Realignment

Including both inertial wave dissipation and equilibrium tides, obliquity can be aligned from a retrograde configuration before engulfment (Xue et al. 2014).

Tidal Realignment

* Spin axis can be aligned before engulfment for high spin rate and low Q value for the (1, 0) component of inertial wave dissipation.

Li & Winn 2016

Probe of Spin-Orbit Misalignment — Photometric Variability

 * Photometric Variability due to rotating starspots depends on line of sight inclination (i★) of the stellar spin axis. (Method introduced by Mazeh et al. 2015)

Probe of Spin-Orbit Misalignment — Photometric Variability

 * Photometric Variability depends on line of sight inclination (i★) of the stellar spin axis.

 $R_{var} \propto sin(i_{\bigstar})$

* For stellar host of KOIs, the planetary orbit direction perpendicular (Method introduced by Mazeh et al. 2015)

Cool KOI v.s. Hot KOI

 * Photometric variability indicates that cool stars tend to be aligned.

(Mazeh et al. 2015)

* Consistent with results by Rossiter-McLaughlin effects. (Schlaufman 2010; Winn et al. 2010;

Albrecht et al. 2012.)

Re-examine Period Dependence

There is a statistically significant linear relationship between R_{var} & P_{orb}.

- * Kendall's τ p-value = 0.002
- * Spearman's Q p-value = 0.002

Period Dependence Step function vs. Linear relation

Step function motivated by tidal model: Tidal effects depends sensitively on orbital separation ($t_{tide} \propto P^{10/3}$)

better than step

function

 $\log R_{\rm var} = \beta_0' + \beta_1' I_{\langle P_{\rm orb,c}}(P_{\rm orb}) + \beta_2' \log P_{\rm orb} + \epsilon.$

p<0.05 significant dependence

Li & Winn, 2015

Are Tidal Effects Responsible For Spin-Orbit Alignment?

- * The statistically significant correlation between the photometric variability (R_{var}) and the orbital period of cool KOIs (P_{orb}) *qualitatively agrees* with tidal realignment.
- * Linear fit posts challenges on the tidal model.
- * Other mechanisms need to be involved to produce the overall period dependence.

ON THE OBLIQUITY OF PLANETS

The Earth's obliquity (χ) is the angle between the spin axis of the Earth and the orbit of Earth.

Connection to Climate

Obliquity variation is very important for the climate of a planet (e.g., Armstrong et al. 2014).

obliquity changes affect the latitudinal distribution of stellar radiation.

Obliquity Variation of Earth

- Obliquity varies from 22.1-24.5°
- Period 41000yrs
- Milankovitch Cycles: changes in Earth's orbital and orientation parameters affect the climate (e.g., Imbrie 1982)
- Dated evidence:
 - oxygen isotopic ratio in calcite shells or ice cores.

Obliquity Variation of Mars

- Chaotic from o-60°
- Mars obliquity variation may cause the collapse of atmosphere (Toon et al. 1980, Nakamura & Tajika 2003, Soto et al. 2012)
- Atmosphere precipitation origin of glacierlike landforms at obliquity of 45° - Myr ago (Forget et al. 2006).

Obliquity Variation of a Moonless Earth

Without the Moon, the Earth's obliquity is Chaotic between 0° to -85° (Laskar et al. 1993).

Results from frequency analysis

ε > 54°, climatic zonation would be reversed, low to equatorial latitudes would be glaciated (Williams 1993)

Without the Moon, the Earth's obliquity is Chaotic between 0° to -85° (Laskar et al. 1993).

Obliquity variation large at ~20 degree without the Moon

Chaotic from 0 to 85 degree

Without the Moon, the Earth's obliquity is Chaotic between 0° to -85° (Laskar et al. 1993).

Without the Moon, the Earth's obliquity is Chaotic between 0° to -85° (Laskar et al. 1993).

• Recently, N-body simulations show that over -4Billion years, obliquity constrained between 0--45° (Lissauer et al. 2012).

• Recently, N-body simulations show that over -4Billion years, obliquity constrained between 0--45° (Lissauer et al. 2012).

• The Sun torques the Earth's quadrupole moment:

• The Sun torques the Earth's quadrupole moment:

• Spin precession rate: $\alpha \cos(\varepsilon)$. (ε : obliquity)

$$\alpha = \frac{3G}{2\omega} \Big[\frac{m_{\odot}}{(a_{\odot}\sqrt{1 - e_{\odot}^2})^3} + \frac{m_M}{(a_M\sqrt{1 - e_M^2})^3} (1 - \frac{3}{2}\sin^2 i_M) \Big] E_d$$

ω: Earth spin, E_d : Dynamical ellipticity ($E_d ∝ ω^2$). Precession ↑: Earth spin (ω)↑, m⊙↑, a ⊙ ↓

• The other planets perturb the Earth's orbit:

• Earth orbital variation:

 $i \cos \Omega = \sum i_k \cos (s_k t + \gamma_k),$ $i \sin \Omega = \sum i_k \sin (s_k t + \gamma_k).$ s_k: frequencies of the modes due to the perturbation.

• Hamiltonian:

$$\begin{aligned} H(\chi,\psi,t) &= \frac{1}{2}\alpha\chi^2 + \sqrt{1-\chi^2} \\ &\times (A(t)\sin\psi + B(t)\cos\psi) \end{aligned}$$

 $\chi: \cos(\varepsilon);$ (Laskar et al. 1993) $\psi:$ longitude of the spin axis. $\alpha:$ precession coefficient;A(t), B(t): depends on the Earth inclination.

Resonances Arise if Frequencies Match (spin precession rate & Earth's inclination variation frequency) => Cause Large Obliquity Variation

• Hamiltonian:

$$H(\chi, \psi, t) = \frac{1}{2}\alpha\chi^2 + \sqrt{1 - \chi^2}$$
$$\times (A(t)\sin\psi + B(t)\cos\psi)$$

 χ : cos(ϵ); ψ : longitude of the spin ire a moon. α : precession convays require a moon. A(t), B(t) Not always require a moon.

Resonances Arise if Frequencies Match (spin precession rate & Earth's inclination variation frequency) => Cause Large Obliquity Variation

Obliquity variation in -10Myr, starting with different initial obliquity.

• Two chaotic zones connected with a chaotic bridge (Laskar et al. 1993, Morbidelli 2000).

• Two chaotic zones connected with a chaotic bridge (Laskar et al. 1993, Morbidelli 2000).

• Two chaotic zones connected with a chaotic bridge (Laskar et al. 1993, Morbidelli 2000)

• C1: caused by s3, s4; C2: caused by s1, s2

Obliquity variation in -10Myr, starting with different initial obliquity.

Need to understand the diffusion in the bridge

Resonances

• Averaging the Hamiltonian over the primary resonances with canonical transformation to obtain the secondary resonances.

Overlap of the secondary resonances causes the diffusion cross the bridge. (Chirikov 1979).

Li & Batygin, 2014a

Diffusion by Overlap of Resonances

- Overlap of resonances cause chaos.
- Large separation
 Diffusion Coefficient ↓ Diffusion time ↑,

Lyapunov Exponent ↓ Chaos ↓.

Chirikov 1979

Diffusion

- Diffusion coefficient: $\delta \chi^2/\delta t$
- Diffusion coefficient lower in the bridge.
- Diffusion timescale ~
 2Gyr in the bridge

• Numerical Results consistent with analytical estimations. Li & Batygin, 2014a

Numerical Runs

• It takes \gtrsim Gyrs to cross the bridge.

Li & Batygin 2014

Numerical Runs

• It takes \gtrsim Gyrs to cross the bridge.

Li & Batygin 2014

Application to Exoplanetary Systems

Application to Exoplanetary Systems

* Scale over which biological material may be transmitted via collision ejecta

Kepler-36: a super-Earth and a mini-Neptune with *a* differ by only 0.013 AU.

Application to Exoplanetary Systems

* Substitute Earth by two closely separated planets

Inner substitute planet

Outer substitute planet

Steffen & Li 2016

Planetary obliquity variations

- Moonless Earth: the secondary resonances are responsible for the obliquity to cross the chaotic bridge (45° ~ 65°). It takes over ~2Gyr to cross the chaotic bridge.
- Extra-solar planets: closely separated planets do not tend to cause significant obliquity variations

Summaries

- * Extra solar planetary systems exhibit a large variety of spinorbit misalignments, including retrograde configurations.
 Perturbations from a farther object can produce various stellar obliquities and a large fraction of tidal disruption events.
- * Tidal re-alignment and other mechanisms together may explain the stellar obliquity features for cool stars.
- * Planetary obliquity variations can be caused by the resonance between the planetary spin precession and inclination variations.

Thank you!
Obliquity Of the Sun

Solar Obliquity \sim 6 degrees relative to inner orbits

UNDERLYING RESONANCES

Resonant zones: points fill I-D lines. trajectories are quasi-periodic.
Chaotic zones: points fill a higher dimension.

ANALYTICAL OVERVIEW

- Hamiltonian has two degrees of freedom in test particle limit: (J = √1 - e₁², Jz = √1 - e₁² cos i₁, ω, Ω)
 2 conjugate pairs: J & ω, Jz & Ω
- The Hamiltonian up to the Octupole order:

 $H = F_{quad}(J, Jz, \omega) + \epsilon F_{oct}(J, Jz, \omega, \Omega)$

Quadrupole order: Independent of Ω => Jz constant ϵ : hierarchical parameter: $\epsilon = \frac{a_1}{a_2} \frac{e_2}{1-e_2^2}$ Octupole order: Depend on both $\Omega \& \omega \Rightarrow J$ and Jz not constant

DIFFICULTY IN THE FORMATION OF COUNTER-ORBITING HOT JUPITERS

The analytical flip condition by Li et al. (2014) is also an approximation for the necessary condition for the migration

Xue & Suto 2016

FORMATION OF MISALIGNED HOT JUPITERS (KL + TIDE) BY POPULATION SYNTHESIS

15% of systems produce hot Jupiters
EKL may account for about 30% of hot Jupiters (Naoz et al. 2011)

FORMATION OF MISALIGNED HOT JUPITERS (KL + TIDE) BY POPULATION SYNTHESIS

Population synthesis study of interaction of two giant planets.

=> a different mechanism is needed (Petrovich 2015) FORMATION OF MISALIGNED HOT JUPITERS (KL + STELLAR OBLATENESS + TIDE)

If the host star is spinning and oblate, gravity from the planet makes stellar spin precess around L, and can cause chaos under Kozai-Lidov oscillations (Storch et al. 2014).

Chaos: precession period \sim Kozai-Lidov oscillation period

FORMATION OF MISALIGNED HOT JUPITERS (KL + STELLAR OBLATENESS + TIDE)

Anderson et al. 2016:

Mp < 3 M_J => bimodal

 $Mp \sim 5M_J$

=> low
misalignment
(solar-type stars)
=> higher
misalignment
(more massive
stars)

Anderson et al. 2016

Period Dependence of Rvar?

* Mazeh et al. 2015 find that R_{var} shows no significant difference between P_{orb} =1-5 days & P_{orb} =5-50 days

* Rvar doesn't depend on planetary orbital period.

→ Inconsistent with alignment involving tidal effects.

Period Dependence — Selection Effect?

* Selection effect: low R_{var} may be required to observe long P_{orb} planets

* Compare long period R_{var} with simulated long period R_{var,s}, which is only affected by selection effect (method introduced by Mazeh et al. 2015)

* *P*: long period KOIs; *R*: short period KOIs.

R_i: Simulated long period sample:

We associate with each planet from P with a randomly-selected star from R that has S/N >10, and include the chosen stellar R_{var} in R_i . S

Li & Winn, 2015

$$S/N \propto rac{1}{ar{\sigma}_{
m CDPP} R_{\star}^{3/2}}$$

Period Dependence — Selection Effect?

* Selection effect: low Rvar may be required to observe long Porb planets

- * Simulate long period R_{var} requiring s/n > 10.
- It's unlikely that the low value of long period R_{var} is due to purely selection effects.

Reexamine Period Dependence

- * No significant difference b.t. long period (≥20 days) KOIs & non-KOIs
- * Significant difference b.t. long period (\geq 30 days) & short period (\leq 2 days) KOIs * R

Resonances and Chaotic Regions

- The Hamiltonian H_{res} takes form of a pendulum.
 - Two dynamical regions: libration region and circulation region.

Resonances and Chaotic Regions

- The Hamiltonian H_{res} takes form of a pendulum.
- Two dynamical regions: libration region and circulation region, separated by separatrix.

Resonances and Chaotic Regions

- The Hamiltonian H_{res} takes form of a pendulum.
- Two dynamical regions: libration region and circulation region, separated by separatrix.

Overlap of resonances can cause chaos

Diffusion by Overlap of Resonances

- Overlap of resonances cause chaos.
- Large separation
 Diffusion Coefficient ↓ Diffusion time ↑,

Lyapunov Exponent ↓ Chaos ↓.

Chirikov 1979

Diffusion by Overlap of Resonances

Lyapunov Exponent: Closely $\lambda \sim \frac{1}{K} \frac{\omega_L}{2\pi} \sim \begin{cases} \nu_B & \text{overlapped} \\ 2\nu_L & \text{Marginally} \end{cases}$ overlapped $K = 2 \frac{\omega_L}{\omega_R}$

Difusion coefficient: $D \sim \Delta^2 \lambda \sim \begin{cases} \Delta^2 \nu_B & \text{overlapped} \\ \Delta^2 \nu_L & \text{Marginally} \\ \text{overlapped} \end{cases}$

Chirikov 1979

Chaotic Features

- Lyapunov exponent (λ):
 λ[↑], more chaotic.
- C1,C2: $\lambda \sim 10^{-6}$ Bridge: $\lambda \sim 5 \times 10^{-7}$ $\geq 85^{\circ}$ Regular
- Analytical results consistent with numerical results. Li & Batygin, 2014a

* Relative fraction of successful panspermia transfer

* Inclination variation modes in first order resonant v.s. non-resonant systems

* Obliquity variation in 3:2 resonant systems

How Primordial is Earth's Obliquity?

Pre-late Heavy Bombardment Evolution of the Earth's Obliquity

Nice Model:

Formation of the Kuiper belt

(Levison et al. 2008; Batygin et al. 2011),

 Chaotic capture of Jupiter and Neptune trojan populations (Morbidelli et al. 2005; Nesvorny et al. 2007)

• Triggering LHB (Gomes et al. 2005).

Pre-late Heavy Bombardment Evolution of the Earth's Obliquity Nice Model:

Batygin & Brown 2010

Pre-late Heavy Bombardment Evolution of the Earth's Obliquity

Solar system starts more compact
 (Nice model).

=>

Changes in mode frequencies.

Li & Batygin, 2014b

Pre-late Heavy Bombardment Evolution of the Earth's Obliquity
Frequencies can slightly shift

e.g., s₃ - 18 arcsec/yr

Pre-late Heavy Bombardment Evolution of the Earth's Obliquity

Moon was closer

=> Change in precession frequency

• Two frequencies do not match prior to LHB except at high obliquity (-85°)

Li & Batygin, 2014b

Pre-late Heavy Bombardment Evolution of the Earth's Obliquity

• Obliquity varies only in the high obliquity regime prior to LHB.

• Earth obtained its obliquity during the formation of the Moon.

* Inclination variation modes in first order resonant v.s. non-resonant systems

* Obliquity variation in 3:2 resonant systems

