APCosPA-Planet2 RESCEU Summer School Takayama, Gifu, Japan August 25, 2016

Tidal interaction of satellite systems

Shunichi Kamata Creative Research Institution, Hokkaido University

"Habitable worlds"?

- Habitability is difficult to define
- But a key issue is the presence of a large amount of liquid water
- A uniqueness of the Earth: surface ocean
- Subsurface oceans may be common in Solar System
 - Europa, Enceladus, Pluto, Ganymede(?), Callisto(??), Mimas(???)

Credit: NASA/JPL-Caltech

Tidal interaction

1. Elongate the shape

2.

1. Interior structure

- Deformation is large if the interior is soft
 - Large deformation is expected if a subsurface ocean exists

- Measurements using spacecraft
 - Shape: Laser altimetry (+ precise orbit determination)
 - Gravity: Radio tracking of the spacecraft or astrometry

Measurements of tidal response

• Love number: shape/gravitational response normalized by the tidal potential

Planet/satellite	h2 (shape)	k2 (gravity)	Missions
Mercury		0.45	MESSENGER
Venus		0.295	PVO, Magellan
Earth	~0.6 (~1d)	~0.3 (~1d)	Satellites/VLBI
Moon	0.0371 (1m)	0.024 (1m)	LRO, GRAIL
Mars		0.170	MGS, M Ody, MRO
Jupiter		(Est: ~0.59)	Juno
Ganymede	(Est: <1.7)	(Est: <0.6)	JUICE
Saturn		0.39	Cassini
Titan		0.59-0.63 (Subsurface Ocean!)	Cassini

[References] Mercury: Mazarico+, *JGR*, 2014; Venus: Konopliv & Yoder, *GRL*, 1996; Earth: Wahr, *Global Earth Physics: A Handbook of Physical Constants*, 1995; Lunar *h*2: Mazarico+, *GRL*, 2014; Lunar *k*2: Williams+, *JGR*, 2014; Mars: Genova+, *Icarus*, 2016; Jupiter: Wahl+, *arXiv*, 2016; Ganymede: Kamata+, *JGR*, 2016; Saturn: Lainey+, *arXiv*, 2015; Titan: Iess+, *Science*, 2012

2. Energy input for satellites

- Satellites generally have non-zero eccentricity
 - Periodical change in the shape
 - Frictional heating
- The heating rate of a solid body for eccentricity tides: *H*

•
$$H = \frac{21}{2} \frac{k_2}{Q} \frac{(nR_s)^5}{G} e^2$$

k₂: Love number

- Q: Dissipation factor
- *n*: mean motion
- *R_s*: Radius
- *G*: Grav. const.
- e: eccentricity

Jovian satellite Io: No longer icy!

• Close to Jupiter, large eccentricity (0.0041)

Credit: Galileo mission/NASA/JPL

Credit: NASA/JHUAPL/SwRI

"Ocean satellites"

Europa

Enceladus

Credit: NASA/JPL/DLR

Credit: NASA/JPL/SSI

Active South Pole of Enceladus

- Observation
 - Large amount of thermal emission
 - ~10 GW [e.g., Howett+ 2011]
- Heat source
 - Primodial heat/chemical reaction
 - Negligible [e.g., Malamud & Prialnik 2013]
 - Radiogenic heating
 - $\sim 0.3 \ GW$ [Roberts & Nimmo 2008]
 - Episodic heat loss
 - Could work in principle [O'Neill & Nimmo 2013]
 - Tidal heating??

Tidal heating

- Friction inside solid layers
 - "Solid tides"
 - Large *H* for a soft ice shell
- Friction at solid-liquid boundaries
 - "Ocean tides" [e.g., Tyler 2008]
 - Large *H* for a thin ocean
- Tidal heating could be ~10 GW in principle but requires extreme conditions and is unlikely to maintain for a long time

Equilibrium tidal heating rate

- Enceladus is in a 2:1 mean-motion resonance with Dione
- Equilibrium tidal heating rate is determined by the dissipation factor *Q* of the planet

- Increase in *e* due to dissipation in planet is balanced by decrease in *e* due to dissipation in satellites
- Equilibrium tidal heating rate is 1.1 GW for Enceladus under $Q_{\text{Saturn}} = 18,000$ [Meyer & Wisdom 2007]

- Controls orbital evolution and tidal heating
- Nearly constant for equilibrium tides

- A lower *Q* means more torque, more tidal heating, and faster outwards evolution
 - The lower bound of Q_{Saturn} can be obtained from orbits of satellites

"Mimas test"

- Innermost, regular, mid-sized satellite
 - Heavily cratered = old surface
- Lower *Q* requires younger satellite
 - If Mimas is 4.5 Gyr old, $Q_{\text{Saturn}} > 18,000$

Astrometry and astrophysics

- Recently a Q_{Saturn} ~ 1,800 is inferred from astrometry of satellites [Lainey+ 2012]
 - Pros: ~10 GW of tidal heat
 - Cons: Unrealistically young satellites
- "Resonance locking" due to dynamical tides [Fuller+ 2016]
 - Q depends on frequency
 - Migration rate is controlled by the rate of internal evolution of Saturn
 - Strong tidal heating + old satellites are accepted!

Summary

- The presence of a subsurface ocean is a key to understand habitability of a planetary body
- Tidal interaction is important because it
 - 1. Provides information on the interior structure
 - 2. Provides heat to prevent complete freezing
- Tiny Enceladus has a global subsurface ocean indicates tidal heating much larger than previously expected
 - Dissipative property of the *primary* is the key

Backup slides

Location of the heat deposition

- Heat deposited in a near-surface layer dissipates immediately to the outer space
 - Deposition of heat in a deep interior is necessary to maintain a subsurface ocean

• Heating rate ~ (stress) x (strain rate)

Need more heat output

- 1. Episodic heat *production*
 - The thermal-orbital evolution of the Saturnian system
 - Additional heat is only <1 GW [Shoji+ 2014]
 - Tidal resonance [e.g., Matsuyama 2014, Kamata+ 2016]
 - Requires an ocean much thinner than that estimated from libration measurements [Thomas+ 2016]
- 2. Episodic heat *loss*
 - Overturn of a convective ice shell [O'Neill & Nimmo 2008]
 - Requires us to be seeing Enceladus at a special time
- 3. Previous tidal heating models are wrong

Obliquity tides

- Non-zero obliquity also leads to tidal heating
- Mostly "ocean tides"

[Chen+ 2014]