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Pairwise	growth

Binary	collisions	between	similar	sized	particles	
grow	objects	up	

Biggest	advantage	is	that	its	simple



Pairwise	growth	seems	to	work	for	
dust

At	low	collision	velocities	
(<1	m	s-1	for	silicates	and	
<60	m	s-1 for	icy	grains)

Low	velocity	collisions	
allow	the	efficient	growth	
of	fluffy	grains	

Fluffy	grains	can	then	
compress	as	form	of	
energy	damping	allowing	
later	higher	energy	
collisions

Fig. 11.— Examples of collision outcomes of icy PCA clusters
consisting of 8000 particles for two values of the impact parameter
b (lower panels). The upper panels represent initial aggregates.
The collision velocity of 70 m/s in both cases and R is the radius
of the initial aggregates. The head-on collision (left panel) results
in sticking with minor fragmentation while aggregates tend to pass
by each other in off-set collisions (right panels). (This figure is
reproduced based on Fig. 2 of Wada et al. 2009 by permission of
the AAS.)

To evaluate the critical impact velocity for growth more
accurately, Wada et al. (2009) performed N -body simula-
tions of large aggregates made of up to ∼104 sub-micron
icy particles, including off-set collisions (see Fig. 11). They
consider two kinds of aggregate structure, the so-called
CCA and PCA clusters. The CCA (Cluster-Cluster Ag-
glomeration) clusters have an open structure with a fractal
dimension of 2 while the PCA (Particle-Cluster Agglomer-
ation) clusters have a fractal dimension of 3 and a volume
filling factor of 0.15. The PCA clusters are rather compact,
compared to the CCA. Since dust aggregates are expected to
be much more compact than CCA clusters due to compres-
sion (see section 7.2), the growth and disruption process of
PCA clusters is of particular importance for elucidating the
planetesimal formation.
For PCA clusters (composed of 0.1µm-sized icy parti-

cles), the critical impact velocity is obtained as 60 m/s from
their simulations, independent of the aggregate mass within
the mass range examined in the simulations of Wada et al.
(2009). This indicates that icy dust aggregates can circum-
vent the fragmentation barrier and grow towards planetesi-
mal sizes via collisional sticking. Note that the critical ve-
locity actually increases with the aggregate mass when only
head-on collisions are considered, as seen in Fig. 11. For an
accurate evaluation of the critical velocity for growth, off-

set collisions should be considered as well, as inWada et al.
(2009).
The above result also fixes the corresponding con-

stant A in the critical energy at 30. By using Ebreak

of silicate particles in equation (36) with A = 30, the
critical velocity for growth of silicate aggregates is ob-
tained as vimp = 1.3 (r/0.6µm)−5/6 m/s. It agrees well
with the laboratory experiments and numerical simula-
tions for small silicate aggregates (e.g. Blum and Wurm,
2000; Güttler et al., 2010; Paszun and Dominik, 2009;
Seizinger and Kley, 2013).
In the case of CCA clusters, Wada et al. (2009) found

that the constant A is the same as in the DT recipe (≃10).
Considering much smaller volume filling factors of CCA
clusters than PCA, it indicates that the critical velocity is
only weakly dependent on the volume filling factor.

7.2. Compression of dust aggregates
The DT recipe does not describe the amount of changes

in the porosity (or the volume filling factor) at aggregate
collisions. The first attempt to model porosity changes was
done by Ormel et al. (2007), using simple prescriptions for
the collision outcome of porosity.
Wada et al. (2008) examined compression at head-on

collisions of two equal sized CCA clusters, using a high
number of N -body simulations. Compression (or restruc-
turing) of an aggregate occurs through rolling motions be-
tween constituent particles. Thus it is governed by the
rolling energy Eroll (i.e., the energy for rolling of a par-
ticle over a quarter of the circumference of another parti-
cle in contact). At low-energy impacts with Eimp ! Eroll,
aggregates just stick to each other, as indicated by the DT
recipe. For higher-energy impacts, the resultant aggregates
are compressed, depending on the impact energy. The
radius of resulting aggregates, R, is fitted well with the
power-law function

R ≃ 0.8[Eimp/(NEroll)]
−0.1N1/2.5r , (37)

where r is the radius of a monomer and N the number of
constituent particles. Analysing the structure of the com-
pressed aggregates, it can be shown that the compressed
aggregates have a fractal dimension of 2.5. This fractal di-
mension is consistent with equation (37) since equation (37)
gives the relation of N ∝ R2.5 for maximally compressed
aggregates (withEimp∼NEroll). The compression observed
in the N -body simulation is less much extreme than in the
simple porosity model used by Ormel et al. (2007) because
of the low fractal dimension of 2.5.
While Wada et al. (2008) examined the compression in

a single collision, dust aggregates will be gradually com-
pressed by successive collisions in realistic systems. In
order to examine such a gradual compression process dur-
ing growth, Suyama et al. (2008) performed N -body sim-
ulations of sequential collisions of aggregates. Even after
multiple collisions, the compressed aggregates maintain a
fractal dimension of 2.5. Suyama et al. (2012) further ex-
tend their porosity model to unequal-mass collisions.
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Pairwise	growth	seems	to	work	for	
dust

Once	grains	become	
too	compact	or	too	
large,	bouncing	
becomes	a	
significant	issue

Fragmentation	can	
also	occur	if	
velocities	in	the	disk	
get	too	high

Fig. 11.— Examples of collision outcomes of icy PCA clusters
consisting of 8000 particles for two values of the impact parameter
b (lower panels). The upper panels represent initial aggregates.
The collision velocity of 70 m/s in both cases and R is the radius
of the initial aggregates. The head-on collision (left panel) results
in sticking with minor fragmentation while aggregates tend to pass
by each other in off-set collisions (right panels). (This figure is
reproduced based on Fig. 2 of Wada et al. 2009 by permission of
the AAS.)
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filling factor of 0.15. The PCA clusters are rather compact,
compared to the CCA. Since dust aggregates are expected to
be much more compact than CCA clusters due to compres-
sion (see section 7.2), the growth and disruption process of
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their simulations, independent of the aggregate mass within
the mass range examined in the simulations of Wada et al.
(2009). This indicates that icy dust aggregates can circum-
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locity actually increases with the aggregate mass when only
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accurate evaluation of the critical velocity for growth, off-
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clusters than PCA, it indicates that the critical velocity is
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The DT recipe does not describe the amount of changes
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tween constituent particles. Thus it is governed by the
rolling energy Eroll (i.e., the energy for rolling of a par-
ticle over a quarter of the circumference of another parti-
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aggregates just stick to each other, as indicated by the DT
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where r is the radius of a monomer and N the number of
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aggregates (withEimp∼NEroll). The compression observed
in the N -body simulation is less much extreme than in the
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of the low fractal dimension of 2.5.
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order to examine such a gradual compression process dur-
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multiple collisions, the compressed aggregates maintain a
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Fig. 4.— The collision speed, in meters per second, of two particles of size a1 and a2, with contributions from Brownian motion,
differential radial and azimuthal drift, and gas turbulence. The upper panels show collision speeds for α = 10−2 and the lower panels
show collision speeds for α = 10−4. The gravitational pull from turbulent gas density fluctuations is included in the right panels. The
red line marks the transition from dominant excitation by direct drag to dominant excitation by turbulent density fluctuations. The “oasis”
of low collision speeds for particles above 10 meters vanishes when including eccentricity pumping by turbulent density fluctuations.

speed is that at close separations (when the particles
are about to collide) they interact with the same eddies,
which causes their motions to become highly correlated.
The framework set out by Voelk et al. (1980) which em-
ploys a Langevin approach, is still widely used, and
Ormel and Cuzzi (2007) provided closed-form analytical
approximations to their results (but see Pan and Padoan,
2010, for a criticism of the simplifications made in the Völk
model). The closed-form expressions of Ormel and Cuzzi
(2007) require numerical solution of a single algebraic
equation for each colliding particle pair (defined by their
friction times). With knowledge of the properties of the
turbulence, particularly the turbulent rms speed and the fre-
quency of the smallest and the largest eddies, the collision
speeds can then be calculated at all locations in the disc.
Another important contribution to turbulent collision

speeds is the gravitational pull from turbulent gas den-
sity fluctuations. The eccentricity of a preplanetesimal in-
creases as a random walk due to uncorrelated gravitational
kicks from the turbulent density field (Laughlin et al., 2004;
Nelson and Papaloizou, 2004). The eccentricity would
grow unbounded with time as e ∝ t1/2 in absence of dissi-

pation. Equating the eccentricity excitation time-scale with
the time-scale for damping by tidal interaction with the
gas disc (from Tanaka and Ward, 2004), aerodynamic gas
drag, and inelastic collisions with other particles, Ida et al.
(2008) provide parameterisations for the equilibrium eccen-
tricity as a function of particle mass and protoplanetary disc
properties. The resulting collision speeds dominate over the
contributions from the direct drag from the turbulent gas at
sizes above approximately 10 meters.
Ida et al. (2008) adopt the nomenclature ofOgihara et al.

(2007) for the eccentricity evolution, where a dimension-
less parameter γ determines the proportionality between the
eccentricity and t1/2. The parameter γ is expected to scale
with the density fluctuations δρ/ρ but can be directly cali-
brated with turbulence simulations. The shearing box sim-
ulations by Yang et al. (2009) of turbulence caused by the
magnetorotational instability (Balbus and Hawley, 1991)
suggest that δρ/ρ ∝

√
α, where α is the dimensionless

measure of the turbulent viscosity (Shakura and Sunyaev,
1973). In their nominal ideal-MHD turbulence model with
α ≈ 0.01, Yang et al. (2012) find γ ≈ 6 × 10−4. This
leads to an approximate expression for γ as a function of

8

The	collision	
velocity	between	
dust	grains	is	
determined	by	
the	turbulence	of	
the	gas,	brownian
motion,	
gravitational	
attraction,	and	
differential	drift



Collision	velocity	ANRV352-AA46-02 ARI 25 July 2008 6:37

B2B2
C
4

C4C4

B2B2B1B1

B1B1

C1C1

C1C1

C2C2

C3C3

A1A1

A2A2

A3A3

A4A4
C2C2

C3C3

B2
C
4

C4

B2B1

B1

C1

C1

C2

C3

A1

A2

A3

A4
C2

C3

Mass gain

Mass conservation

Mass loss

Diameter (m)
D

ia
m

et
er

 (
m

)
10–6

10–6

10–4 10–2 100

10–4

10–2

100

102

102

Figure 12
Overview of the results of the laboratory experiments described in Section 5. The blue, yellow, and orange
boxes denote sticking, bouncing, and fragmentation for collisions between two protoplanetary dust
aggregates of the sizes indicated at the axes of the diagram, respectively. Collision velocities were implicitly
taken from Weidenschilling & Cuzzi (1993) (see Figure 1) for a minimum-mass solar nebula. It is clearly
visible that direct growth of protoplanetary bodies !10 cm is not possible.

Experiments by Blum & Wurm (2000) have shown that fractal dust aggregates consisting of
micrometer-sized monomer grains possess a rather sharp threshold velocity above which sticking
no longer occurs (see Section 5.2). For s = 0.5 µm SiO2 spheres, s = 0.95 µm SiO2 spheres,
and s < 1.25 µm irregular MgSiO3 particles, Blum & Wurm (2000) found threshold velocities of
3.5 m s−1, 1.2 m s−1, and 2.2 m s−1, respectively.

Experiments by Reißaus et al. (2006) showed that single 2.5 nm ≤ s ≤ 25 nm Al2O3 particles
and fractal aggregates thereof stick to a solid carbon target at an impact velocity of 400–500 m s−1.
Particles and aggregates consisting of graphite 5 nm ≤ s ≤ 10 nm in size stick to the target for
impact velocities as high as 1000–1100 m s−1.

From these three experimental investigations we can draw the conclusion that the size of the
monomer grains in aggregate collisions has a decisive influence on the collision and sticking behav-
ior. This is graphically shown in Figure 13, where we plotted the velocity below which sticking
occurs for the impact experiments by Reißaus et al. (2006) and Colwell (2003) for nanometer-
sized and 100-µm-sized dust particles, respectively, along with the results shown in Section 5.2 for
micrometer-sized grains. For the most likely protoplanetary grain sizes of 0.1 µm ! s ! 10 µm,
we can approximate the threshold velocity for sticking by

vth

1 m s−1 =
(

s
1 µm

)−x

, (12)

with x ≈ 1. Much smaller grain sizes result in x > 1, whereas much larger grain sizes yield x < 1.
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Figure 1
The parameter space of the experiments described in Section 5. The blue boxes indicate the applicability of
the individual experiments to the collision scenario described by Weidenschilling & Cuzzi (1993) for a
minimum-mass solar nebula. In the background, the original contour plot of the collision velocities
(in cm s−1) for all pair-collisions by Weidenschilling & Cuzzi (1993) is shown. The data from
Weidenschilling & Cuzzi (1993) are valid for 1 AU and for a turbulent gas velocity of ∼10 m s−1.

Fractal dust
agglomerate: dust
agglomerates for
which a mass-size
relation m ∝ s D with
D < 3 exists

! Group C: Experiments in which a dust-agglomerate projectile impacts a larger dust-
agglomerate target. The numerals following the letter C increase with increasing collision
velocity.

Figure 1 shows the parameter space of the experiments to be described in this section. The
boxes indicate the applicability of the individual experiments to the collision scenario described by
Weidenschilling & Cuzzi (1993). In the background, the original contour plot for all pair-collisions
from Weidenschilling & Cuzzi (1993) is shown. The data from Weidenschilling & Cuzzi (1993)
are valid for 1 AU and for a turbulent gas velocity of ∼10 m s−1.

5.1. Experiments A1: Fractal Aggregate Growth
Name: Fractal aggregate growth
References: Blum et al. 1998, 2000, 2002; Wurm & Blum 1998; Krause & Blum 2004
Dust sample: α1, α2, γ (see Table 1)
Projectile: Fractal dust agglomerates
Target: Same as projectile
Collision velocities: 10−4–0.26 m s−1

Miscellaneous: Laboratory experiments, microgravity experiments onboard the space
shuttle and a sounding rocket
Application to PPDs: Earliest stage of agglomeration
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The	collision	velocity	dictates	whether	there	is	mass	
growth,	loss	or	mere	conservation
The	trend	is	clear,	larger	bodies	strike	at	higher	
velocities	and	typically	lose	mass

Blum	&	Wurm 2008





Radial	drift

A	body	only	under	the	
acceleration	of	gravity	moves	
at	a	Keplerian rate	about	the	
Sun

A	disk	of	gas	is	also	pressure	
supported	so	it	needs	a	
stronger	gravitational	pull	to	
orbit	at	the	same	speed



Radial	drift
If	a	body	and	a	parcel	of	gas	are	
at	the	same	distance	from	the	
Sun,	then	their	gravitational	
accelerations	will	be	the	same	
so	they	will	orbit	at	different	
speeds

Note:	they	both	will	be	on	the	
same	circular	orbit	despite	this	
difference	in	speeds



Radial	drift

This	is	often	shown	as	a	relative	velocity

The	body	is	catching	up	and	passing	the	gas



Radial	drift
This	is	often	shown	as	a	relative	velocity

So	gas	flows	past	the	body	creating	a	headwind

Like	on	a	bicycle	a	headwind	saps	energy	from	the	
body

Either	in	the	gas	frame Or	in	the	body	frame



Radial	drift

Bound	orbits	have	negative	energy

More	tightly	bound,	i.e.	small	semi-major	axis,	
orbits	have	less	energy,	i.e.	more	negative,

SO

Losing	energy	to	a	headwind	shrinks	the	orbit



Radial	drift
Larger	objects	interact	more	weakly	with	the	gas

Less	dense	gas	interacts	more	weakly	with	the	body	



Radial	drift
1	cm	through	10	m	particles	drift	faster	than	the	gas

Only	bodies	larger	than	10	km	drift	slower	than	the	age	of	
the	nebular	disk Cuzzi and Weidenschilling: Particle-Gas Dynamics and Primary Accretion 357

rience nearly the full headwind yet are not massive enough
to avoid drifting; they achieve the maximum radial drift rate
VR ≈ ∆V (Weidenschilling, 1977). An example of radial drift
velocities VR for a range of nebula models is shown in Fig. 1.
Over this range, gas densities decrease radially outward,
leading to an outwardly increasing ts that partially offsets
the outwardly decreasing VK; thus radial dependence of VR
is not particularly strong (especially for σg ∝ R–1).

As the local particle mass density ρp grows, such as near
the midplane, particles with ρp ≥ ρg can drive the entrained
gas toward Keplerian velocity, which decreases their head-
wind and drift rates Vθ and VR (see below). Analytical ex-
pressions for all particle headwind and drift velocities rela-
tive to the gas have been derived by Nakagawa et al. (1986)
for arbitrary ratios of local particle mass density to gas mass
density. These can conveniently be used in the limit ρp/ρg <<
1 to obtain headwinds and drift velocities for isolated par-
ticles of any size and density.

We note that drift velocities are systematic, and depend
on particle size. Identical particles would have the same
velocity components and no relative velocity; they would
experience no collisions due to drift. If turbulence is present,
it can produce relative velocities and collisions between
identical particles (as well as those of different sizes). Unless
the nebula is perfectly laminar, particle velocities will be due
to both sources, with the actual values dependent on nebular
parameters, turbulence properties, and particle sizes.

Local pressure fluctuations and particle concentrations:
Even though the nebula has an overall outward pressure
gradient, strong local effects might arise in which pressure
gradients, and particle drift, could go both ways. For in-
stance, particles could quickly drift into local radial pres-

sure maxima in the nebula gas (Haghighipour and Boss,
2003a,b; Fromang and Nelson, 2005; Johansen et al., 2005).
If the nebula gas is globally gravitationally unstable, large-
scale spiral density waves will provide such localized nearly
radial pressure maxima. Transient local enhancement in spi-
ral density waves of the most rapidly drifting (meter-sized)
particles by factors of 10–100 has been seen (Rice et al.,
2004). The end result is similar to that seen associated with
large vortices (section 3.3.3) in that some potential for par-
ticle mass density enhancements exists. As discussed in
section 3.3.3, increased collision rates in these regions may
or may not lead to faster particle growth, depending on the
relative collisional velocities, which will be connected to the
strength of turbulence associated with these large-scale fluid
dynamical structures (Boley et al., 2005).

2.4.2. Particle velocities in turbulence. While particle
velocities in turbulence have been studied extensively in the
fluid dynamics literature (see Cuzzi and Hogan, 2003), the
first and main contribution in the astrophysics literature was
made by Völk et al. (1980, hereafter VJMR). It was updated
by Markiewicz et al. (1991, hereafter MMV), who included
the importance of the cutoff in turbulent forcing at the Kol-
mogorov scale η as suggested by Weidenschilling (1984),
and also studied by Clarke and Pringle (1988).

We will refer to particle velocities with respect to iner-
tial space as Vp, those with respect to the gas (combined
radial and angular components) as Vpg, and those with re-
spect to each other as Vpp. In general, Vp is used to determine
the diffusive nature of particle motions, and plays a role in
determining the thickness of the midplane particle layer and
thus the planetesimal growth rate (section 3.3), as well as
diffusing small particles such as CAIs and chondrules ra-

Fig. 1. Radial (inward) drift velocity for unit density particles at different locations in a nominal nebula model (σg = 1700(1 AU/R)–p g
cm–2), as functions of particle radius (cm) and distance from the Sun (AU). Left: p = 1/2; center: p = 1; right: p = 3/2. For comparison,
the horizontal band in the p = 1 plot indicates the range of nebula gas advection, or inward drift, velocities Vn due to angular momentum
transport at 5 AU from the Sun for a typical model with α = 10–3 (sections 2.1 and 2.4.1). Curves are labeled at radii of 1 and 30 AU,
and at equal factors of 1.4 between.

Cuzzi &	Weidenschilling (2006)



Radial	drift
When	the	body	is	so	well-coupled	to	the	gas,	the	
body	no	longer	experiences	a	true	headwind	but	
is	carried	with	the	gas	as	it	is	advected inwardCuzzi and Weidenschilling: Particle-Gas Dynamics and Primary Accretion 357

rience nearly the full headwind yet are not massive enough
to avoid drifting; they achieve the maximum radial drift rate
VR ≈ ∆V (Weidenschilling, 1977). An example of radial drift
velocities VR for a range of nebula models is shown in Fig. 1.
Over this range, gas densities decrease radially outward,
leading to an outwardly increasing ts that partially offsets
the outwardly decreasing VK; thus radial dependence of VR
is not particularly strong (especially for σg ∝ R–1).

As the local particle mass density ρp grows, such as near
the midplane, particles with ρp ≥ ρg can drive the entrained
gas toward Keplerian velocity, which decreases their head-
wind and drift rates Vθ and VR (see below). Analytical ex-
pressions for all particle headwind and drift velocities rela-
tive to the gas have been derived by Nakagawa et al. (1986)
for arbitrary ratios of local particle mass density to gas mass
density. These can conveniently be used in the limit ρp/ρg <<
1 to obtain headwinds and drift velocities for isolated par-
ticles of any size and density.

We note that drift velocities are systematic, and depend
on particle size. Identical particles would have the same
velocity components and no relative velocity; they would
experience no collisions due to drift. If turbulence is present,
it can produce relative velocities and collisions between
identical particles (as well as those of different sizes). Unless
the nebula is perfectly laminar, particle velocities will be due
to both sources, with the actual values dependent on nebular
parameters, turbulence properties, and particle sizes.

Local pressure fluctuations and particle concentrations:
Even though the nebula has an overall outward pressure
gradient, strong local effects might arise in which pressure
gradients, and particle drift, could go both ways. For in-
stance, particles could quickly drift into local radial pres-

sure maxima in the nebula gas (Haghighipour and Boss,
2003a,b; Fromang and Nelson, 2005; Johansen et al., 2005).
If the nebula gas is globally gravitationally unstable, large-
scale spiral density waves will provide such localized nearly
radial pressure maxima. Transient local enhancement in spi-
ral density waves of the most rapidly drifting (meter-sized)
particles by factors of 10–100 has been seen (Rice et al.,
2004). The end result is similar to that seen associated with
large vortices (section 3.3.3) in that some potential for par-
ticle mass density enhancements exists. As discussed in
section 3.3.3, increased collision rates in these regions may
or may not lead to faster particle growth, depending on the
relative collisional velocities, which will be connected to the
strength of turbulence associated with these large-scale fluid
dynamical structures (Boley et al., 2005).

2.4.2. Particle velocities in turbulence. While particle
velocities in turbulence have been studied extensively in the
fluid dynamics literature (see Cuzzi and Hogan, 2003), the
first and main contribution in the astrophysics literature was
made by Völk et al. (1980, hereafter VJMR). It was updated
by Markiewicz et al. (1991, hereafter MMV), who included
the importance of the cutoff in turbulent forcing at the Kol-
mogorov scale η as suggested by Weidenschilling (1984),
and also studied by Clarke and Pringle (1988).

We will refer to particle velocities with respect to iner-
tial space as Vp, those with respect to the gas (combined
radial and angular components) as Vpg, and those with re-
spect to each other as Vpp. In general, Vp is used to determine
the diffusive nature of particle motions, and plays a role in
determining the thickness of the midplane particle layer and
thus the planetesimal growth rate (section 3.3), as well as
diffusing small particles such as CAIs and chondrules ra-

Fig. 1. Radial (inward) drift velocity for unit density particles at different locations in a nominal nebula model (σg = 1700(1 AU/R)–p g
cm–2), as functions of particle radius (cm) and distance from the Sun (AU). Left: p = 1/2; center: p = 1; right: p = 3/2. For comparison,
the horizontal band in the p = 1 plot indicates the range of nebula gas advection, or inward drift, velocities Vn due to angular momentum
transport at 5 AU from the Sun for a typical model with α = 10–3 (sections 2.1 and 2.4.1). Curves are labeled at radii of 1 and 30 AU,
and at equal factors of 1.4 between.

Cuzzi &	Weidenschilling (2006)



Problems	with	pairwise	growth

• It	assumes	collisions	are	accretionary	when	
they	could	be	bouncy	or	fragmentary

• It’s	too	slow	compared	to	radial	drift

Planet	formation	needs	an	alternative

Can	more	than	two	objects	be	
brought	together	at	once?



Gravitational	instabilities
Because	asteroids	were	born	big	and	there	are	many	barriers	between	~<m	
and	>100	km	asteroids,	it	would	be	advantageous	to	go	suddenly	from	one	
regime	to	another

1. Classical
2. Aero-assisted,	gravoturbulent,	gas	necessary

1. Turbulent	concentration
2. Pressure	bumps
3. Streaming	instability

Eddies

l ~ η ~ 1 km, St ~ 10−5−10−4

Pressure bumps / vortices

l ~ 1−10 H, St ~ 0.1−10

Streaming instabilities

l ~ 0.1 H, St ~ 0.01−1

Fig. 6.— The three main ways to concentrate particles in protoplanetary discs. Left panel: turbulent eddies near the smallest scales
of the turbulence, η, expel tiny particles to high-pressure regions between the eddies. Middle panel: the zonal flow associated with
large-scale pressure bumps and vortices, of sizes from one scale height up to the global scale of the disc, trap particles of Stokes number
from 0.1 to 10. Right panel: streaming instabilities on intermediate scales trap particles of Stokes number from 0.01 to 1 by accelerating
the pressure-supported gas to near the Keplerian speed, which slows down the radial drift of particles in the concentration region.

4.1.1. Isotropic turbulence

On the smallest scales of the gas flow, where the Coriolis
force is negligible over the turn-over time-scale of the ed-
dies, the equation governing the structure of a rotating eddy
is

dvr
dt

= −
1

ρ

∂P

∂r
≡ fP . (16)

Here fP is the gas acceleration caused by the radial pressure
gradient of the eddy. We use r as the radial coordinate in a
frame centred on the eddy. The pressure must rise outwards,
∂P/∂r > 0, to work as a centripetal force. In such low-
pressure eddies the rotation speed is set by

fP = −
v2e
ℓ
. (17)

Very small particles with τf ≪ te reach their terminal ve-
locity

vp = −τffP (18)

on a time-scale much shorter than the eddy turn-over time-
scale. This gives

vp = −τffP = τf
v2e
ℓ

=
τf
te
ve . (19)

The largest particles to reach their terminal velocity in the
eddy turn-over time-scale have τf ∼ te. This is the op-
timal particle size to be expelled from small-scale eddies
and cluster in regions of high pressure between the eddies.
Larger particles do not reach their terminal velocity before
the eddy structure breaks down and reforms with a new
phase, and thus their concentration is weaker.
Numerical simulations and laboratory experiments have

shown that particles coupling at the turn-over time-scale of
eddies at the Kolmogorov scale of isotropic turbulence ex-
perience the strongest concentrations (Squires and Eaton,

1991; Fessler et al., 1994). In an astrophysics context, such
turbulent concentration of sub-mm-sized particles between
small-scale eddies has been put forward to explain the nar-
row size ranges of chondrules found in primitive meteorites
(Cuzzi et al., 2001), as well as the formation of asteroids
by gravitational contraction of rare, extreme concentration
events of such particles (Cuzzi et al., 2008). This model was
nevertheless criticised by Pan et al. (2011) who found that
efficiently concentrated particles have a narrow size range
and that concentration of masses sufficiently large to form
the primordial population of asteroids is unlikely.

4.1.2. Turbulence in rigid rotation

On larger scales of protoplanetary discs, gas and parti-
cle motion is dominated by Coriolis forces and shear. We
first expand our particle-trapping framework to flows dom-
inated by Coriolis forces and then generalise the expression
to include shear.
In a gas rotating rigidly at a frequencyΩ, the equilibrium

of the eddies is now given by

2Ωve −
1

ρ

∂P

∂r
= −

v2e
ℓ
. (20)

For slowly rotating eddies with ve/ℓ ≪ Ω we can ignore
the centripetal term and get

ve = −
fP
2Ω

. (21)

High pressure regions have ve < 0 (clockwise rotation),
while low pressure regions have ve > 0 (counter-clockwise
rotation).
The terminal velocity of inertial particles can be found
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Classical	gravitational	instability

This	field	starts	with	some	of	the	greats	in	planetary	
science:	Kuiper,	Urey,	Chandrasehkar

Mass	sediments	onto	a	very	thin	mid-plane	layer

This	disk	undergoes	gravitational	instabilities	to	
create	100	m	size	bodies

These	bodies	undergo	further	instabilites to	create	
the	planets	and	asteroids

Goldreich &	Ward	1973



Classical	gravitational	instability

The	primary	challenge	of	this	model	is	the	
sedimenting of	the	dust	to	a	thin	mid-plane	layer

Goldreich &	Ward	(1973)	assumed	a	particle	scale	
height	of	less	than	3	x	10-5

Modern	models	(e.g.	Youdin &	Lithwick,	2007)	
predict	that	even	in	dead	zones	the	particle	scale	
height	for	sedimented grains	is	about	3	x	10-4 due	
to	turbulent	diffusion	

Goldreich &	Ward	1973



Turbulent	Concentrations

Eddys and	vortices	create	regions	of	pressure	
highs	and	lows

These	attract	and	repel	particles

The	requirements	for	these	turbulent	
concentrations	to	become	large	enough	to	
become	gravitationally	unstable	are	likely	
never	met



Pressure	bumps
Typically,	because	the	inner	disk	is	hotter,	the	
pressure	gradient	is	directed	outward

If	the	temperature	gradient	is	inverted	due	to	an	
opacity	transition,	then	the	pressure	gradient	
can	be	directed	in	the	other	direction

Furthermore,	gravitational	perturbations	on	the	
disk	such	as	giant	planets	can	create	“pressure	
bumps”



Back	to	pressure	bumps
Pressure	bumps	are	unlikely	to	concentrate	
particles	enough	on	their	own	but	they	create	
places	where	other	processes	can	be	more	efficient

0.1

1

10

100
AU

MRI DZE

EF

SI
BI

SI
PGE

DZE
MRI

GIMRI = magnetorotational instability
DZE = dead zone edge
SI = streaming instability
BI = baroclinic instability
EF = evaporation front (snow line)
PGE = planet gap edge
GI = gravitational instability

Fig. 7.— Sketch of the particle concentration regions in a wedge of a protoplanetary disc seen from above. Regions where the
magnetorotational instability is expected to operate are marked with red, while the extent of the dead zone in a nominal protoplanetary
disc model is marked with blue. The particle trapping mechanisms are described in the main text.

4.2. Streaming instability
The above considerations of passive concentration of

particles in pressure bumps ignore the back-reaction fric-
tion force exerted by the particles onto the gas. The radial
drift of particles leads to outwards motion of the gas in the
mid-plane, because of the azimuthal frictional pull of the
particles on the gas.
Youdin and Goodman (2005) showed that the equilib-

rium streaming motion of gas and particles is linearly
unstable to small perturbations, a result also seen in the
simplified mid-plane layer model of Goodman and Pindor
(2000). The eight dynamical equations (six for the gas and
particle velocity fields and two for the density fields) yield
eight linear modes, one of which is unstable and grows ex-
ponentially with time. The growth rate depends on both
the friction time and the particle mass-loading. Generally
the growth rate increases proportional to the friction time
(up to St∼1), as the particles enjoy increasing freedom
to move relative to the gas. The dependence on the particle
mass-loading is more complicated; below a mass-loading of
unity the growth rate increases slowly (much more slowly
than linearly) with mass-loading, but after reaching unity
in dust-to-gas ratio the growth rate jumps by one or more
orders of magnitude. The e-folding time-scale of the un-
stable mode is as low as a few orbits in the regime of high
mass-loading.
The linear mode of the streaming instability is an ex-

act solution to the coupled equations of motion of gas and
particles, valid for very small amplitudes. This property
can be exploited to test numerical algorithm for solving
the full non-linear equations. Youdin and Johansen (2007)
tested their numerical algorithm for two-way drag forces

against two modes of the streaming instability, the modes
having different wavenumbers and friction times. These
modes have subsequently been used in other papers (e.g.
Bai and Stone, 2010b) to test the robustness and conver-
gence of numerical algorithms for the coupled dynamics of
gas and solid particles.
The non-linear evolution of the streaming instability can

be studied either with or without particle stratification. The
case without particle stratification is closest to the linear sta-
bility analysis. In this case the mean particle mass-loading
in the simulation domain must be specified, as well as the
friction time of the particles. The initial gas and parti-
cle velocities are set according to drag force equilibrium
(Nakagawa et al., 1986), with particle drifting in towards
the star and gas drifting out.
In simulations not including the component of the stellar

gravity towards the mid-plane, i.e. non-stratified simula-
tions, high particle densities are reachedmainly for particles
with St = 1 (Johansen and Youdin, 2007; Bai and Stone,
2010b). At a particle mass-loading of 3 (times the mean
gas density), the particle density reaches almost 1000 times
the gas density. The overdense regions appear nearly
axisymmetric in both local and semi-global simulations
(Kowalik et al., 2013). Smaller particles with St = 0.1
reach only between 20 and 60 times the gas density when
the particle mass-loading is unity of higher. Little or no con-
centration is found at a dust-to-gas ratio of 0.2 for St = 0.1
particles. Bai and Stone (2010b) presented convergence
tests of non-stratified simulations in 2-D and found conver-
gence in the particle density distribution functions at 10242
grid cells.
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Streaming	instability

Aerodynamic	gas	drag	
slows	the	motion	of	an	
object	in	orbit	about	
the	Sun

Newton’s	third	law	tells	
us	that	there	is	a	back	
reaction	on	the	gas	
accelerating	its	motion

Remember	that	the	size	
of	the	drag	term	on	the	
body	is	proportional	to	
the	difference	in	velocity	
between	the	gas	and	the	
body	



Streaming	instability	
Pushing	gas	is	difficult!	

Irregular	shaped	objects,	gas	self-
interaction,	etc.

But	the	effectiveness	of	
pushing	gas	increases	with	the	
number	of	bodies	pushing

As	the	feedback	on	the	gas	
increases,	the	velocity	
difference	between	the	gas	
and	bodies	decreases,	so	the	
drag	decreases



Streaming	instability	in	a	bicycle	race	

The	peloton	is	used	by	
racers	to	reduce	
energy	expenditures

Following	bicyclists	
enter	the	slipstreams	
of	bicyclists	in	front	of	
them	and	experience	
drag	reduction



Streaming	instability	
As	the	difference	between	
the	solid	and	gas	velocities	
decrease	the	radial	drift	
decreases

This	means	that	outer	
bodies	catch	up	with	inner	
bodies

As	the	number	increases,	
the	velocity	difference	
decreases,	more	particles	
catch	up,	and	so	on.	It’s	a	
runaway	effect.



Streaming	Instability	in	a	disk

Radial	drift	to	
aerodynamic	
gas	drag	seen	
as	a	drift	in	
mean	anomaly

Clumps	are	due	
to	turbulent	
eddy	effects

been concentrated by transient high pressures9. Increasing radial
pressure support, by changing Dv 5 20.02cs to 20.05cs, reduces
the concentration (see Fig. 1 legend for explanation), although the
local solids-to-gas density ratio still reaches 200.

Gravitational collapse of discrete solid objects produces virialized
clusters unable to contract further22 in the absence of mechanisms to
dynamically cool the cluster—that is, to reduce the local r.m.s. speed.
Two processes that we consider can be important: drag force cooling
and collisional cooling. Drag force cooling occurs because part of the
kinetic energy exchanged between the particles and the gas is dissip-
ated. Collisional cooling is produced by the highly inelastic collisions
between boulders, transferring kinetic energy to heat and deforma-
tion. Collisional cooling occurs generally in simulations of resolved
collisions in planetary rings23. In the Supplementary Information we
describe how we treat collisional cooling numerically in the self-
gravitating simulations by damping the r.m.s. speed of the particles
in each grid cell on a collisional timescale. We have found that in the
absence of collisional cooling, gravitational collapse still proceeds if
the total surface density (of solids and gas) is augmented by 50%.
Collisional cooling is thus not a prerequisite of the collapse, but does
allow it to occur in somewhat less massive disks. We ignore all other
effects of the collisions, such as coagulation and collisional frag-
mentation. Collisional cooling and self-gravity are turned on after
20 orbits in the self-gravitating simulations.

Our chosen scale-height-to-radius ratio of H/r 5 0.04 gives a gas
temperature of T 5 80 K at an orbital radius of r 5 5 AU. For the 2563

self-gravitating run, we choose the uniform gas volume density to
be consistent with the midplane of a disk with surface density of
Sgas 5 300 g cm22. This corresponds to approximately twice the
minimum-mass solar nebula at 5 AU from the (proto-)Sun. An
alternative theory for giant planet formation, the disk instability
hypothesis24,25, requires column densities at least 20 times higher than
the minimum-mass solar nebula for gravitational fragmentation of
the gaseous component of the disk to occur.

We have examined the numerical convergence of our models with
resolutions ranging from 643 to 2563 zones (see Supplementary
Information). The peak particle density on the grid increases with
increasing resolution, because of less smoothing in the particle-mesh
scheme at higher resolution, resulting in a decrease in the column
density threshold for gravitational collapse. Although we have not yet
achieved full convergence, our results seem to provide good upper
limits to the column density for which collapse can occur. For the
self-gravitating simulation, we consider boulders with friction times
distributed among VKtf 5 0.25, 0.50, 0.75, 1.00. At r 5 5 AU in our
chosen disk model, these correspond to radii of 15–60 cm. Con-
sideration of multiple boulder sizes is vital, as differential aero-
dynamic behaviour could inhibit gravitational instabilities26. The size
range covers roughly half of the two orders of magnitude in particle
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Figure 1 | Topography of the sedimented particle layer in models without
self-gravity or collisional cooling. a, The azimuthally averaged vertical
column density Sp of metre-sized boulders (with VKtf 5 1) as a function of
radial coordinate x (in units of disk scale heights H) and time t (in orbits
Torb), in a model where the particles feel gas drag, but the gas does not feel
drag from the particles. Radial drift is evident from the tilted bands (particles
crossing the inner boundary reappear at the outer). Transient regions of
mildly increased gas pressure temporarily concentrate boulders. The gas
orbits slightly more slowly on the outer edge of these high pressure regions
and slightly faster on the inner edge, resulting in a differential headwind that
forces boulders towards the centres of these high-pressure regions9,30.
b, Including the back-reaction drag force from the particles on the gas allows
for the development of the streaming instability, seeded by the existing radial
density enhancements. The streaming instability occurs where the collective

drag force of the solids forces the gas to locally move with an orbital speed
that is closer to keplerian, reducing the gaseous headwind that otherwise
causes boulders to drift radially. Solids then drift into already overdense
regions from further out, causing runaway growth in the local bulk density of
solids. c, The column density when the radial pressure support is changed
from Dv 5 20.02cs to 20.05cs. Radial density enhancements become
narrower and shorter-lived owing to downstream erosion of the
overdensities by the stronger radial drift. d, The maximum particle density
rp on the grid (in units of the gas density rgas) as a function of time. The
average solids-to-gas ratio in the midplane is 0.5, whereas the maximum
reaches well over ten times higher values in transient high pressure regions
(yellow) and several hundred times higher values when the streaming
instability is active (orange and blue).
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been concentrated by transient high pressures9. Increasing radial
pressure support, by changing Dv 5 20.02cs to 20.05cs, reduces
the concentration (see Fig. 1 legend for explanation), although the
local solids-to-gas density ratio still reaches 200.

Gravitational collapse of discrete solid objects produces virialized
clusters unable to contract further22 in the absence of mechanisms to
dynamically cool the cluster—that is, to reduce the local r.m.s. speed.
Two processes that we consider can be important: drag force cooling
and collisional cooling. Drag force cooling occurs because part of the
kinetic energy exchanged between the particles and the gas is dissip-
ated. Collisional cooling is produced by the highly inelastic collisions
between boulders, transferring kinetic energy to heat and deforma-
tion. Collisional cooling occurs generally in simulations of resolved
collisions in planetary rings23. In the Supplementary Information we
describe how we treat collisional cooling numerically in the self-
gravitating simulations by damping the r.m.s. speed of the particles
in each grid cell on a collisional timescale. We have found that in the
absence of collisional cooling, gravitational collapse still proceeds if
the total surface density (of solids and gas) is augmented by 50%.
Collisional cooling is thus not a prerequisite of the collapse, but does
allow it to occur in somewhat less massive disks. We ignore all other
effects of the collisions, such as coagulation and collisional frag-
mentation. Collisional cooling and self-gravity are turned on after
20 orbits in the self-gravitating simulations.

Our chosen scale-height-to-radius ratio of H/r 5 0.04 gives a gas
temperature of T 5 80 K at an orbital radius of r 5 5 AU. For the 2563

self-gravitating run, we choose the uniform gas volume density to
be consistent with the midplane of a disk with surface density of
Sgas 5 300 g cm22. This corresponds to approximately twice the
minimum-mass solar nebula at 5 AU from the (proto-)Sun. An
alternative theory for giant planet formation, the disk instability
hypothesis24,25, requires column densities at least 20 times higher than
the minimum-mass solar nebula for gravitational fragmentation of
the gaseous component of the disk to occur.

We have examined the numerical convergence of our models with
resolutions ranging from 643 to 2563 zones (see Supplementary
Information). The peak particle density on the grid increases with
increasing resolution, because of less smoothing in the particle-mesh
scheme at higher resolution, resulting in a decrease in the column
density threshold for gravitational collapse. Although we have not yet
achieved full convergence, our results seem to provide good upper
limits to the column density for which collapse can occur. For the
self-gravitating simulation, we consider boulders with friction times
distributed among VKtf 5 0.25, 0.50, 0.75, 1.00. At r 5 5 AU in our
chosen disk model, these correspond to radii of 15–60 cm. Con-
sideration of multiple boulder sizes is vital, as differential aero-
dynamic behaviour could inhibit gravitational instabilities26. The size
range covers roughly half of the two orders of magnitude in particle
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Figure 1 | Topography of the sedimented particle layer in models without
self-gravity or collisional cooling. a, The azimuthally averaged vertical
column density Sp of metre-sized boulders (with VKtf 5 1) as a function of
radial coordinate x (in units of disk scale heights H) and time t (in orbits
Torb), in a model where the particles feel gas drag, but the gas does not feel
drag from the particles. Radial drift is evident from the tilted bands (particles
crossing the inner boundary reappear at the outer). Transient regions of
mildly increased gas pressure temporarily concentrate boulders. The gas
orbits slightly more slowly on the outer edge of these high pressure regions
and slightly faster on the inner edge, resulting in a differential headwind that
forces boulders towards the centres of these high-pressure regions9,30.
b, Including the back-reaction drag force from the particles on the gas allows
for the development of the streaming instability, seeded by the existing radial
density enhancements. The streaming instability occurs where the collective

drag force of the solids forces the gas to locally move with an orbital speed
that is closer to keplerian, reducing the gaseous headwind that otherwise
causes boulders to drift radially. Solids then drift into already overdense
regions from further out, causing runaway growth in the local bulk density of
solids. c, The column density when the radial pressure support is changed
from Dv 5 20.02cs to 20.05cs. Radial density enhancements become
narrower and shorter-lived owing to downstream erosion of the
overdensities by the stronger radial drift. d, The maximum particle density
rp on the grid (in units of the gas density rgas) as a function of time. The
average solids-to-gas ratio in the midplane is 0.5, whereas the maximum
reaches well over ten times higher values in transient high pressure regions
(yellow) and several hundred times higher values when the streaming
instability is active (orange and blue).
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Streaming	Instability	in	a	disk

Clumps	are	
much	larger

Radial	drift	
can	be	halted	
by	the	back-
reaction

Johansen	et	al.	(2007)



Streaming	Instability	in	a	disk
Clumps	of	
particles	get	
quite	massive	
when	back-
reaction	is	
considered

Peaks	with	over	
100	times	gas	
density	as	
opposed	to	
about	10	before

Johansen	et	al.	(2007)

been concentrated by transient high pressures9. Increasing radial
pressure support, by changing Dv 5 20.02cs to 20.05cs, reduces
the concentration (see Fig. 1 legend for explanation), although the
local solids-to-gas density ratio still reaches 200.

Gravitational collapse of discrete solid objects produces virialized
clusters unable to contract further22 in the absence of mechanisms to
dynamically cool the cluster—that is, to reduce the local r.m.s. speed.
Two processes that we consider can be important: drag force cooling
and collisional cooling. Drag force cooling occurs because part of the
kinetic energy exchanged between the particles and the gas is dissip-
ated. Collisional cooling is produced by the highly inelastic collisions
between boulders, transferring kinetic energy to heat and deforma-
tion. Collisional cooling occurs generally in simulations of resolved
collisions in planetary rings23. In the Supplementary Information we
describe how we treat collisional cooling numerically in the self-
gravitating simulations by damping the r.m.s. speed of the particles
in each grid cell on a collisional timescale. We have found that in the
absence of collisional cooling, gravitational collapse still proceeds if
the total surface density (of solids and gas) is augmented by 50%.
Collisional cooling is thus not a prerequisite of the collapse, but does
allow it to occur in somewhat less massive disks. We ignore all other
effects of the collisions, such as coagulation and collisional frag-
mentation. Collisional cooling and self-gravity are turned on after
20 orbits in the self-gravitating simulations.

Our chosen scale-height-to-radius ratio of H/r 5 0.04 gives a gas
temperature of T 5 80 K at an orbital radius of r 5 5 AU. For the 2563

self-gravitating run, we choose the uniform gas volume density to
be consistent with the midplane of a disk with surface density of
Sgas 5 300 g cm22. This corresponds to approximately twice the
minimum-mass solar nebula at 5 AU from the (proto-)Sun. An
alternative theory for giant planet formation, the disk instability
hypothesis24,25, requires column densities at least 20 times higher than
the minimum-mass solar nebula for gravitational fragmentation of
the gaseous component of the disk to occur.

We have examined the numerical convergence of our models with
resolutions ranging from 643 to 2563 zones (see Supplementary
Information). The peak particle density on the grid increases with
increasing resolution, because of less smoothing in the particle-mesh
scheme at higher resolution, resulting in a decrease in the column
density threshold for gravitational collapse. Although we have not yet
achieved full convergence, our results seem to provide good upper
limits to the column density for which collapse can occur. For the
self-gravitating simulation, we consider boulders with friction times
distributed among VKtf 5 0.25, 0.50, 0.75, 1.00. At r 5 5 AU in our
chosen disk model, these correspond to radii of 15–60 cm. Con-
sideration of multiple boulder sizes is vital, as differential aero-
dynamic behaviour could inhibit gravitational instabilities26. The size
range covers roughly half of the two orders of magnitude in particle
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Figure 1 | Topography of the sedimented particle layer in models without
self-gravity or collisional cooling. a, The azimuthally averaged vertical
column density Sp of metre-sized boulders (with VKtf 5 1) as a function of
radial coordinate x (in units of disk scale heights H) and time t (in orbits
Torb), in a model where the particles feel gas drag, but the gas does not feel
drag from the particles. Radial drift is evident from the tilted bands (particles
crossing the inner boundary reappear at the outer). Transient regions of
mildly increased gas pressure temporarily concentrate boulders. The gas
orbits slightly more slowly on the outer edge of these high pressure regions
and slightly faster on the inner edge, resulting in a differential headwind that
forces boulders towards the centres of these high-pressure regions9,30.
b, Including the back-reaction drag force from the particles on the gas allows
for the development of the streaming instability, seeded by the existing radial
density enhancements. The streaming instability occurs where the collective

drag force of the solids forces the gas to locally move with an orbital speed
that is closer to keplerian, reducing the gaseous headwind that otherwise
causes boulders to drift radially. Solids then drift into already overdense
regions from further out, causing runaway growth in the local bulk density of
solids. c, The column density when the radial pressure support is changed
from Dv 5 20.02cs to 20.05cs. Radial density enhancements become
narrower and shorter-lived owing to downstream erosion of the
overdensities by the stronger radial drift. d, The maximum particle density
rp on the grid (in units of the gas density rgas) as a function of time. The
average solids-to-gas ratio in the midplane is 0.5, whereas the maximum
reaches well over ten times higher values in transient high pressure regions
(yellow) and several hundred times higher values when the streaming
instability is active (orange and blue).
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Streaming	instability	in	a	cartoon	
Add	a	further	process	
the	gravity	between	
bodies

Very	akin	to	the	Jean’s	
mass	for	gravitational	
collapse	into	Stars

The	bodies	must	reach	
an	appropriate	
overdensity criterion	
before	they	collapse	into	
a	single	body



Johansen	et	al.	(2007)



Streaming	Instability	in	a	disk
With	self-gravity	
the	clumps	can	
reach	nearly	10,000	
times	the	gas	
density

Collapse	times	are	
short

Final	bodies	are	
more	massive	than	
Ceres

Johansen	et	al.	(2007)

perhaps be possible owing to radial variation in boulder drift speeds6

or photoevaporation of the gas29.) Magnetorotational turbulence
thus has a positive effect on the mid-plane layer’s ability to gravita-
tionally collapse, although collapse can also occur without it.

The Supplementary Information also includes a model with an
adiabatic equation of state and explicit gas heating due to energy
dissipated by drag and inelastic collisions. We find that gas heating
does not prevent collapse. The maximum temperature reached is not
even high enough to melt ice, although that may change with the
formation of massive bodies with escape velocity near the sound speed.

Our proposed path to planetesimal formation depends crucially
on the existence of a dense sedimentary layer of boulders. Future
investigations should focus on the formation and survival of such
layers in the light of processes like coagulation, collisional fragmenta-
tion and erosion28. Especially important are higher resolution studies
of collision speeds, and an improved analytical theory of collisions
that includes the epicyclic motion of particles.
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Figure 3 | Mass accretion onto a gravitationally bound cluster. Main plot,
the maximum bulk density of solids rp as a function of time, normalized by
the average gas density rgas. Drag force and vertical gravity are turned on at
t 5 210, whereas self-gravity and collisional cooling are turned on at t 5 0.
The density increases monotonically after the onset of self-gravity because
gravitationally bound clusters of boulders form in the mid-plane. After only
seven orbits, peak densities in these clusters approach 104rgas or a million
times the average boulder density in the disk. Bottom right inset, coloured
bars show (by their height, given on top) the mass contained within the most
massive Hill sphere in the box, in units of the mass of the 970-km-radius
dwarf planet Ceres (MCeres 5 9.5 3 1023 g). The most massive cluster
accretes about 0.5MCeres per orbit (the entire box contains a total boulder
mass of 50MCeres). The cluster consists of approximately equal fractions of
the three larger boulder sizes (see colour bar inset at top left). The smallest
size, with VKtf 5 0.25, is initially underrepresented with a fraction of only
15% because of the stronger aerodynamic coupling of those particles to the
gas, but the fraction of small particles increases with time as the cluster grows
massive enough to attract smaller particles as well. The mean free path inside
the bound clusters is shorter than the size of the cluster, so any fragments
formed in catastrophic collisions between the boulders will be swept up by
the remaining boulders before being able to escape the cluster (see
Supplementary Information).
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Successes	of	the	streaming	instability

Fig. 2.— The cumulative size distribution of asteroids N(>D), as a function of asteroid diameter D, from Morbidelli
et al. (2009). These coagulation models started with either km-sized planetesimals (left plot) or an initial size distribution
following the current, observed size distribution of asteroids between 100 and 1000 km in diameter (right plot). The grey
line shows the current size distribution of asteroids larger than 100 km in diameter. The model with small planetesimals
overproduces asteroids smaller than 100 km in diameter (the upper dashed line represents the current size distribution of
small asteroids while the lower dashed lines indicates a tighter constraint on the size distribution directly after accretion
of the main belt). Starting with large asteroids gives a natural bump in the size distribution at 100 km in diameter, as the
smaller asteroids are created in impacts between the larger primordial counterparts.

So the jury is still out on whether chondrule formation
immediately preceded incorporation in a chondrite or not.
Given the chondrule age spread of 3 Myr within individual
chondrites (Connelly et al., 2012), as well as the presence
of refractory inclusions and presolar grains which would
not have survived chondrule-forming events, it is possible
that chondrite components did spend up to a few Myr as
free-floating particles in the gaseous disk prior to accretion.

3. CONSTRAINTS FROM THE ASTEROID BELT

The modern asteroid belt contains only a fraction of its
original planetesimal population. However, the shape of the
size distribution of the largest asteroids is primordial and
gives important insights into the birth sizes of the planetesi-
mals. Asteroid families provide a way to probe whether the
asteroids are internally homogeneous or heterogeneous on
large scales.

3.1. Asteroid size distribution
The observed size distribution of asteroids in the main

belt shows a quite steep slope for bodies with diameter
D>100 km and a much shallower slope for smaller bod-
ies (Bottke et al., 2005). A similar change of slope with an
elbow at D⇠130 km is observed in the Kuiper belt popula-
tion (Fraser et al., 2014).

It was expected that the transition from a steep to a shal-
lower slope is the consequence of the collisional disruption
of smaller bodies. However, Bottke et al. (2005) reached the
opposite conclusion by examining the collisional evolution
of the asteroid belt in detail. They used a number of con-
straints (the total number of catastrophic asteroid families,

the survival of the basaltic crust on Vesta, the existence of
only 1-2 major basins on that body, etc.) to conclude that
the integrated collisional activity of the asteroid belt had to
be less than the one of the current main belt population in a
putative time-span of 10 Gyr. If one supposes that initially
the asteroid belt size distribution had a unique slope (the
slope now observed for D>100 km), such a limited colli-
sional evolution is not sufficient to reduce the slope of the
size distribution of objects smaller than 100 km down to the
observed value, i.e. to create the observed elbow. Therefore,
Bottke et al. (2005) concluded that the elbow at D⇠100 km
is a fossil feature of the primordial size distribution. For
the Kuiper belt, the constraints on the integrated collisional
activity are not as tight as for the asteroid belt. Neverthe-
less, models seem to suggest that collisional evolution alone
could not create an elbow at diameters larger than 80 km
(Pan and Sari, 2005), which is significantly smaller than
the observed value.

Morbidelli et al. (2009) failed to produce the elbow at
D⇠100 km in the asteroid belt in collisional coagulation
simulations starting from a population of small planetesi-
mals (see Figure 2). So, having in mind the new models
of formation of large planetesimals from self-gravitating
clumps of chondrules or larger pebbles and boulders (Jo-
hansen et al., 2007; Cuzzi et al., 2008), they proposed that
100 km was the minimal diameter of the original plan-
etesimals. Moreover, not being able to reproduce the cur-
rent slope of D>100 km asteroids by mutual collisions be-
tween bodies of 100 km in size, Morbidelli et al. (2009)
argued that these large planetesimals were born with a sim-
ilar slope. However, as we will see in Section 7, the cur-
rent slope can be reproduced by considering the accretion

7

It	creates	the	large	asteroids,	that	are	thought	to	be	
leftover	planetesimals

And	it	does	so	directly	from	small	bodies



Caveats	to	the	streaming	instability
• Unlike	pairwise	
accretion,	it	is	inefficient	
for	small	grains

• It	is	most	efficient	for	
grains	that	are	very	close	
or	at	the	various	size	
barriers

• Works	better	with	higher	
dust	to	gas	ratios

• Works	better	with	low	
levels	of	turbulence	and	
within	pressure	bumps

been concentrated by transient high pressures9. Increasing radial
pressure support, by changing Dv 5 20.02cs to 20.05cs, reduces
the concentration (see Fig. 1 legend for explanation), although the
local solids-to-gas density ratio still reaches 200.

Gravitational collapse of discrete solid objects produces virialized
clusters unable to contract further22 in the absence of mechanisms to
dynamically cool the cluster—that is, to reduce the local r.m.s. speed.
Two processes that we consider can be important: drag force cooling
and collisional cooling. Drag force cooling occurs because part of the
kinetic energy exchanged between the particles and the gas is dissip-
ated. Collisional cooling is produced by the highly inelastic collisions
between boulders, transferring kinetic energy to heat and deforma-
tion. Collisional cooling occurs generally in simulations of resolved
collisions in planetary rings23. In the Supplementary Information we
describe how we treat collisional cooling numerically in the self-
gravitating simulations by damping the r.m.s. speed of the particles
in each grid cell on a collisional timescale. We have found that in the
absence of collisional cooling, gravitational collapse still proceeds if
the total surface density (of solids and gas) is augmented by 50%.
Collisional cooling is thus not a prerequisite of the collapse, but does
allow it to occur in somewhat less massive disks. We ignore all other
effects of the collisions, such as coagulation and collisional frag-
mentation. Collisional cooling and self-gravity are turned on after
20 orbits in the self-gravitating simulations.

Our chosen scale-height-to-radius ratio of H/r 5 0.04 gives a gas
temperature of T 5 80 K at an orbital radius of r 5 5 AU. For the 2563

self-gravitating run, we choose the uniform gas volume density to
be consistent with the midplane of a disk with surface density of
Sgas 5 300 g cm22. This corresponds to approximately twice the
minimum-mass solar nebula at 5 AU from the (proto-)Sun. An
alternative theory for giant planet formation, the disk instability
hypothesis24,25, requires column densities at least 20 times higher than
the minimum-mass solar nebula for gravitational fragmentation of
the gaseous component of the disk to occur.

We have examined the numerical convergence of our models with
resolutions ranging from 643 to 2563 zones (see Supplementary
Information). The peak particle density on the grid increases with
increasing resolution, because of less smoothing in the particle-mesh
scheme at higher resolution, resulting in a decrease in the column
density threshold for gravitational collapse. Although we have not yet
achieved full convergence, our results seem to provide good upper
limits to the column density for which collapse can occur. For the
self-gravitating simulation, we consider boulders with friction times
distributed among VKtf 5 0.25, 0.50, 0.75, 1.00. At r 5 5 AU in our
chosen disk model, these correspond to radii of 15–60 cm. Con-
sideration of multiple boulder sizes is vital, as differential aero-
dynamic behaviour could inhibit gravitational instabilities26. The size
range covers roughly half of the two orders of magnitude in particle
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Figure 1 | Topography of the sedimented particle layer in models without
self-gravity or collisional cooling. a, The azimuthally averaged vertical
column density Sp of metre-sized boulders (with VKtf 5 1) as a function of
radial coordinate x (in units of disk scale heights H) and time t (in orbits
Torb), in a model where the particles feel gas drag, but the gas does not feel
drag from the particles. Radial drift is evident from the tilted bands (particles
crossing the inner boundary reappear at the outer). Transient regions of
mildly increased gas pressure temporarily concentrate boulders. The gas
orbits slightly more slowly on the outer edge of these high pressure regions
and slightly faster on the inner edge, resulting in a differential headwind that
forces boulders towards the centres of these high-pressure regions9,30.
b, Including the back-reaction drag force from the particles on the gas allows
for the development of the streaming instability, seeded by the existing radial
density enhancements. The streaming instability occurs where the collective

drag force of the solids forces the gas to locally move with an orbital speed
that is closer to keplerian, reducing the gaseous headwind that otherwise
causes boulders to drift radially. Solids then drift into already overdense
regions from further out, causing runaway growth in the local bulk density of
solids. c, The column density when the radial pressure support is changed
from Dv 5 20.02cs to 20.05cs. Radial density enhancements become
narrower and shorter-lived owing to downstream erosion of the
overdensities by the stronger radial drift. d, The maximum particle density
rp on the grid (in units of the gas density rgas) as a function of time. The
average solids-to-gas ratio in the midplane is 0.5, whereas the maximum
reaches well over ten times higher values in transient high pressure regions
(yellow) and several hundred times higher values when the streaming
instability is active (orange and blue).
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Step	1	Complete!
Pebbles	to	Planetesimals

Take-away	messages	from	the	first	section

Radial	drift	is	an	incredibly	important	
aerodynamic	effect	in	nebular	disks	and	particles	
are	attracted	to	gas	pressure	highs

The	streaming	instability	works	like	a	peloton	
in	a	bike	race,	particles	catch	up	with	one	another	
until	there	is	enough	density	for	the	structure	to	
gravitationally	collapse



Runaway	growth

This	phase	occurs	when	
• Most	of	the	mass	is	
in	the	small	bodies	

• The	relative	velocities	
are	close	to	the	
escape	velocities
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Figure 1
An illustration of the process of runaway growth. Each panel represents a snapshot of the system at a
different time. The coordinates represent the semimajor axis and the eccentricity of orbits of the objects in a
portion of the disk centered at 1 astronomical unit (AU). The sizes of the representations of embryos and
protoplanets are proportional to the cubic roots of their masses. Initially, the system is made of a
planetesimal population, in which two objects (dark blue circles) are two times more massive than the others.
These objects accrete planetesimals (light blue loops) quickly, increasing exponentially their mass ratio relative
to the individual planetesimals, until they become planetary embryos. The eccentricities of the planetary
embryos remain low, whereas the eccentricities of the planetesimals are excited with time. The embryos also
separate from one another as they grow. At the end, the embryos have grown by a factor of 200, whereas the
mean mass of the planetesimals has grown only by a factor of 2. From Kokubo & Ida (1998).
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Runaway	growth

The	gravitational	
focusing	factor	enhances	
the	cross-section	of	the	
largest	bodies	more	than	
the	others

They	grow	significantly	
faster	and	“runaway”	
from	the	rest	of	the	
population
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Figure 1
An illustration of the process of runaway growth. Each panel represents a snapshot of the system at a
different time. The coordinates represent the semimajor axis and the eccentricity of orbits of the objects in a
portion of the disk centered at 1 astronomical unit (AU). The sizes of the representations of embryos and
protoplanets are proportional to the cubic roots of their masses. Initially, the system is made of a
planetesimal population, in which two objects (dark blue circles) are two times more massive than the others.
These objects accrete planetesimals (light blue loops) quickly, increasing exponentially their mass ratio relative
to the individual planetesimals, until they become planetary embryos. The eccentricities of the planetary
embryos remain low, whereas the eccentricities of the planetesimals are excited with time. The embryos also
separate from one another as they grow. At the end, the embryos have grown by a factor of 200, whereas the
mean mass of the planetesimals has grown only by a factor of 2. From Kokubo & Ida (1998).
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Oligarch	growth

As	the	largest	embryos	
grow,	they	excite	the	
smaller	planetesimals

Once	the	planetesimals
have	relative	velocities	
much	larger	than	the	
escape	velocity	of	the	
largest	bodies,	runaway	
growth	ends
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runaway stage, while most planetesimals remain small. The
typical orbital separation of protoplanets kept while grow-
ing is about 10rH. This value depends only weakly on the
mass of protoplanets, the surface density of the solid mate-
rial, and the semimajor axis. This self-organized structure
is a general property of self-gravitating accreting bodies
in a disk when gravitational focusing and dynamical friction
are effective.

If we assume that the oligarchic growth continues till
the final stage of planetary accretion, the mass of proto-
planets is estimated by M 5 2fabS. In the solar nebula
model that is 50% more massive than the minimum mass
model, the surface mass density of the solar nebula is
given by

S 5 510 S a
1 AUD23/2

[g cm22] a , 2.7 AU

4 S a
5 AUD23/2

[g cm22] a . 2.7 AU.

(12)

Adopting this S and b 5 10rH, we have M Q 0.2M% and
b Q 0.07 AU at 1 AU (S 5 10 g cm22), M Q 7M% and
b Q 2 AU at 7 AU (S 5 2.4 g cm22), and M Q 17M% and
b Q 8 AU at 25 AU (S 5 0.36 g cm22), where M% is the
Earth mass. In the terrestrial planet region, the estimated
mass and the orbital separation of protoplanets are still
smaller than the present planets. This may suggest that
oligarchic growth does not continue till the final stage of
planetary accretion in the terrestrial planet region. TheFIG. 4. The same as Fig. 1 but for the system initially consists of

4000 equal-mass planetesimals (m 5 3 3 1023 g). The radius increase orbital separation may get larger in the terrestrial planet
factor is 6. In the final frame, the filled circles represent protoplanets region, if the radial excursion of planetesimals ea that is
and lines from the center of the protoplanets to both sides have the proportional to the random velocity gets larger than 10rHlength of 5rH. The protoplanets are selected if their masses are larger than

due to, for example, the clearance of solar nebula gas in1/5 of the maximum mass of the system. The numbers of planetesimals are
the late stage of planetary accretion. The absence of gas1977 (t 5 5000 years), 1514 (t 5 10,000 years), and 1116

(t 5 20,000 years). drag leads to the higher velocity dispersion and thus wider
radial excursion.

In the jovian planet region, however, the oligarchic
growth may be consistent with the formation of the presentare formed, while most planetesimals remain small. The
planets. As for Jupiter and Saturn, which have massive gasfive protoplanets have the 34% of the total mass of the
envelopes, the estimated mass of protoplanets is as largesystem. The lines with the length of 5rH are drawn from
as the critical mass to onset the gas accretion onto thethe center of the protoplanets to both sides in the final
protoplanets. As for Uranus and Neptune, which consistframe. This Hill radius is slightly modified to include only
mainly of solid material, the estimated mass of proto-the mass of a protoplanet. The separations are roughly
planets and the orbital separation are consistent with theirconstant with the typical value of 5–10rH, which agrees
present values. These results suggest that jovian planetswell with the result of the two-protoplanet system and the
may have been formed along the line of oligarchic growth.analytical estimation.
However, we should be careful when we apply oligarchic
growth to the jovian planet region. Oligarchic growth is4. CONCLUSION AND DISCUSSION
obtained from the local area simulation where the semima-
jor axis is much larger than the width of the simulationWe have shown the oligarchic growth of protoplanets in

the post-runaway stage. Protoplanets with the same order region. It is uncertain that oligarchic growth takes place
in the wide jovian planet region in the same way as the localmasses with the orbital separation larger than about 5rH

is the inevitable outcome of planetary accretion in the post- area simulation. Further work on this issue is required.

Kokubo &	Ida,	1998



Oligarch	growth

New	steady	state	is	
established:
• Oligarchs	are	all	about	
the	same	mass

• They	have	low	
eccentricity	and	
inclination	orbits

• They	are	about	10	
mutual	hill	radii	apart
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runaway stage, while most planetesimals remain small. The
typical orbital separation of protoplanets kept while grow-
ing is about 10rH. This value depends only weakly on the
mass of protoplanets, the surface density of the solid mate-
rial, and the semimajor axis. This self-organized structure
is a general property of self-gravitating accreting bodies
in a disk when gravitational focusing and dynamical friction
are effective.

If we assume that the oligarchic growth continues till
the final stage of planetary accretion, the mass of proto-
planets is estimated by M 5 2fabS. In the solar nebula
model that is 50% more massive than the minimum mass
model, the surface mass density of the solar nebula is
given by

S 5 510 S a
1 AUD23/2

[g cm22] a , 2.7 AU

4 S a
5 AUD23/2

[g cm22] a . 2.7 AU.

(12)

Adopting this S and b 5 10rH, we have M Q 0.2M% and
b Q 0.07 AU at 1 AU (S 5 10 g cm22), M Q 7M% and
b Q 2 AU at 7 AU (S 5 2.4 g cm22), and M Q 17M% and
b Q 8 AU at 25 AU (S 5 0.36 g cm22), where M% is the
Earth mass. In the terrestrial planet region, the estimated
mass and the orbital separation of protoplanets are still
smaller than the present planets. This may suggest that
oligarchic growth does not continue till the final stage of
planetary accretion in the terrestrial planet region. TheFIG. 4. The same as Fig. 1 but for the system initially consists of

4000 equal-mass planetesimals (m 5 3 3 1023 g). The radius increase orbital separation may get larger in the terrestrial planet
factor is 6. In the final frame, the filled circles represent protoplanets region, if the radial excursion of planetesimals ea that is
and lines from the center of the protoplanets to both sides have the proportional to the random velocity gets larger than 10rHlength of 5rH. The protoplanets are selected if their masses are larger than

due to, for example, the clearance of solar nebula gas in1/5 of the maximum mass of the system. The numbers of planetesimals are
the late stage of planetary accretion. The absence of gas1977 (t 5 5000 years), 1514 (t 5 10,000 years), and 1116

(t 5 20,000 years). drag leads to the higher velocity dispersion and thus wider
radial excursion.

In the jovian planet region, however, the oligarchic
growth may be consistent with the formation of the presentare formed, while most planetesimals remain small. The
planets. As for Jupiter and Saturn, which have massive gasfive protoplanets have the 34% of the total mass of the
envelopes, the estimated mass of protoplanets is as largesystem. The lines with the length of 5rH are drawn from
as the critical mass to onset the gas accretion onto thethe center of the protoplanets to both sides in the final
protoplanets. As for Uranus and Neptune, which consistframe. This Hill radius is slightly modified to include only
mainly of solid material, the estimated mass of proto-the mass of a protoplanet. The separations are roughly
planets and the orbital separation are consistent with theirconstant with the typical value of 5–10rH, which agrees
present values. These results suggest that jovian planetswell with the result of the two-protoplanet system and the
may have been formed along the line of oligarchic growth.analytical estimation.
However, we should be careful when we apply oligarchic
growth to the jovian planet region. Oligarchic growth is4. CONCLUSION AND DISCUSSION
obtained from the local area simulation where the semima-
jor axis is much larger than the width of the simulationWe have shown the oligarchic growth of protoplanets in

the post-runaway stage. Protoplanets with the same order region. It is uncertain that oligarchic growth takes place
in the wide jovian planet region in the same way as the localmasses with the orbital separation larger than about 5rH

is the inevitable outcome of planetary accretion in the post- area simulation. Further work on this issue is required.

Kokubo &	Ida,	1998



Oligarch	growth
This	lasts	until	a	de-
stabilizing	event	occurs:
• Removal	of	the	gas
• Removal	of	the	
planetesimals

• Gravitational	
perturbation

Once	de-stabilized,	they	
obtain	crossing	orbits	and	
impact
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runaway stage, while most planetesimals remain small. The
typical orbital separation of protoplanets kept while grow-
ing is about 10rH. This value depends only weakly on the
mass of protoplanets, the surface density of the solid mate-
rial, and the semimajor axis. This self-organized structure
is a general property of self-gravitating accreting bodies
in a disk when gravitational focusing and dynamical friction
are effective.

If we assume that the oligarchic growth continues till
the final stage of planetary accretion, the mass of proto-
planets is estimated by M 5 2fabS. In the solar nebula
model that is 50% more massive than the minimum mass
model, the surface mass density of the solar nebula is
given by

S 5 510 S a
1 AUD23/2

[g cm22] a , 2.7 AU

4 S a
5 AUD23/2

[g cm22] a . 2.7 AU.

(12)

Adopting this S and b 5 10rH, we have M Q 0.2M% and
b Q 0.07 AU at 1 AU (S 5 10 g cm22), M Q 7M% and
b Q 2 AU at 7 AU (S 5 2.4 g cm22), and M Q 17M% and
b Q 8 AU at 25 AU (S 5 0.36 g cm22), where M% is the
Earth mass. In the terrestrial planet region, the estimated
mass and the orbital separation of protoplanets are still
smaller than the present planets. This may suggest that
oligarchic growth does not continue till the final stage of
planetary accretion in the terrestrial planet region. TheFIG. 4. The same as Fig. 1 but for the system initially consists of

4000 equal-mass planetesimals (m 5 3 3 1023 g). The radius increase orbital separation may get larger in the terrestrial planet
factor is 6. In the final frame, the filled circles represent protoplanets region, if the radial excursion of planetesimals ea that is
and lines from the center of the protoplanets to both sides have the proportional to the random velocity gets larger than 10rHlength of 5rH. The protoplanets are selected if their masses are larger than

due to, for example, the clearance of solar nebula gas in1/5 of the maximum mass of the system. The numbers of planetesimals are
the late stage of planetary accretion. The absence of gas1977 (t 5 5000 years), 1514 (t 5 10,000 years), and 1116

(t 5 20,000 years). drag leads to the higher velocity dispersion and thus wider
radial excursion.

In the jovian planet region, however, the oligarchic
growth may be consistent with the formation of the presentare formed, while most planetesimals remain small. The
planets. As for Jupiter and Saturn, which have massive gasfive protoplanets have the 34% of the total mass of the
envelopes, the estimated mass of protoplanets is as largesystem. The lines with the length of 5rH are drawn from
as the critical mass to onset the gas accretion onto thethe center of the protoplanets to both sides in the final
protoplanets. As for Uranus and Neptune, which consistframe. This Hill radius is slightly modified to include only
mainly of solid material, the estimated mass of proto-the mass of a protoplanet. The separations are roughly
planets and the orbital separation are consistent with theirconstant with the typical value of 5–10rH, which agrees
present values. These results suggest that jovian planetswell with the result of the two-protoplanet system and the
may have been formed along the line of oligarchic growth.analytical estimation.
However, we should be careful when we apply oligarchic
growth to the jovian planet region. Oligarchic growth is4. CONCLUSION AND DISCUSSION
obtained from the local area simulation where the semima-
jor axis is much larger than the width of the simulationWe have shown the oligarchic growth of protoplanets in

the post-runaway stage. Protoplanets with the same order region. It is uncertain that oligarchic growth takes place
in the wide jovian planet region in the same way as the localmasses with the orbital separation larger than about 5rH

is the inevitable outcome of planetary accretion in the post- area simulation. Further work on this issue is required.

Kokubo &	Ida,	1998



Runaway	and	oligarchic	growth	
successes

• Reproduces	the	terrestrial	planets	well
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Figure 2
The growth of terrestrial planets from a disk of planetary embryos and planetesimals. Each panel shows the semimajor axis and
eccentricity of the bodies in the system at a given time, reported in the top left of each panel. The sizes of the representations of
embryos and protoplanets are proportional to the cubic roots of their masses. The representation of Jupiter is not to scale with respect
to the representations of the embryos. A system of three terrestrial planets, the most massive of which has approximately an Earth mass,
is eventually formed inside 2 AU, whereas only a small fraction of the original planetesimal population survives within the asteroid belt
boundaries. Abbreviations: AU, astronomical units; Ma, million years. From O’Brien et al. (2006).

(whose estimates vary from one study to another over a comparable range; Allègre et al.
1995, Touboul et al. 2007, Yin et al. 2002).

4. A small fraction of the original planetesimals typically remain in the asteroid belt on stable
orbits at the end of the terrestrial planet formation process, and all embryos are ejected
from the belt in most, but not all, simulations (O’Brien et al. 2007, Petit et al. 2001). The
depletion of the belt by embryos and their subsequent removal are essential to explaining
the asteroid belt as we see it today, including its substantial mass deficit. The orbital eccen-
tricities and inclinations of these surviving particles compare relatively well with those of the
largest asteroids in the current belt. Moreover, because of the scattering suffered from the
embryos, the surviving particles are randomly displaced in semimajor axes, relative to their
original position, by approximately 0.5 AU. This can explain the partial mixing of asteroids
of different taxonomic types, discussed in Section 2.
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Runaway	and	oligarchic	growth	
challenges

Formation	of	10	Earth	
mass	core	of	Jupiter	
can	take	billions	of	
years	…

But	we	know	that	disks	
likely	lasted	only	a	few	
million	years

No. 2, 2001 HAISCH, LADA, & LADA L155

Fig. 1.—JHKL excess/disk fraction as a function of mean cluster age. Ver-
tical error bars represent the statistical errors in our derived excess/disk!N
fractions. For all star-forming regions except NGC 2024 and NGC 2362, the
horizontal error bars represent the error in the mean of the individual source
ages derived from a single set of PMS tracks. The age error for NGC 2362
was adopted from the literature. Our estimate of the overall systematic un-
certainty introduced in using different PMS tracks is plotted in the upper right
corner and is adopted for NGC 2024. The decline in the disk fraction as a
function of age suggests a disk lifetime of 6 Myr.

isochrone fitting as discussed earlier. For comparison we also
plot excess fractions in Taurus and Chamaeleon I (open trian-
gles), derived from similar JHKL observations in the literature
(i.e., Kenyon & Hartmann 1995; Kenyon & Gómez 2001). The
ages for Taurus and Cha I were obtained from Palla & Stahler
(2000). NGC 1960 is not included in the figure since our ob-
servations of this cluster extend only to greater than 1 M, stars,
whereas in the other clusters we are complete to ≤1.0 M,.
The dot-dashed line in Figure 1 represents a least-squares

fit to the data obtained in our L-band survey (filled triangles).
Vertical error bars represent the statistical errors in our!N
derived excess/disk fractions. Horizontal error bars show rep-
resentative errors of our adopted ages. The error bars for the
ages of the Trapezium, Taurus, IC 348, Cha I, and NGC 2264
represent the error in the mean of the individual source ages
derived from a single set of PMS tracks. In order to estimate
the overall systematic uncertainty introduced in using different
PMS tracks, we calculated the mean age and the standard de-
viation of the mean age for NGC 2264 ( Myr) from2.6! 1.2
five different PMS models (Park et al. 2000; Palla & Stahler
2000). This latter quantity illustrates the likely systematic un-
certainty introduced by the overall uncertainties in the PMS
models. This is plotted in Figure 1. For stars with M,M ≤ 1
and ages ≤5 Myr, the overall uncertainty in the ages for all
regions is likely within about 1–1.2 Myr. The plotted error for
NGC 2024 reflects this uncertainty. The age error for NGC
2362 was adopted from the literature (Balona & Laney 1996).

5. DISCUSSION

We have completed the first sensitive L-band survey of a
sample of young clusters that span a sufficient range in age

(0.3–30 Myr) to enable a meaningful determination of the time-
scale for disk evolution within them. Clusters appear to be
characterized by a very high initial disk frequency (≥80%),
which then sharply decreases with cluster age. One-half the
disks in a cluster population are lost in only about 3 Myr, and
the timescale for essentially all the stars to lose their disks
appears to be about 6 Myr.
The precise value of this latter timescale to some extent

depends on the derived parameters for the NGC 2362 cluster.
Our quoted timescale of 6 Myr could be somewhat of a lower
limit for two reasons. First, it is possible that a slightly higher
disk fraction for NGC 2362 could be obtained with deeper L-
band observations that better sample the cluster population
below 1 M,. Our earlier observations of IC 348 and the Tra-
pezium cluster show that the disk lifetime appears to be a
function of stellar mass (HLL01), with higher mass stars losing
their disks faster than lower mass stars. However, we note that
much deeper JHK observations (Alves et al. 2001) that sample
the cluster membership down to the hydrogen-burning limit
yield a JHK disk fraction of essentially 0%, giving us confi-
dence in the very low disk fraction derived from our present
L-band observations. Second, the age of NGC 2362 is depen-
dent on the turnoff age assigned to only one star, the O star
t CMa. This star is a multiple system, and its luminosity as-
signment on the H-R diagram is somewhat uncertain (van Leeu-
wen & van Genderen 1997). Correction for multiplicity would
lead to a slightly older age. However, the quoted 1 Myr error
in its age likely reflects the magnitude of this uncertainty (Bal-
ona & Laney 1996). On the other hand, if, for example, the
errors were twice as large as quoted, the cluster could have an
age between 3 and 7 Myr. The corresponding age and the
overall disk lifetime derived from a least-squares fit to the data
would be between 4 and 8 Myr. Even if the timescale for all
disks to be lost was as large as 8 Myr, our survey data would
still require that one-half the stars lose their disks on a timescale
less than 4 Myr. Finally, an even older age for NGC 2362
would likely indicate that the decrease in disk fraction with
time does not follow a single linear fit; that is, after a rapid
decline during which most stars lost their disks, the disk fraction
in clusters would decrease more slowly, with a small number
of stars (∼10%) retaining their disks for times comparable to
the cluster age. On the other hand, we estimate the dynamical
age of the S310 H ii region, which surrounds and is excited
by t CMa, to be ∼ yr for pc and6r /v ∼ 5# 10 r p 50H ii H iiexp

km s!1 (e.g., Lada & Reid 1978; Jonas, Baart, &v p 10exp
Nicolson 1998). This is consistent with the turnoff age of the
cluster derived from the H-R diagram and supports our estimate
of ∼6 Myr for the overall disk lifetime.
We point out that our L-band observations directly measure

the excess caused by the presence of small (micron-sized), hot
(∼900 K) dust grains in the inner regions of the circumstellar
disk and these observations are sensitive to very small amounts
(∼1020 g) of dust. We expect that, if there is gas in the disk,
turbulent motions will always keep significant amounts of small
dust particles mixed with the gas (Ruden 1999); thus, dust
should remain a good tracer of gas in the disks as they evolve
to form planets. Indeed, recent observations of H2 in older
debris disks appear to confirm this assertion (Thi et al. 2001).
Consequently, stars that did not show infrared excesses are
likely to be significantly devoid of gas as well as dust. There
is also evidence that the presence of dust in the inner disk
regions is linked with the presence of dust in the outer disk
regions (i.e., AU) where most planet formation is likelyr 1 1
to occur. Earlier, HLL01 noted a strong correlation between

Haisch et	al.	(2001)



Chondrules also	contradict	such	slow	
growth

Chondrules
come	from	the	
first	3	million	
years	of	Solar	
System	history

drule (determined at 0.70 from chemical mapping
by secondary electron microscopy) implies that
its precursors were extracted from the nebula
~0:87þ0:19

−0:16 My after CAIs (Fig. 2). This could
have happened earlier if the precursors did not
remain as a closed system for Al and Mg and if,

for example, Mg was added to the precursors by
condensation, as has been proposed for Al-rich
chondrules (19). For the ferromagnesian chon-
drules, which have 27Al/24Mg ratios close to the
chondritic ratio (0.10 to 0.23 for our 13 chon-
drules), it is not possible to identify an early ex-

traction of their precursors (for example, 1 My
earlier) from the present data (with an error of
T0.01 to T0.02‰ on d26Mg*0), because their
evolution in a closed system before melting would
overlap, within errors, with the solar nebula
growth curve.

Because 26Al and Mg isotopes are homoge-
neously distributed in the inner solar system
(within approximately T10%), different values
of (26Al/27Al)0 among chondrules imply the exis-
tence of individual melting events at different
times; for example, ~1:77þ0:66

−0:47 My between
chondrule Sem-Ch138 and chondrule Sem-Ch83
(table S1). Our data can be used, in conjunction
with data from previously published chondrules
(26Al/27Al)0 (table S2), to investigate whether
several major melting episodes can be identified
or whether chondrule formation was a continu-
ous process. Because data precision is variable, to
make a meaningful comparison between all the
data, we calculated a probability density dis-
tribution that sums the Gaussian distributions
fð26Al=27AlÞ0,s calculated for each chondrule. The
distribution of the 14 ferromagnesian Sem-
arkona chondrules clearly shows five distinct
episodes (Fig. 3) at 1.2, 1.6, 2.1, 2.4, and 2.9
My after CAIs [taking (26Al/27Al)0 for CAIs
of 5.23 × 10−5] (2). These five episodes are
consistent with the (26Al/27Al)0 measured previ-
ously in 11 other Semarkona chondrules (Fig. 3
and table S2) (8, 10, 12); the two most prominent
peaks in the distribution are at 2.1 and 2.4 My.
Four other episodes of chondrule formation at
1.9, 2.2, 2.6, and 4.3 My can be tentatively
identified considering all the available data for
UOCs and CCs (Fig. 3 and table S2) (4–7, 9, 11).
A Kolmogorov-Smirnov statistical test applied to
these distributions confirms that the differences
shown in Fig. 3 are statistically significant: The
probability for the age distributions to be different
between UOC and CC chondrules is 99%. In ad-
dition, even with only 25 chondrules, the age
distribution of Semarkona chondrules is statisti-
cally the same as that of UOC chondrules (82%).
Available Pb-Pb ages [from 0.6 (T1.6) My to 5.8
(T1.0) My after CAIs] (20–23) are consistent with
26Al ages but not sufficiently precise to identify
specific episodes of chondrule formation. The
possible existence of a limited number of melting
events over a few million years is a fundamental
constraint to consider in models of chondrule
formation.

The large scatter in the age distribution of
chondrules (Fig. 3)—with ~10% of all chon-
drules formed between 0 and 1.5 My after CAIs,
~40% formed between 1.5 and 2.1 My, ~40%
formed between 2.1 and 2.8 My, and ~10%
formed beyond 2.8 My after CAIs—can be
interpreted in two opposite ways: (i) the peak
intensities reflect different magnitudes of chon-
drule formation at specific times and thus the
major episodes of chondrule formation (for UOCs
and CCs) would have taken place ~1.5 to ~3 My
after CAIs; or (ii) the variable peak intensities
reflect the poor efficiency of chondrule preserva-

Fig. 3. (26Al/27Al)0 and
corresponding relative
ages after the formation
of CAIs (2) determined
for the 15 Semarkona
chondrules (yellow squares
for type I chondrules, yel-
low circles for type II chon-
drules, and yellow triangle
for the Al-rich chondrule)
compared with previous
analyses of chondrules in
the least-equilibrated or-
dinary and carbonaceous
chondrites. Curves show
probability density func-
tions (n= number of data
points in the distribu-
tion) of (26Al/27Al)0 in our
Semarkona chondrules
(yellow), all Semarkona
chondrules (green), CC
chondrules (blue), and
UOC chondrules without
our data (red). All data
are available in table S2. Vertical solid lines show peaks that are present in Semarkona chondrules and
often in UOC chondrules. Dotted lines show peaks that are present only in UOC chondrules and CC
chondrules. The upper window corresponds to absolute Pb-Pb ages calculated from CV Allende chondrules
(23) (dark and light blue squares), CR Acfer chondrules (20) (red and yellow squares), and CB Gujba (21)
chondrules (dark and light green), depending on assumed age for CAIs (either 4567.2 T 0.6 My or 4568.5 T
0.5 My) (20, 22). One sigma error bar is shown.
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Fig. 2. Solar system growth
curve (solid line) of Mg
isotopes anchored by the
(26Al/27Al)0 and d26Mg*0 of
bulk CAIs [red square, 5.23
(T0.13) × 10−5 and –0.040
(T0 .029)‰ ] (2 ) and
calculated for a chondritic
27Al/24Mg ratio of 0.101
(30). The green field corre-
sponds to the growth curve
that could be calculated from
the bulk CAIs isochron of
5.85 (T0.05) × 10−5 and
–0.0317 (T0.0038)‰ (green
square) (3). All ferromag-
nesian chondrules (colored
diamonds) plot on the solar
nebula growth curve and de-
fine an error envelope (in red)
at T0.5 × 10−5 for 26Al/27Al
ratios and T0.004‰ for
d26Mg* (red arrows). Type I
Sem-Ch2 is not shown, because its d26Mg*0 cannot be determined precisely (fig. S4). The steep solid line (and
its blue error envelope) show how a model age can be calculated for the extraction from the nebula of the
precursors of the Al-rich chondrule (blue diamond) using its bulk 27Al/24Mg ratio of 0.7. Two sigma error bars
are shown.
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Core	accretion	model	for	the	
formation	of	the	giant	planets

If	a	~10	Earth	
mass	core	
exists	early	in	
the	nebular	
disk, then	it	
can	grow	to	a	
gas	giant	
mass	within	
the	lifetime	
of	the	disk

72 POLLACK ET AL.

FIG. 1. (a) Planet’s mass as a function of time for our baseline model, case J1. In this case, the planet is located at 5.2 AU, the initial surface
density of the protoplanetary disk is 10 g/cm2, and planetesimals that dissolve during their journey through the planet’s envelope are allowed to
sink to the planet’s core; other parameters are listed in Table III. The solid line represents accumulated solid mass, the dotted line accumulated
gas mass, and the dot–dashed line the planet’s total mass. The planet’s growth occurs in three fairly well-defined stages: During the first p5 3 105

years, the planet accumulates solids by rapid runaway accretion; this ‘‘phase 1’’ ends when the planet has severely depleted its feeding zone of
planetesimals. The accretion rates of gas and solids are nearly constant with ṀXY P 2–3ṀZ during most of the p7 3 106 years’ duration of phase
2. The planet’s growth accelerates toward the end of phase 2, and runaway accumulation of gas (and, to a lesser extent, solids) characterizes phase
3. The simulation is stopped when accretion becomes so rapid that our model breaks down. The endpoint is thus an artifact of our technique and
should not be interpreted as an estimate of the planet’s final mass. (b) Logarithm of the mass accretion rates of planetesimals (solid line) and gas
(dotted line) for case J1. Note that the initial accretion rate of gas is extremely slow, but that its value increases rapidly during phase 1 and early
phase 2. The small-scale structure which is particularly prominent during phase 2 is an artifact produced by our method of computation of the
added gas mass from the solar nebula. (c) Luminosity of the protoplanet as a function of time for case J1. Note the strong correlation between
luminosity and accretion rate (cf. b). (d) Surface density of planetesimals in the feeding zone as a function of time for case J1. Planetesimals become
substantially depleted within the planet’s accretion zone during the latter part of phase 1, and the local surface density of planetesimals remains
small throughout phase 2. (e) Four measures of the radius of the growing planetary embryo in case J1. The solid curve shows the radius of the
planet’s core, Rcore , assuming all accreted planetesimals settle down to this core. The dashed curve represents the effective capture radius for
planetesimals 100 km in radius, Rc . The dotted line shows the outer boundary of the gaseous envelope at the ‘‘end’’ of a timestep, Rp . The long-
and short-dashed curve represents the planet’s accretion radius, Ra .

when the protoplanet has virtually emptied its feeding zone volve interacting embryos for accretion to reach the desired
culmination point (Lissauer 1987, Lissauer and Stewartof planetesimals.

If this simulation had been done in a gas-free environ- 1993). However, it is possible to carry our simulations of
the formation of the giant planets to a reasonable endpointment, as might be appropriate for the formation of the

terrestrial planets, then the next phase would have to in- without involving interacting embryos, because of the im-

Pollack	et	al.	(1996)



The	challenge

Build	a	10	Earth	mass	core	that	ends	up	near	
Jupiter’s	orbit	in	~3	Myr

There	have	been	a	number	of	attempts
1. Direct	gravitational	collapse
2. Assembly	elsewhere	and	migration



Effect	of	gas	drag	on	pebbles

Levison et	al.	(2015)



Efficiency	of	growth

Bondi radius	is	
the	radius	at	
which	a	particle	
is	significantly	
deflected	by	
gravity	alone

A&A 544, A32 (2012)

flow. If we let g denote the gravitational attraction due to the
core’s mass, the condition

tg =
∆v

g
< tf (26)

needs to be satisfied for accretion to occur. Since the deflection
time tg is given by ∆vr2/(GMc) = (r/rB)2 tB, the effective drift
accretion radius is given by

rd =

(
tB
tf

)−1/2

rB, (27)

in the strong coupling limit. This radius corresponds to the set-
tling radius in Ormel & Klahr (2010) and is also equal to the
radius found by Perets & Murray-Clay (2011) where drag forces
shear apart bound binaries in the Epstein regime. We verified this
power law by numerically integrating orbits of test particles in
the 2-body problem including drag,

∂vx/∆v

∂t/tB
= −

( rB

r

)3 x
rB
− tB

tf

vx
∆v
, (28)

∂vy/∆v

∂t/tB
= −

( rB

r

)3 y

rB
− tB

tf

( vy
∆v
− 1

)
, (29)

where we non-dimensionalised the particle equation of motion,
ignoring disc dynamics. This is a valid approximation in the
drift regime, where tB ≪ Ω−1

K . Sample orbits can be investi-
gated in the inset of Fig. 4, which shows the maximal particle-
core separation leading to capture. The drift radius for strongly
coupled particles falls of as ∝(tB/tf)−1/2 as predicted. Particles
with tf ≈ tB, get efficiently accreted within a Bondi radius from
the core.

Particles weakly coupled to the gas with respect to low-mass
cores (tB < tf ) are less aided by drag as they get deflected by
the core. As seen in Fig. 4, a rapid fall-off occurs for particles
with tf ≈ 102tB. The orbits in the inset show these particles to
be gravitationally scattered, similar to the case were no gas drag
is present. Here, the physical radius of the core becomes rele-
vant, since accretion now occurs through gravitational focusing
of particles on the core’s surface, which we have not taken into
account in Fig. 4.

The accretion rate in the drift accretion regime is given by

Ṁd = πρpr2
d∆v, (30)

when rd is smaller than the particle scale height Hp. A repre-
sentative simulation in this regime, performed with µc = 10−5,
is illustrated in Fig. 5. Pebbles drift with a sub-Keplerian ve-
locity past the core and those entering the Bondi radius, here
well inside the Hill radius, feed the growth of the embryo. Note
that when rd ≈ rb, the core growth scales faster than expo-
nential with mass, as Ṁd ∝ M2

c . Figure 6 shows the accre-
tion rates calculated from simulations 1e-6_0.1, 2.5e-6_0.1
and 1e-5_0.1. Particles with friction time τf = 0.1 closely fol-
low the maximal drift accretion efficiency,

µ̇d

µc
=

1
4
ρp

ρ

Γµc

∆3 ΩK, (31)

with rd ≈ rB. However the low-mass core in run 1e-6-0.1
comes close to the weak coupling limit and sees its accretion
rate reduced.

We can envisage two effects reducing the accretion rate, if we
were to continue to ignore the stellar tidal field even for higher
mass cores. Firstly, when the core enters the strong coupling
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Fig. 4. Accretion efficiency in the weak and strong coupling regime.
When the Bondi time tB = GM/∆v3 is equal to the particle’s friction
time tf , the drift accretion radius rd peaks and equals the Bondi ra-
dius rB. For a particle of fixed size, the ratio tB/tf on the horizontal axis
increases as the core mass grows in time. When particles are strongly
coupled to the gas (tB > tf ), with respect to the gravitational attraction of
the core, the drift radius decreases as rd ∼ (tB/ts)−1/2 (the analytical scal-
ing of Eq. (27) is indicated with a full grey line). Near tB/tf ≈ 10−2 the
drift radius rapidly decreases. The inset shows particle trajectories (grey
curves) in this regime, which can be compared with those at tB/tf = 1
(black curves). Where the former are simply gravitationally deflected,
in the latter case we see that particles inside the Bondi radius (marked
by a red circle) are accreted by the central point source.

limit, growth slows down to exponential, Ṁd ∝ t−1
B r2

B ∝ Mc.
Secondly, when the accretion radius becomes comparable to the
particle scale height, the appropriate expression for the accretion
rate is given by

Ṁd = 2rdΣp∆v, (32)

where Σp is the particle column density. When rd ≈ rB, we get
exponential growth Ṁd/Mc = 2Σp/∆v.

3.2. Hill accretion

When the core mass grows to the point where the Bondi radius
rB ∝ M2

c is comparable to its Hill radius rH ∝ M1/3
c (or identi-

cally vH = ∆v or tB/tf = τ−1
f ), it will cross the transition mass,

Mt =

√
1
3
∆v3

GΩK
≈ 3 × 10−3

(
∆

0.05

)3 ( r
5 AU

)3/4
M⊕, (33)

defined earlier and see a change in pebble accretion mechanism.
The dimensionless form of the transition mass,

µt = 7 × 10−5
(
∆

0.05

)3

, (34)

scales as the cube of the headwind parameter∆ (see Fig. 2). The
Hill radius now sets the maximal impact parameter from which
particles can be accreted. When Mc > Mt, pebbles at the edge of
the Hill sphere approach the core with relative velocity

vH ≡ ΩKrH. (35)

A32, page 6 of 13
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Giant	planet	cores	can	grow	very	
quickly

Core	growth	can	be	
achieved	at	Jupiter’s	
distance	from	the	Sun	
during	the	nebular	
phase

M. Lambrechts and A. Johansen: Rapid growth of gas-giant cores by pebble accretion
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Fig. 11. Core growth as function of time, plotted for various orbital dis-
tances (0.5, 5 and 50 AU). The drift branch, marked by grey solid lines,
assumes an initial core mass of M0 = 10−5 M⊕ and ∆ = 0.05. The drift
growth continues until the transition mass Mt is reached (marked by
a full grey dot). Accretion continues through the more efficient Hill
branch, drawn in black. For clarity, we start the Hill growth from the
transition mass at time t = 0 yr, instead of continuing from the time
where drift accretion comes to a halt. The masses of Ceres and Pluto
(located at respectively 2.7 and 39 AU) are marked on the vertical axis
for reference. The grey dotted curves correspond to classical planetesi-
mal accretion (PA), where the faster growth corresponds to 2D accretion
of planetesimal fragments (Rafikov 2004) and the slower to 3D accre-
tion of planetesimals (e.g. Dodson-Robinson et al. 2009). Note that drift
accretion timescale at 50 AU takes more than 108 yr and its transition
mass point is not plotted.

mass needed for fast Hill accretion, which might explain why
they failed to grow to gas or ice giants. Indeed, one can make
the assumption that only those planetesimals that formed early
enough in the high-mass tail of the initial planetesimal mass dis-
tribution could serve as the seed for gas-giant cores.

As an illustration of the rapid core growth by pebble accre-
tion in the Hill regime, we compare it to the core growth time
for planetesimal accretion in Fig. 12. As discussed in Sect. 3.2,
the inability to accrete solids from the entire Hill sphere, as op-
posed to pebble accretion, leads to significant longer core for-
mation times, in conflict with the observed dissipation time of
protoplanetary discs.

5. Discussion

We discuss here the assumptions and limitations of our results.
Midplane layer thickness. One component of the pebble ac-

cretion scenario is the presence of a thin particle disc (Hp =
0.01H). This low particle scale height is expected from turbu-
lence driven by streaming instabilities, independent of particle
size, as discussed in Sect. 2. A moderately higher particle scale
height, as may be the case for turbulence caused by the magne-
torotational instability, can result in a situation where rH < Hp
past the transition core mass. This would result in a temporarily
reduced accretion rate, by a factor rH/Hp = (Hp/H)−1(rH/H) =
(1/3)1/3(Hp/H)−1µ1/3, until the Hill radius grows beyond the
particle scale height.

Core growth to 10 M⊕
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Fig. 12. Time needed for core growth up to 10 M⊕ at various loca-
tions in the disc. The solid black line gives the formation time of the
core for pebble accretion in the Hill regime, while grey lines give the
time needed to form the critical 10-Earth-mass core by planetesimal
accretion. The dashed grey line represents planetesimal fragment ac-
cretion from a thin midplane layer, as studied by Rafikov (2004). The
red shaded area shows the approximate time interval in which the pro-
toplanetary disc loses its gaseous component and encompasses for ex-
ample the estimated age of gas giant LkCa 15b (Kraus & Ireland 2012).
Core formation needs to occur before this time.

Particle size. The assumption of a single particle size in our
simulations can be criticised, but as discussed in the introduc-
tion, observations of protoplanetary discs allow a large fraction
of the solid mass to reside in the particle size range that we con-
sider, τf = 0.01–1 (Wilner et al. 2005). A large abundance of par-
ticles larger than pebbles is not expected from coagulation mod-
els (Blum & Wurm 2008; Brauer et al. 2008; Windmark et al.
2012). However, as particles approach the core their icy com-
ponent might sublimate; as friction would heat the particles, es-
pecially when a denser envelope starts forming around the core.
It would be interesting to take this size-diminishing effect into
account in a further investigation. On the other hand, particles
might grow larger. In higher metallicity environments streaming
instabilities become so effective in clumping solid material that
one can fear particles to grow past the pebble size. However, we
do not see this particle clumping in our simulations including the
gas drag backreaction at the metallicity we consider (Z = 0.01).
Strong clumping requires Z ! 0.02 (Johansen et al. 2009b; Bai
& Stone 2010).

Gas structure. For the lower seed masses discussed in the pa-
per, we previously argued (Sect. 2) that the gas density changes
around the core are small. In the Hill regime, the ratio v2esc/c

2
s ≈

2.3 × 102µ2/3(r/AU) (in the MMSN for standard solid density)
can exceed unity for the highest core masses and the effects of
an envelope should be taken into account. But, as also argued
by Ormel & Klahr (2010), even if the direction of the flow
moderately changes on scales within the Bondi radius due to
stratification near the core, only particles with tf ≪ tB could be
affected by it. Since these particles are too strongly coupled to
the gas for accretion to take place in the first place (strong cou-
pling limit), ignoring the core’s feedback on the gas is justified.

Keplerian orbits. In our analysis we assumed the core to
be on a circular Keplerian orbit. The relative velocity between
the core and the gas in Keplerian rotation could be signifi-
cantly modified if competing cores would get excited by re-
peated close passages. However, as opposed to classical plan-
etesimal growth, in our scenario gas damps the small particles
and dynamical friction prevents the excitation of larger bodies,
similar to the oligarchic growth regime. We do ignore gas-driven
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Fig. 11. Core growth as function of time, plotted for various orbital dis-
tances (0.5, 5 and 50 AU). The drift branch, marked by grey solid lines,
assumes an initial core mass of M0 = 10−5 M⊕ and ∆ = 0.05. The drift
growth continues until the transition mass Mt is reached (marked by
a full grey dot). Accretion continues through the more efficient Hill
branch, drawn in black. For clarity, we start the Hill growth from the
transition mass at time t = 0 yr, instead of continuing from the time
where drift accretion comes to a halt. The masses of Ceres and Pluto
(located at respectively 2.7 and 39 AU) are marked on the vertical axis
for reference. The grey dotted curves correspond to classical planetesi-
mal accretion (PA), where the faster growth corresponds to 2D accretion
of planetesimal fragments (Rafikov 2004) and the slower to 3D accre-
tion of planetesimals (e.g. Dodson-Robinson et al. 2009). Note that drift
accretion timescale at 50 AU takes more than 108 yr and its transition
mass point is not plotted.

mass needed for fast Hill accretion, which might explain why
they failed to grow to gas or ice giants. Indeed, one can make
the assumption that only those planetesimals that formed early
enough in the high-mass tail of the initial planetesimal mass dis-
tribution could serve as the seed for gas-giant cores.

As an illustration of the rapid core growth by pebble accre-
tion in the Hill regime, we compare it to the core growth time
for planetesimal accretion in Fig. 12. As discussed in Sect. 3.2,
the inability to accrete solids from the entire Hill sphere, as op-
posed to pebble accretion, leads to significant longer core for-
mation times, in conflict with the observed dissipation time of
protoplanetary discs.

5. Discussion

We discuss here the assumptions and limitations of our results.
Midplane layer thickness. One component of the pebble ac-

cretion scenario is the presence of a thin particle disc (Hp =
0.01H). This low particle scale height is expected from turbu-
lence driven by streaming instabilities, independent of particle
size, as discussed in Sect. 2. A moderately higher particle scale
height, as may be the case for turbulence caused by the magne-
torotational instability, can result in a situation where rH < Hp
past the transition core mass. This would result in a temporarily
reduced accretion rate, by a factor rH/Hp = (Hp/H)−1(rH/H) =
(1/3)1/3(Hp/H)−1µ1/3, until the Hill radius grows beyond the
particle scale height.
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Fig. 12. Time needed for core growth up to 10 M⊕ at various loca-
tions in the disc. The solid black line gives the formation time of the
core for pebble accretion in the Hill regime, while grey lines give the
time needed to form the critical 10-Earth-mass core by planetesimal
accretion. The dashed grey line represents planetesimal fragment ac-
cretion from a thin midplane layer, as studied by Rafikov (2004). The
red shaded area shows the approximate time interval in which the pro-
toplanetary disc loses its gaseous component and encompasses for ex-
ample the estimated age of gas giant LkCa 15b (Kraus & Ireland 2012).
Core formation needs to occur before this time.

Particle size. The assumption of a single particle size in our
simulations can be criticised, but as discussed in the introduc-
tion, observations of protoplanetary discs allow a large fraction
of the solid mass to reside in the particle size range that we con-
sider, τf = 0.01–1 (Wilner et al. 2005). A large abundance of par-
ticles larger than pebbles is not expected from coagulation mod-
els (Blum & Wurm 2008; Brauer et al. 2008; Windmark et al.
2012). However, as particles approach the core their icy com-
ponent might sublimate; as friction would heat the particles, es-
pecially when a denser envelope starts forming around the core.
It would be interesting to take this size-diminishing effect into
account in a further investigation. On the other hand, particles
might grow larger. In higher metallicity environments streaming
instabilities become so effective in clumping solid material that
one can fear particles to grow past the pebble size. However, we
do not see this particle clumping in our simulations including the
gas drag backreaction at the metallicity we consider (Z = 0.01).
Strong clumping requires Z ! 0.02 (Johansen et al. 2009b; Bai
& Stone 2010).

Gas structure. For the lower seed masses discussed in the pa-
per, we previously argued (Sect. 2) that the gas density changes
around the core are small. In the Hill regime, the ratio v2esc/c

2
s ≈

2.3 × 102µ2/3(r/AU) (in the MMSN for standard solid density)
can exceed unity for the highest core masses and the effects of
an envelope should be taken into account. But, as also argued
by Ormel & Klahr (2010), even if the direction of the flow
moderately changes on scales within the Bondi radius due to
stratification near the core, only particles with tf ≪ tB could be
affected by it. Since these particles are too strongly coupled to
the gas for accretion to take place in the first place (strong cou-
pling limit), ignoring the core’s feedback on the gas is justified.

Keplerian orbits. In our analysis we assumed the core to
be on a circular Keplerian orbit. The relative velocity between
the core and the gas in Keplerian rotation could be signifi-
cantly modified if competing cores would get excited by re-
peated close passages. However, as opposed to classical plan-
etesimal growth, in our scenario gas damps the small particles
and dynamical friction prevents the excitation of larger bodies,
similar to the oligarchic growth regime. We do ignore gas-driven
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Pebble	accretion	cross-section

Pebble	accretion	is	
efficient	because	it	
enhances	the	cross-
section	of	capture
AND
Likely	more	mass	in	
pebbles	due	to	
growth	barriers	than	
in	the	planetesimal
population

Levison et	al.	(2015)



Step	2	Complete!
Planetesimals to	Embryos

Pebble	accretion	is	the	only	process	put	forward	
that	can	explain	the	growth	rate	of	the	giant	
planets,	the	great	dichotomy	and	the	formation	
of	chondrites

Pebble	accretion	relies	on	the	same	
aerodynamic	drag	mechanisms	as	radial	drift	
and	the	streaming	instability



Great	Dichotomy	of	the	Solar	System

• Giant	planets	are	~100	times	larger	than	the	
terrestrial	planets

• Classical	explanation	is	that	giant	planets	lie	
exterior	to	the	snowline	so	they	accrete	from	
silicates	and	ices

• But	ices	are	only	50%	of	comets	



No	explanation	for	the	great	
dichotomy– 12 –

Fig. 1.— The mass distribution of embryos predicted by (10), for parameters such that the embryo

at 1 AU has a 0.1 M�. The snowline is set here at 3.5 AU.

and account for a full size-distribution of objects, show that oligarchic growth approaches

completion only in the very inner part of the disk. This result is in agreement with the

strong radial dependence of the runaway growth rate found in the previous section.

Nevertheless, it is instructive to compute which kind of radial mass distribution

of objects oligarchic growth would predict, if it reached completion. By definition of

“completion”, the mass of the body is of the order of that originally available in an annulus

around the orbit with a width equal to n times the Hill radius RH of the body itself, with

n ⇠ 10, independent of heliocentric distance (Kokubo and Ida, 2000). Thus we can write

Moli = 2⇡rnRH⌃p. (10)

With the shallow ⌃p / m/
p
r defined above and remembering that RH = r(M/3M�)1/3,

eq. (10) gives Moli / mr9/4.

This is a strong growing function of r. If one accounts for an increase of m by ⇠ 2

Morbidelli et	al.	(2015)



A	simple	hypothesis

Pebbles	in	the	outer	solar	system	are	50%	ice	and	
reach	10	cm	to	10	m	in	size

The	50%	silicates	in	those	pebbles	are	in	0.1	mm	
to	1	cm	grains

When	outer	solar	system	pebbles	reach	the	ice	
line,	the	ice	sublimate



Transition	massA single planetary embryo embedded in a disk of pebbles:M. Lambrechts and A. Johansen: Rapid growth of gas-giant cores by pebble accretion
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Fig. 1. The physical response of a particle reacting to the gas flow is set
by the friction time tf . A particle of given size R has a dimensionless
friction time τf = ΩKtf that depends on the orbital distance r. The red
dash-dotted line marks the distance at which the particle size equals 9/4
of the mean free path λ of molecular hydrogen in the MMSN. Particles
with R > (9/4)λ are located in the dashed region, and experience Stokes
drag as opposed to Epstein drag. For the curves in the Stokes regime, we
have ignored the transition into the non-linear Stokes regime, applicable
for large particles close to the host star.

changes between the relative particle velocity u and the local gas
velocity u,

u̇drag = −
1
tf

(u − u) = − ρcs

ρ•R
(u − u) , (5)

where R and ρ• are the radius and material density of the particle,
while ρ is the local gas density. For particles in the vicinity of
the midplane, with z < H, one can assume ρH ≈ Σ/

√
2π, so

that the particle size R in the MMSN can be recovered from its
dimensionless friction time

τf = ΩKtf (6)

(also known as the Stokes number) as

R = 60 cm τf

(
ρ•

2 g cm−3

)−1 ( r
AU

)−3/2
· (7)

Figure 1 shows the relation between the orbital radius and the
particle radius for different dimensionless friction times. Around
10 AU, a dimensionless friction time of τf = 0.1 corresponds
to cm-sized particles, which we will refer to as pebbles. Close
to the star, the gas density increases sufficiently for the parti-
cles to enter the Stokes drag regime, where τ(S)

f = (4/9)(R/λ)τf

scales as ∝r5/4. For a more complete description of different drag
regimes, see e.g. Rafikov (2005) or Youdin (2010).

The gas component of the protoplanetary disc moves with a
sub-Keplerian mean velocity, since the force due to the the solar
gravity is reduced by the radially outwards pointing gas pressure
force. The azimuthal velocity difference ∆ = ∆uφ/cs between
the mean gas flow and a pure Keplerian orbit is given by

∆ = η
vK
cs
= −1

2
cs

vK

∂ ln(P)
∂ ln(r)

, (8)

where P = ρc2
s is the gas pressure and η is a measure of the

gas pressure support (Nakagawa et al. 1986). In the MMSN,
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∆
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Fig. 2. Deviation ∆ of the orbital velocity of a gas element with respect
to an object orbiting with the full Keplerian frequency, normalised by
the local sound speed, is plotted as function of orbital radius r in AU.
The bold black line represents the traditional MMSN scaling, while
the bold red line corresponds to the adapted MMSN as presented in
Chiang & Youdin (2010). The shaded area connecting to thin curves
indicates the effect of a strong pressure bump of strength δ∆ = −0.04.
The adopted standard value of ∆ = 0.05 in this paper, is accurate in a
region around 5 AU, even without a strong pressure bump.

∆ has a weak radial dependency, ∆ ≈ 0.05 (r/AU)1/4, as can
be seen in Fig. 2. However, comparison of the MMSN model
with observed protostellar accretion discs, (e.g. Bell et al. 1997)
and studies of solar nebula metallicities (Lodders 2003) have
prompted updated MMSN models, with a less steep pressure
gradient, ∆ = 0.036 (r/AU)2/7 (Chiang & Youdin 2010), as il-
lustrated in Fig. 2.

The turbulent nature of an accreting protoplanetary disc can
result in local pressure maxima (Johansen et al. 2009a; Fromang
& Stone 2009). As can be seen from Eq. (8) these pressure
bumps can locally reduce the headwind the pebbles experience.
Reductions by δ∆ ≈ −0.02 are seen in shearing box simulations
of the MRI (Johansen et al. 2009a; Fromang & Stone 2009) and
global simulations (Lyra et al. 2008b). We have illustrated the
effect of a strong pressure bump, with δ∆ ≈ −0.04, in Fig. 2.

Since particles face a headwind, they will drift radially and
azimuthally as

vr = −2
τf

τ2
f + 1

ηvK, (9)

vφ = −
1
τ2

f + 1
ηvK, (10)

as shown by Weidenschilling (1977) and Nakagawa et al. (1986).
The total relative velocity between the particle and the core in
pure Keplerian rotation is

∆v =

√
4τ2

f + 1

τ2
f + 1

ηvK, (11)

which is well approximated by ∆v ≈ ηvk, since the parti-
cle sizes we consider, τf = (0.01, 0.1, 1), give us ∆v/(ηvK) =
(1.0, 1.0, 1.1).

Particles settle in the vertical direction (perpendicular to the
orbital plane). The particle scale height Hp is a balance between
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Transition	mass	is	a	function	of	properties	of	the	
pebbles	as	well	as	location	and	other	disk	properties
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Fig. 2.— Mass growth due to a flux of pebbles of two embryos located on opposite sides of the

snowline, here assumed to be at 3.5 AU. The parameter ⌘ is assumed to be 0.0027. The red curve

is for an embryo beyond the snowline, with a flux of 2⇥ 10�4ME/y in icy pebbles with ⌧ = 10�1.5.

The green curve is for the inner embryo, for which the mass flux is reduced to 1/2(1� F ) relative

to the outer embryo, and the pebbles’ Stokes number is ⌧ = 10�2.5. Here F is the fraction of the

pebble flux which is intercepted by the outer embryo. When the outer embryo reaches 20M� the

flux of pebbles towards the inner embryo stops (Lambrechts et al., 2014). Thus, the inner embryo

stops growing, and the simulation is stopped at this point. According to Lambrechts et al., 2014),

the outer embryo then starts accreting gas e�ciently, to become eventually a giant planet.

The accretion history of the two embryos is shown in Fig. 2. The accretion of the inner

embryo is penalized relative to that of the outer body for three reasons. First, the inner

body sees roughly mm-sized particles, which correspond to a value of ⌧ 10 times smaller

than of the pebbles beyond the snowline. Remember that in 3D accretion Ṁ
3D / ⌧�,

with � = 1/6 or 1/2 depending on the the scaling of vrel; so a smaller ⌧ implies a smaller

accretion rate. Second, the total mass flux of particles is assumed to be two times smaller



Explanation	for	the	great	dichotomy

Pebble	accretion	is	conducted	inefficiently	in	the	
inner	Solar	System,	while	it	is	conducted	efficiently	
in	the	outer	Solar	System

The	factor	of	two	in	mass	is	relatively	unimportant	
but	the	change	in	the	mechanical	properties	of	ice	
versus	rock	are

Lastly,	the	inner	Solar	System	pebbles	are	
chondrule-sized	…



Chondrules

Roughly	mm-sized	melt	spherules

If	they	are	plentiful	in	the	inner	Solar	System,	
then	they	will	be	accreted	by	large	and	small	
embryos	alike



Pebble	accretion	in	the	asteroid	belt

If	chondrules
are	pebbles	
then	they	may	
explain	the	size	
distribution	in	
the	asteroid	
belt
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Figure 5: The size distribution of asteroids and embryos after accreting chondrules for 5 Myr (left panel) and selected masses
and inclinations as a function of time (right panel). The nominal model (black line) matches closely the steep size distribution of
main belt asteroids (red line, representing the current asteroid belt multiplied by a depletion factor of 540) from 60 km to 200 km
in radius. The size distribution becomes shallower above 200 km; this is also seen in the asteroid belt, although the simulations
underproduce Ceres-sized planetesimals by a factor of approximately 2–3. A simulation with no chondrules (blue line) produces
no asteroids larger than 300 km. Inclusion of chondrules up to cm sizes (pink line in insert) gives a much too low production
of Ceres-sized asteroids, while setting the exponential cut-off radius of planetesimals to 50 km (green line) leads to a poorer
match to the bump at 60 km. The right plot shows that the formation of the first embryos after 2.5 Myr quenches chondrule
accretion on the smaller asteroids by exciting their inclinations i (right axis). The dotted lines indicate the mass contribution
from planetesimal-planetesimal collisions. Asteroids and embryos larger than 200 km in radius owe at least 2/3 of their mass to
chondrule accretion.

km occurs after 2.5 Myr. Beyond this time the largest planetesi-
mals in the population grow to become planetary embryos with
sizes similar to the Moon and Mars. These growing embryos
excite the inclinations of the smaller asteroids to i ⇠ 0.01,
which disconnects the asteroids from the chondrules in the mid-
plane layer, quenching their accretion of further chondrules.
The beginning of embryo formation terminates the accretion
of asteroids after 3 Myr, thus defining the final sizes of the as-
teroid belt population. The absence of such planetary embryos
in today’s asteroid belt may reflect a later depletion by grav-
itational perturbations from Jupiter (25–27). Depletion of the
asteroid belt is discussed further in the Supplementary Text.
An important implication of chondrule accretion is that accre-
tion of other planetesimals contributes only a minor fraction to
the final masses of large asteroids and embryos (right panel of
Figure 5).
Size sorting of chondrules

Chondrules in chondrites appear strongly size-sorted (8, 28),
with the average chondrule diameter varying among the ordi-
nary chondrites (28) from 0.3 mm (H chondrites) up to 0.5
mm (L and LL chondrites). Carbonaceous chondrites exhibit

a larger range in chondrule sizes, from 0.1 to 1 mm. In Fig-
ure 6 we show that the mean diameter of accreted chondrules
in our model lies in a range similar to that observed for chon-
drites. The size distribution of accreted chondrules is very nar-
row, also in agreement with the observed size distribution in
the ordinary chondrites (28). The chondrule accretion process,
which leads to aerodynamical sorting of chondrules, may thus
represent the underlying physical mechanism for the size sort-
ing of chondrules observed in chondrite meteorites. Although
aerodynamical sorting has been previously proposed to arise
from the gas flow around asteroids (29), our simulations show
that accretion from the full Bondi radius is much more efficient
in achieving aerodynamical sorting of chondrules.
Terrestrial planet formation with chondrules

Our identification of chondrule accretion as driving planetes-
imal growth in the asteroid belt implies that chondrules could
play an important role for terrestrial planet formation as well.
To test this hypothesis we have performed a numerical inte-
gration of the evolution of planetesimal orbits and sizes at 1
AU (Figure 7). The left panel shows the size distribution of the
planetesimals at 0, 1, 3 and 5 Myr. Growth to super-Ceres-sized

5

Johansen	et	al.	(2015)



Pebble	accretion	in	the	asteroid	belt

If	true	then	
chondrules
would	make	up	
most	of	the	
mass	of	large	
asteroids	and	
hence	of	the	
belt

Johansen	et	al.	(2015)
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Figure 5: The size distribution of asteroids and embryos after accreting chondrules for 5 Myr (left panel) and selected masses
and inclinations as a function of time (right panel). The nominal model (black line) matches closely the steep size distribution of
main belt asteroids (red line, representing the current asteroid belt multiplied by a depletion factor of 540) from 60 km to 200 km
in radius. The size distribution becomes shallower above 200 km; this is also seen in the asteroid belt, although the simulations
underproduce Ceres-sized planetesimals by a factor of approximately 2–3. A simulation with no chondrules (blue line) produces
no asteroids larger than 300 km. Inclusion of chondrules up to cm sizes (pink line in insert) gives a much too low production
of Ceres-sized asteroids, while setting the exponential cut-off radius of planetesimals to 50 km (green line) leads to a poorer
match to the bump at 60 km. The right plot shows that the formation of the first embryos after 2.5 Myr quenches chondrule
accretion on the smaller asteroids by exciting their inclinations i (right axis). The dotted lines indicate the mass contribution
from planetesimal-planetesimal collisions. Asteroids and embryos larger than 200 km in radius owe at least 2/3 of their mass to
chondrule accretion.

km occurs after 2.5 Myr. Beyond this time the largest planetesi-
mals in the population grow to become planetary embryos with
sizes similar to the Moon and Mars. These growing embryos
excite the inclinations of the smaller asteroids to i ⇠ 0.01,
which disconnects the asteroids from the chondrules in the mid-
plane layer, quenching their accretion of further chondrules.
The beginning of embryo formation terminates the accretion
of asteroids after 3 Myr, thus defining the final sizes of the as-
teroid belt population. The absence of such planetary embryos
in today’s asteroid belt may reflect a later depletion by grav-
itational perturbations from Jupiter (25–27). Depletion of the
asteroid belt is discussed further in the Supplementary Text.
An important implication of chondrule accretion is that accre-
tion of other planetesimals contributes only a minor fraction to
the final masses of large asteroids and embryos (right panel of
Figure 5).
Size sorting of chondrules

Chondrules in chondrites appear strongly size-sorted (8, 28),
with the average chondrule diameter varying among the ordi-
nary chondrites (28) from 0.3 mm (H chondrites) up to 0.5
mm (L and LL chondrites). Carbonaceous chondrites exhibit

a larger range in chondrule sizes, from 0.1 to 1 mm. In Fig-
ure 6 we show that the mean diameter of accreted chondrules
in our model lies in a range similar to that observed for chon-
drites. The size distribution of accreted chondrules is very nar-
row, also in agreement with the observed size distribution in
the ordinary chondrites (28). The chondrule accretion process,
which leads to aerodynamical sorting of chondrules, may thus
represent the underlying physical mechanism for the size sort-
ing of chondrules observed in chondrite meteorites. Although
aerodynamical sorting has been previously proposed to arise
from the gas flow around asteroids (29), our simulations show
that accretion from the full Bondi radius is much more efficient
in achieving aerodynamical sorting of chondrules.
Terrestrial planet formation with chondrules

Our identification of chondrule accretion as driving planetes-
imal growth in the asteroid belt implies that chondrules could
play an important role for terrestrial planet formation as well.
To test this hypothesis we have performed a numerical inte-
gration of the evolution of planetesimal orbits and sizes at 1
AU (Figure 7). The left panel shows the size distribution of the
planetesimals at 0, 1, 3 and 5 Myr. Growth to super-Ceres-sized
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Pebble	accretion	in	the	asteroid	belt

Furthermore,	
pebble	
accretion	is	an	
aerodynamic	
process	that	
naturally	sorts	
the	chondrules
according	to	
size

Johansen	et	al.	(2015)
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Figure 6: Mean chondrule sizes (hdi, upper panel) as a func-
tion of layer radius R and size-distribution width (�

�

, lower
panel) as a function of mean chondrule size. Yellow lines in
the upper panel indicate the chondrule size evolution in indi-
vidual asteroids and embryos, while red lines indicate mean
accreted chondrule sizes at different times. The accreted chon-
drule size increases approximately linearly with planetesimal
size at t = 0 Myr. Asteroids stirred by the growing embryos
over the next 2 Myr accrete increasingly larger chondrules, as
asteroid velocities align with the sub-Keplerian chondrule flow
at aphelion. Finally, asteroids accrete surface layers of mainly
very small chondrules, down to below 0.1 mm in diameter, at
late times when their large inclinations decouple the asteroid
orbits from the large chondrules in the mid-plane. The width
of the chondrule size distribution in the lower panel is given in
terms of �

�

, the base-2-logarithmic half-width of the cumula-
tive mass distribution of chondrules (�

�

= 1 implies that 2/3
of the chondrules have diameters within a factor 21 = 2 from
the mean). Dots indicate chondrule layers inside asteroids and
embryos. Chondrules are aerodynamically sorted by the accre-
tion process, to values of �

�

in agreement with the chondrules
found in ordinary chondrites (hashed region). Unfiltered accre-
tion from the background size distribution of chondrules (blue
dot: size distribution of un-sedimented particles; yellow dot:
size distribution in the mid-plane) yields specific pairs of hdi
and �

�

that are not consistent with constraints from ordinary
chondrites.

planetesimals is rapid and happens within 1 Myr. This growth
is driven mainly by planetesimal accretion, in stark contrast to

the situation at 2.5 AU. This is seen in the right panel of Figure
7 where the mass of the largest body is shown as a function of
time (full line) together with the mass contribution from chon-
drules (dashed line) and from planetesimals (dash-dotted line).
However, chondrule accretion becomes dominant after 1.5 Myr
and drives the further growth up to Mars-mass embryos after 4
Myr. The largest body experiences a giant impact after 4 Myr,
after which it continues to grow by chondrule accretion towards
0.9 Earth masses.

Chondrule accretion can thus promote the growth of the
largest embryos from Moon masses towards Mars masses and
finally Earth masses. The dominance of planetesimal accre-
tion in the initial growth towards Moon masses occurs because
chondrules couple tightly to the gas at 1 AU. Here the gas
density is more than a factor 10 higher than at 2.5 AU. This
prevents sedimentation, such that all chondrule sizes are well
mixed with the gas, and it reduces the cross section for ac-
creting chondrules since tightly coupled particles can not be
accreted from the full Bondi radius. This situation changes as
gas dissipates exponentially over 3 Myr, increasing the friction
times and thus the accretion efficiency of the chondrules. Fur-
thermore, the increasingly large embryos obtain high accretion
radii for chondrules and hence high chondrule accretion rates,
despite the relatively low degree of sedimentation of chondrules
present at 1 AU orbits.

Chondrules also play a critical role in terrestrial planet for-
mation in a different way, namely by breaking the isolation
mass configuration. Growth by pure planetesimal accretion
tends to end in oligarchic growth where the largest embryos are
isolated from each other by approximately 10 Hill radii (30).
We have implemented the effect of this isolation tendency by
identifying the group of isolated bodies as those that can fit
their combined reach of 10 Hill radii into the annulus of 0.2
AU in diameter (31, 32). Isolated bodies are not allowed to
accrete each other and only affect each other dynamically via
distant viscous stirring in the eccentricity. Inclination pertur-
bations, as well as dynamical friction in the eccentricity, are
ignored between isolated bodies.

We mark the isolation mass of approximately 0.01 ME in the
right plot of Figure 7 (blue line). A simulation performed with
no chondrule accretion (red line) shows the expected growth
of the largest embryos to just below the isolation mass. The
growth curve for pure planetesimal accretion follows closely
the growth curve for the full simulation until approximately
10

�4 Earth masses. At this point chondrule accretion becomes
significant and the two curves diverge. Importantly, chondrule
accretion can destabilise a set of isolated bodies, as their con-
tinued growth by chondrule accretion drives the least massive
of the isolated bodies out of isolation. Hence the giant impacts
experienced by the largest embryo between 1.5 and 4 Myr are
all driven by chondrule accretion, as these impacts happen be-
yond the isolation mass.

The importance of chondrule accretion increases if chon-
drules in the terrestrial planet formation region are larger,

6



Transition	massA single planetary embryo embedded in a disk of pebbles:

Levison et	al.	(2015)

For	most	nominal	
disks,	this	transition	
mass	is	around	a	
few	hundred	km	for	
optimal	pebble	
sizes

Larger	for	less	
optimal	disk



Transition	massA single planetary embryo embedded in a disk of pebbles:

Levison et	al.	(2015)

Threshold	
transition	mass	
divides	
planetesimals that	
will	grow	to	
embryos	from	
those	that	won’t

This	creates	a	bimodal	mass	disk	of	hundred	km	objects	
and	those	that	grow	due	to	pebble	accretion



Return	to	great	dichotomy

Using	a	sophisticated	
pebble	growth	and	
disk	model	within	
the	assumptions	of	
the	great	dichotomy	
and	assuming	~40	
seed	embryos	
created	by	the	
streaming	instability

– 29 –

Fig. 6.— The same as Fig. 4 but now assuming ⌘(r) and ⌧(r) as given by the fits shown in Fig. 5.

use below.

For ⌘ we assume Fit 1 for r < 1.7 AU, Fit 2 for 1.7 < r < 3.2 AU and Fit 3 for

3.2 < r < 4 AU. For ⌧ we assume Fit 1 for r < 2 AU and Fit 2 for 2 < r < 3.5 AU. The

value of ⌧ for the core placed just beyond the snowline remains equal to 10�1.5. With this



Bi-modal	mass	distribution

Incredibly,	the	streaming	instability	and	pebble	
accretion	could	create	a	bi-modal	mass	
distribution	of	100	km-sized	planetesimals and	
Mars-mass	embryos

This	is	very	similar	to	the	bi-modal	mass	
distribution	created	by	runaway	and	oligarchic	
growth!



Standard	model	for	terrestrial	planet	
formation

Bimodal	mass	
disk	that	extends	
from	an	inner	
edge	to	Jupiter

Jupiter	and	the	
other	giant	
planets	on	fixed	
orbits
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Fig. 2.— Sample initial conditions for a disk with Σ ∼ r−3/2

containing 97 planetary embryos and 1000 planetesimals. Embryos
are shown in gray with their sizes proportional to their mass(1/3)

(but not to scale on the x axis).

For all of our simulations, the disk of solids extended
from 0.5 to 4.5 AU and contained populations of plane-
tary embryos and planetesimals. For most cases, we as-
sumed that the disk’s surface density in solids Σ followed
a simple radial power-law distribution:

Σ(r) = Σ1

( r

1AU

)−x
. (3)

For the minimum-mass solar nebula (MMSN) model,
Σ1 ≈ 6 − 7 g cm−2 and x = 3/2 (Weidenschilling 1977a;
Hayashi 1981). For most of our simulations we assumed
x = 3/2 but we also performed some cases with x = 1 for
the CJS and EJS giant planet configuration. Cases with
x = 1 are labeled by the x value; for example, the EJS15
simulations have x = 3/2 and the EJS1 simulations have
x = 1 (see Table 2). For each case, we calibrated our
disks to contain a total of 5 M⊕ in solids between 0.5
and 4.5 AU, divided equally between the planetesimal
and embryo components.

Figure 2 shows a sample set of initial conditions. We
assumed that embryos are spaced by ∆ = 3-6 mutual Hill
radii RH , where RH = 0.5 (r1+r2) [(M1+M2)/3M⊙]1/3,
where a1 and M1 are the radial distance and mass of
embryo 1. The embryo mass therefore scales with or-
bital distance as M ∼ r3/2 (2−x)∆3/2 (Kokubo & Ida
2002; Raymond et al. 2005). The disks contained 85-
90 embryos with masses between 0.005 and 0.1 M⊕. In
Mars’ vicinity the typical embryo mass was roughly 1/6
to 1/3 of a Mars mass. Planetesimals were laid out as
Np ∼ rx+1 to follow the annular mass, and had masses
of 0.0025 M⊕. Embryos and planetesimals were given
randomly-chosen starting eccentricities of less than 0.02
and inclinations of less than 0.5◦. In a few EEJS cases
we performed additional simulations with 2000 planetes-
imals, which followed the same distribution but had cor-
respondingly smaller masses.

We assume that there existed a radial compositional
gradient for rocky bodies in the Solar Nebula. This
gradient was presumably imprinted on planetesimals by
the local temperature during their formation (e.g., Boss
1998), although heating by short-lived radionuclides such
as 26Al may have played a role (Grimm & McSween
1993). We assume the same water distribution as in Ray-
mond et al. (2004, 2006a), using data for primitive mete-
orites from Abe et al. (2000). The “water mass fraction”,
WMF , i.e. the water content by mass, varies with radial

distance r as:

WMF =

⎧

⎨

⎩

10−5, r < 2 AU
10−3, 2 AU < r < 2.5 AU
5%, r > 2.5 AU

(4)

This water distribution is imprinted on planetesimals
and embryos at the start of each simulation. During ac-
cretion the water content of each body is calculated by
a simple mass balance of all the accreted bodies. We
do not take into account water loss during giant impacts
(Genda & Abe 2005; Canup & Pierazzo 2006) or via hy-
drodynamic escape (Matsui & Abe 1986; Kasting 1988).

3.3. Numerical Method

Each simulation was integrated for at least 200 Myr
using the hybrid symplectic integrator Mercury (Cham-
bers 1999). We used a 6-day timestep for all integrations;
numerical tests show that this is adequate to resolve the
innermost orbits in our simulations and to avoid any sub-
stantial error buildup (see Rauch & Holman 1999). Col-
lisions are treated as inelastic mergers, and we assumed
physical densities of 3 g cm−3 for all embryos and plan-
etesimals. Simulations were run on individual machines
in a distributed computing environment, and required
2-4 months per simulation. The Sun’s radius was arti-
ficially increased to 0.1 AU to avoid numerical error for
small-perihelion orbits.

For each Jupiter-Saturn-disk configuration we per-
formed four different simulations to account for the
stochastic nature of accretion (e.g., Chambers & Wether-
ill 1998). These four cases varied in terms of the random
number used to initialize our disk code, resulting in dif-
ferences in the detailed initial distributions of embryos
and planetesimals.

Embryo particles interacted gravitationally with all
other bodies but planetesimal particles did not interact
with each other. This approximation was made to reduce
the run time needed per simulation which is already con-
siderable (see Raymond et al. 2006a for a discussion of
this issue). The run time τ scales with the number of em-
bryos Ne and the number of planetesimals, Np, roughly
as τ ∼ N2

e + 2NeNp. The non-interaction of planetes-
imals eliminates an additional N2

p term. Note that τ
refers to the computing time needed for a given timestep.
The total runtime is τ integrated over all timesteps for
all surviving particles. Thus, a key element in the ac-
tual runtime of a simulation is the mean particle lifetime.
Configurations with strong external perturbations (e.g.,
eccentric giant planets) tend to run faster because the
mean particle lifetime is usually shorter than for config-
urations with weak external perturbations.

4. TWO CONTRASTING EXAMPLES

We illustrate the variations between different cases
using two simulations with different configurations of
Jupiter and Saturn: one case from the JSRES batch and
one from EEJS (simulations JSRES-4 and EEJS-3 in Ta-
ble 2). Each simulation matched some of our constraints
but neither matched all of them. Figures 3 and 4 show
snapshots in the evolution of the two simulations. Prop-
erties of the planets that formed in each case are listed in
Table 1. We note that these are individual simulations,
and that there exists substantial variability in outcome

Raymond	et	al.	(2009)



From	embryos	to	terrestrial	planets

O’Brien,	Morbidelli and	Levison (2006)



Final	Standard	Model	Outcomes	
Successes:
• Formation	of	a	few	terrestrial	

planets	in	the	terrestrial	planet	
zone

• The	most	massive	planets	are	
about	an	Earth	mass

• Good	orbits	(eccentricity	and	
inclination	excitation)

• Roughly	correct	accretion	timescale	
for	the	Earth	(tens	of	My)

• Giant	impacts	are	typical,	several	
with	geometries	compatible	with	
the	Moon-forming	event

• Delivery	of	water-rich	bodies	from	
the	asteroid	belt	to	the	Earth
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TABLE 3
Mean properties of terresrtial planet systems for different disk surface density profiles1

Configuration Mean Np Mean Mtot(M⊕) Median AMD MedianWMF⊕ Median Tform,⊕(Myr)

CJS1 2.75 2.32 0.017 3.2 × 10−3 140
CJS15 3.5 2.77 0.003 5.7 × 10−3 104

EJS1 2.5 1.55 0.010 6.3 × 10−3 169
EJS15 3.0 2.06 0.005 2.6 × 10−4 66

aRecall that the CJS1 and EJS1 sims had disks with r−1 surface density profiles, while CJS15, EJS15, and all our other simulations had
r−1.5 surface density profiles.

Fig. 10.— Mass vs. semimajor axis for a range of simulations with different configurations of Jupiter and Saturn. Each panel shows all
planets that formed in the relevant simulations (see Table 2) as grey circles, with horizontal lines representing the orbital eccentricity. The
Solar System’s terrestrial planets are shows as the black squares, with 3 Myr averages for their eccentricities in grey (taken from Quinn et
al. 1991).

cular or low-eccentricity giant planets (CJS, CJSECC,
JSRES, JSRESECC) tend to strand massive embryos in
the asteroid belt. These embryos are typically 0.05-0.2
M⊕ and would certainly disrupt the observed asteroid
distribution. In contrast, the EJS and EEJS simulations
leave fewer embryos in the asteroid belt, and those that
are stranded are typically smaller.

A trend that is less evident from Fig. 10 is that the
total terrestrial planet mass decreases with the giant
planet eccentricity in almost all cases. The one excep-
tion to this rule is for the JSRESECC simulations, which
have roughly the same total planet mass as the JSRES
cases; however, at the end of each JSRESECC simulation
eJ < 0.01, so the difference between the two giant planet
configurations is actually fairly minor. The reason for the
correlation between increased giant planet eccentricity
and decreased total mass in terrestrial planets is simply
that eccentric giant planets perturb terrestrial and aster-

oidal bodies more strongly and destroy a larger fraction
of the disk via ejection and collisions with the Sun than
circular giant planets (Chambers & Cassen 2002; Levison
& Agnor 2003; Raymond et al. 2004; O’Brien et al. 2006).
In addition, terrestrial planets can’t form as close to ec-
centric giant planets as they can to circular giant planets
(Raymond 2006); this may explain the reduced number
of stranded asteroidal embryos for the EJS and EEJS
simulations.

Figure 11 shows the radial mass concentration statis-
tic RMC as a function of the angular momentum deficit
AMD for the terrestrial planet system that formed in
each simulation. These statistics are normalized with
respect to the MVEM values of 0.0018 and 89.9. The
systems that formed have a wide range in AMD, from
0.5 to almost 20 times the MVEM value. In contrast,
systems are clumped in RMC between 0.3 and 0.7 times
the MVEM value; none has RMC higher than 0.71 – this



Final	Standard	Model	Outcomes	

Failures:
• Planets	at	the	location	of	
Mars	are	too	massive	by	
an	order	of	magnitude

• Persistent	problem	
despite	many	different	
initial	conditions	(embryo	
number,	giant	planet	
orbits)

Building the Terrestrial Planets 13

TABLE 3
Mean properties of terresrtial planet systems for different disk surface density profiles1

Configuration Mean Np Mean Mtot(M⊕) Median AMD MedianWMF⊕ Median Tform,⊕(Myr)

CJS1 2.75 2.32 0.017 3.2 × 10−3 140
CJS15 3.5 2.77 0.003 5.7 × 10−3 104

EJS1 2.5 1.55 0.010 6.3 × 10−3 169
EJS15 3.0 2.06 0.005 2.6 × 10−4 66

aRecall that the CJS1 and EJS1 sims had disks with r−1 surface density profiles, while CJS15, EJS15, and all our other simulations had
r−1.5 surface density profiles.

Fig. 10.— Mass vs. semimajor axis for a range of simulations with different configurations of Jupiter and Saturn. Each panel shows all
planets that formed in the relevant simulations (see Table 2) as grey circles, with horizontal lines representing the orbital eccentricity. The
Solar System’s terrestrial planets are shows as the black squares, with 3 Myr averages for their eccentricities in grey (taken from Quinn et
al. 1991).

cular or low-eccentricity giant planets (CJS, CJSECC,
JSRES, JSRESECC) tend to strand massive embryos in
the asteroid belt. These embryos are typically 0.05-0.2
M⊕ and would certainly disrupt the observed asteroid
distribution. In contrast, the EJS and EEJS simulations
leave fewer embryos in the asteroid belt, and those that
are stranded are typically smaller.

A trend that is less evident from Fig. 10 is that the
total terrestrial planet mass decreases with the giant
planet eccentricity in almost all cases. The one excep-
tion to this rule is for the JSRESECC simulations, which
have roughly the same total planet mass as the JSRES
cases; however, at the end of each JSRESECC simulation
eJ < 0.01, so the difference between the two giant planet
configurations is actually fairly minor. The reason for the
correlation between increased giant planet eccentricity
and decreased total mass in terrestrial planets is simply
that eccentric giant planets perturb terrestrial and aster-

oidal bodies more strongly and destroy a larger fraction
of the disk via ejection and collisions with the Sun than
circular giant planets (Chambers & Cassen 2002; Levison
& Agnor 2003; Raymond et al. 2004; O’Brien et al. 2006).
In addition, terrestrial planets can’t form as close to ec-
centric giant planets as they can to circular giant planets
(Raymond 2006); this may explain the reduced number
of stranded asteroidal embryos for the EJS and EEJS
simulations.

Figure 11 shows the radial mass concentration statis-
tic RMC as a function of the angular momentum deficit
AMD for the terrestrial planet system that formed in
each simulation. These statistics are normalized with
respect to the MVEM values of 0.0018 and 89.9. The
systems that formed have a wide range in AMD, from
0.5 to almost 20 times the MVEM value. In contrast,
systems are clumped in RMC between 0.3 and 0.7 times
the MVEM value; none has RMC higher than 0.71 – this

Raymond	et	al.	(2009)



Truncated	disk

Hansen(2009)

Inner	edge	
@	0.7	AU

Outer	edge	
@	1.0	AU

Hansen,	2009



Truncated	disk	outcomes
• Still	match	successes	
of	the	Standard	
Model

• Now,	Mars	analogs	
exist

What	causes	the	
truncation?
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Table 1
Planetary System Statistics for Simulations of Terrestrial Planet Assembly

Name N Sd Ss Sc

Simulations: Jupiter 0 Myr
Sim1 4 0.00066 36.8 68.4
Sim2 4 0.00501 29.0 77.1
Sim3 3 0.00508 39.1 69.5
Sim4 4 0.00213 27.9 54.8
Sim5 4 0.00157 28.2 110.3
Sim6 3 0.00405 26.7 103.5
Sim7 3 0.00133 30.5 103.0
Sim8 3 0.00092 32.8 97.7
Sim9 4 0.00129 32.9 78.2
Sim10 4 0.00106 31.1 74.3
Sim11 3 0.00551 39.2 74.9
Sim12 3 0.00194 43.0 97.1
Sim13 3 0.00228 30.8 96.0
Sim14 3 0.00173 27.3 101.1
Sim15 4 0.00159 30.4 108.0
Sim16 4 0.00464 30.9 73.3
Sim17 4 0.00335 31.9 98.4
Sim18 2 0.00129 37.4 96.3
Sim19 3 0.00112 35.0 67.0
Sim20 3 0.00272 37.4 79.6
Sim21 3 0.00211 30.2 67.6
Sim22 4 0.00087 30.3 75.6
Sim23 4 0.00245 39.0 131.1
Simulations: Jupiter 5 Myr
Sim24 5 0.00074 27.9 74.3
Sim25 3 0.00107 40.5 72.7
Sim26 4 0.00238 36.7 83.0
Sim27 4 0.00435 33.6 61.2
Sim28 3 0.00196 37.1 81.3
Sim29 4 0.00137 27.6 108.1
Sim30 3 0.00043 35.9 89.9
Sim31 2 0.00484 36.2 132.3
Sim32 4 0.00146 28.6 96.1
Sim33 3 0.00074 29.4 92.0
Sim34 4 0.00188 35.1 76.5
Sim35 3 0.00324 39.1 89.2
Sim36 3 0.00227 25.6 111.0
Sim37 4 0.00304 34.1 93.2
Sim38 3 0.00202 33.2 76.8
Solar system
MVEM 4 0.0018 37.7 90

concentrated the overall mass distribution is in radius). In each
histogram, the vertical dotted line indicates the value of the
observed terrestrial planet system. We see that the range in each
statistic obtained from the simulations nicely encompasses the
observed system. As noted above, traditionally simulations have
had difficulties matching the observations to the same degree,
although recent models that include a population of small bodies
do resolve the largest discrepancies, by virtue of the enhanced
dynamical friction (e.g., O’Brien et al. 2006).

The fact that the observed masses of Mercury and Mars
are not larger can be considered an argument for the localized
annulus initial condition. To illustrate this, we performed two
simulations in which we modified our initial conditions so that
300 of the bodies were in the original annulus from 0.7 to 1 AU,
but 50 bodies were distributed in the regions 0.5–0.7 AU and
1–1.2 AU, respectively. Thus, there was 0.25 M⊕ available in
each of these neighboring annuli. In each case, a planet formed
between 0.5 and 0.6 AU, but the masses were 0.43 M⊕ and
0.65 M⊕, respectively. Thus, ∼40%–60% of the final mass of
the innermost planet was “pulled out” of the central annulus,

Figure 1. Open circles represent the distribution of bodies remaining in our
simulations, while the solid points are the four observed solar system planets.
The vertical error bar for Mercury indicates the possible original larger mass
if it originally had the same iron content as the other terrestrial planets. The
vertical dotted lines indicate the edges of the original annulus.

Figure 2. Top system is the observed terrestrial planets, Mercury, Venus, Earth
and Mars. Below that are six realizations of a simulation which begins with 2
Earth masses of material spread uniformly between 0.7 and 1 AU (as indicated
by the vertical dotted lines). The size of the plotted points scales as the cube
root of the planet mass, that is, approximately with the linear dimensions. The
horizontal error bars indicate the radial excursions that result from the planetary
eccentricity. We see that Earth and Venus analogs form naturally around the
location of the annulus, while Mercury and Mars analogs are often produced
by remnant bodies that are scattered out of the forming region and eventually
become dynamically decoupled.

because the initial seed material collides with and accretes
bodies scattered out of the central annulus. In both cases, a
Mars analog formed. In one case, it was of appropriate mass
(0.05 M⊕) and in another it was too large (0.41 M⊕). Both cases
also contained a remnant, unaccreted embryo on an orbit outside
the Mars analog. This increases the probability of collisions and

Hansen	(2009)



Truncated	disk

Hansen(2009)

Inner	edge	
@	0.7	AU

Outer	edge	
@	1.0	AU

Hansen,	2009

Ida	&	Lin,	2008 ?



Giant	planets	migrate

• Type	II	migration	
explains	the	origin	of	
Hot	Jupiters

Why	don’t	we	have	a	
Hot	Jupiter?	What	
happened?



The	Grand	Tack	scenario
Consistent with hydro-dynamical simulations by Masset & Snellgrove (2001), 

Morbidelli & Crida (2007), and Pierens & Nelson (2008)



The	Grand	Tack!

Aurelien Crida



Truncated	disk

Hansen(2009)

Inner	edge	
@	0.7	AU

Outer	edge	
@	1.0	AU

Hansen,	2009

Ida	&	Lin,	2008

What	about	the	asteroid	belt?
Can	it	survive	the	Tack?

The	Grand	Tack

?



Walsh	et	al.,	2011



Walsh	et	al.,	2011



Walsh	et	al.,	2011



S-type

C-type

Walsh	et	al.,	2011



Walsh	et	al.,	2011
S-type

C-type



Walsh	et	al.,	2011
S-type

C-type



Asteroid	Belt	Constraint

• Relative	semi-major	axis	distribution	of	inner	(S-
type)	and	outer	(C-type)	asteroids

• Explains	for	the	first	time,	why	this	striking	
dichotomy	exists

1																							2																						3																							4

a	(AU)
Walsh	et	al.,	2011



From	embryos	to	terrestrial	planets

Hansen(2009)

Inner	edge	
@	0.7	AU

Outer	edge	
@	1.0	AU

Hansen,	2009

Ida	&	Lin,	2008

The	Grand	Tack

Do	we	get	the	same	mass-
orbit	distribution	as	Hansen?



Walsh	et	al.,	2011



Walsh	et	al.,	2011



Grand	Tack	makes	a	Small	Mars!

Walsh	et.	Al	(2011)



Compare	to	standard	models
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Figure 1: The mass and semi-major axis distribution of planets formed from the eccentric (empty squares; O’Brien
et al., 2006; Raymond et al., 2009; Fischer and Ciesla, 2014), circular (empty circles; O’Brien et al., 2006; Raymond
et al., 2009; Fischer and Ciesla, 2014), and extra-eccentric (empty triangles; Raymond et al., 2009) Jupiter and Saturn
models and the Grand Tack model (solid points; Walsh et al., 2011; O’Brien et al., 2014; Jacobson et al., 2014;
Jacobson and Morbidelli, 2014). Planets within the upper gray rectangle are considered Earth-like and those within
the lower gray rectangle are considered Mars-like.

Comparing terrestrial planet systems Numerical simulations never exactly reproduce the terrestrial planets and
cross-comparing the simulated planets with the true distribution of masses and orbits one-by-one is a complicated
task. While, we can directly compare the orbits and masses of the planets in each system as shown in Figure 1
evaluating which model best reproduces the Solar System is a matter of statistics and gross metrics. To help with this
process, Chambers (2001) started using the following sophisticated quantities.

The angular momentum deficit Sd of the inner terrestrial planets measures their dynamical excitation (Laskar,
1997). It is defined as the difference between the sums of the angular momentum of the corresponding circular and
in-plane orbits and the actual orbit normalized by the sum of the angular momentum of the corresponding circular and
in-plane orbits (Chambers, 2001):

Sd =

P
j mj

p
aj

⇣
1�

q
1� e2j cos ij

⌘

P
j mj

p
aj

(1)

where mj is the mass, aj is the semi-major axis, ej is the eccentricity and ij is the inclination of the jth planet. The
inner planets do strongly perturb one another exchanging angular momentum, but exchanges with the outer planets are
limited so the quantity Sd is conserved within a factor of two (Laskar, 1997). The current value for the Solar System
is Sd = 0.0018 and is marked by a dashed horizontal line in Figure 2. If the Solar System undergoes a giant planet
instability as supposed in the Nice model, then the angular momentum deficit after terrestrial planet formation needs
to be between 10% (0.00018) and 70% (0.00126) of the deficit after the instability (shown in Figure 2 as the gray
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What	about	those	few	standard	
models	that	create	a	small	Mars?
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Eccentric Jupiter & Saturn
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Circular Jupiter & Saturn
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Extra-eccentric Jupiter & Saturn
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Figure 4: Lines connect the final planets of the good terrestrial system analogs. Otherwise the individual graphs are
very similar to Figure 1. For the classical models, good terrestrial system analogs have at least one Mars-like planet.
For the Grand Tack model, good terrestrial system analogs have at least one Mars-like planet and both a Venus-like
planet and Earth-like planet with no planets in between.

Genda, 2006).
Sweeping secular resonances combined with tidal gas drag can effectively deplete the asteroid belt by driving the

inward migration of planetary embryos (Nagasawa et al., 2005) and reproducing the small mass of Mars (Thommes
et al., 2008), but this requires a rather specifically tuned gas disk, particularly the gas removal rate (Thommes et al.,
2008). Sweeping resonances due to changing precession rates as the gas is dispersed is not necessary, fixed frequency
resonant and secular perturbations do clear out the asteroid belt and Mars-region occasionally creating a small Mars,
as shown in Figure 4, however there are often planetary embryos remaining in the asteroid belt (Raymond et al., 2009).
Thus, the extra-eccentric Jupiter and Saturn scenario weakly alleviates the first outstanding issue identified above, but
many final planets in the Mars region are still too large and since the excitation retards the growth of Earth-like planets,
they tend to be too numerous and too small. This leads to unchanged concentration statistics as shown in Figure 2.

The extra-eccentric Jupiter and Saturn scenario accentuates the second problem identified with the current orbit
scenario; the assumption of high initial eccentricities for the giant planets is inconsistent with models of their growth
in a gas disk (Morbidelli and Crida, 2007; Pierens and Raymond, 2011; Bitsch et al., 2013). Similar to the eccentric
Jupiter and Saturn scenario, this model is not coherent with the Nice model.

Finally,Raymond et al. (2009) identifies a number of other explanations for extra-eccentric giant planets such as
an early giant planet instability leaving the giant planets on very eccentric orbits and the corresponding problems with
these models.
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What	about	the	water?
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Figure 3: The water mass fraction for each Earth-like planet formed from the eccentric (empty squares; Raymond
et al., 2009; Fischer and Ciesla, 2014), circular (empty circles; Raymond et al., 2009; Fischer and Ciesla, 2014), and
extra-eccentric (empty triangles; Raymond et al., 2009) Jupiter and Saturn models and the Grand Tack model (solid
points; Walsh et al., 2011; O’Brien et al., 2014; Jacobson et al., 2014; Jacobson and Morbidelli, 2014) as a function
of the mass of the planet. The water mass fraction is the water mass delivered to the planet assuming perfect accretion
and either the water model of Raymond et al. (2004) for the non-Grand Tack simulations or the model of O’Brien et al.
(2014) for the Grand Tack simulations. Earth-like planets from the numerical simulations have masses between 0.5
and 2 M� and orbits between the current orbits of Mercury and Mars as shown in Figure 1. The upper dashed line is
a liberal estimate of Earth’s water content (Marty, 2012), the gray region is a more probable estimate (Lécuyer et al.,
1998), and the lower dashed line is a minimum (Lécuyer et al., 1998), i.e. an estimate of the known water reservoirs.
The water content of Earth’s mantle reservoir is unknown.

model be consistent with the evidence for the late heavy bombardment.
Fourth, the eccentric Jupiter and Saturn model is internally inconsistent since interactions with planetesimals and

embryos in the terrestrial disk tend to circularize the giant planets (Chambers, 2001).

Extra-eccentric Jupiter and Saturn The extra-eccentric Jupiter and Saturn model was devised by Chambers and
Cassen (2002) to alleviate the fourth outstanding issue of the previous model. The giant planet are assumed to have
formed at their current semi-major axes but are on more excited orbits. This dynamical excitation is transferred through
both scattering events and secular resonances, principally the ⌫5 and the ⌫6, to the terrestrial disk, and this creates an-
gular momentum deficits much higher than those possessed by current terrestrial planets in the Solar System (Raymond
et al., 2009), as shown in Figure 2.

The rapid depletion of the outer asteroid belt typically leads to a very dry Earth inconsistent with current water
fraction estimates as shown in Figure 3. If the gas disk disperses such that Mars mass embryos in the outer asteroid belt
region, assumed to be water-rich, are swept up in evolving secular resonances with Jupiter, then they may be incorpo-
rated into Earth delivering the needed water (Thommes et al., 2008; Raymond et al., 2009). Alternatively, water may
be delivered by mechanisms listed by Raymond et al. (2009) such as water adsorption of small silicate grains (Mu-
ralidharan et al., 2008), comet impacts (Owen and Bar-Nun, 1995), or oxidation of a H-rich atmosphere (Ikoma and
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Step	3	Complete
Embryos	to	our	planets

Pebble	accretion	can	explain	the	Great	
Dichotomy	in	the	Solar	System

Pebble	processes	lead	to	a	bi-modal	disk	like	
the	runaway	and	oligarchic	growth

Standard	models	fail	to	create	a	small	Mars,	
but	a	migrating	Jupiter	and	Saturn	succeed	at	
truncating	the	disk



The	Nice	model



Pruning Parameter Space

I Our original work was intended to represent an example from a large
class of evolutionary tracks.

I We made up or initial conditions, for example.

I There are been several attempts at fine-tuning/pruning parameter
space to match other constraints or make the model more physical.

1. Put the planets in resonances because it is the natural result of
planet-disk interactions. (Morbidelli et al. 2007)

2. Put plutos in disk because they were there.
=) new trigger (Levison et al. 2011)

3. Restrict to models where ice giant encounters Jupiter
(Brasser et al. 2009)

I Saves the Earth and asteroid belt.

4. Added third ice giant. (Nesvorný & Morbidelli 2012)

I It just works better.
I Except when it doesn’t.

But the basic story has not changed much.

Slide	taken	from	Hal	Levison



Slide	taken	from	Hal	Levison



The Nice model has done good

I Giant Planet Orbits:
I Smooth migration should leave Jupiter and Saturn on e=0 orbits.
I Scattering between the planets produce the correct orbits.

I Trojans: We get the right number and orbits.
I Late Heavy Bombardment: (Gomes et al. 2005; Bottke et al. 2013)

I Reproduce duration of magnitude of impacts on Earth and Moon.

I Primitive and Active Asteroids: (Levison et al. 2009)

I We reproduce the distribution and P and D-types.

I Asteroid Belt Sculpting: (Brasser et al. 2010)

I Realistic smooth migration destroys the asteroid belt.
I But, encounters between the planets saves it.

I Irregular Satellites: (Nesvorný et al. 2006; Bottke et al. 2010)

I Disk particles can get trapped during planetary encounters.

I Ganymede — Callisto Dichotomy: (Barr & Canup 2010)

I Ganymede su↵ers more impacts than Callisto =)
di↵erentiated, while Callisto didn’t.

I Might be an issue for Saturn’s small
satellites (Nimmo & Korycansky 2012)

Slide	taken	from	Hal	Levison



What	is	the	next	step?

The	Grand	Tack	can	successfully	reproduce	the	
orbits	and	masses	of	the	terrestrial	planets
as	well	as	the	composition	and	dynamics	of	the	
asteroid	belt

The	Nice	model	reproduces	the	orbital	features	
of	the	giant	planets	as	well	as	the	dynamical	and	
compositional	features	of	many	of	the	small	
body	populations



What	is	the	next	step?

Masses	and	orbits	are	just	first	order	constraints

It’s	time	to	consider	geology

How	can	what	we	know	about	the	Earth’s	
geology	as	well	as	the	geology	of	meteorites	and	
other	bodies	constrain	Solar	System	formation



Combining planetary accretion
with core-mantle differentiation
We	have	combined	N-body	accretion	simulations	
with	a	multistage	core-mantle	differentiation	model	
based	on	the	concentrations	of	Fe,	Si,	Ni,	Co,	Ta,	Nb,	
V,	Cr	and	H2O	in	Earth’s	mantle	(Rubie et	al.	2015,	
Icarus).

Each	accretional	impact	between	differentiated	
bodies	is	treated	as	a	core-forming	event	that	
involves	metal-silicate	equilibration	at	high	pressure	
in	a	magma	ocean
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Proportion	of an	target’s mantle/magma ocean
that equilibrates with the impactor's core

where Ф is the volume
fraction of metal in the metal-
silicate mixture

Fraction of equilibrating mantle:

• 0.1-1.0% for planetesimal 
impacts

• 3-11% for embryo impacts

(Consistent with Kendall and
Melosh, LPSC 2012)

(Hydrodynamic model of Deguen et al., 2011, EPSL)

r0

z



Composition - mass balance approach to core formation
modeling

(Rubie et al., 2011, EPSL 301, 31-42)

1) Define the bulk composition of accreting material – solar 
system (CI) ratios of non-volatile elements and variable 
oxygen contents.  A spectrum of oxidation states between:

Highly reduced (oxygen-poor):      99.9% of Fe present as metal
Fully oxidized (oxygen-rich): No metal

2) Determine equilibrated compositions of co-existing silicate 
and metal liquids at high P-T:

[(FeO)x (NiO)y (SiO2)z (Mgu Alm Can)O] + [Fea Nib Oc Sid]
silicate liquid metal liquid

using 4 mass balance equations together with 3 models for the 
metal-silicate partitioning of Si, Ni and FeO.  



Compositions	of	primitive	bodies	in	the	proto-
planetary	disk



5 Fitting parameters in least squares
regressions:

• Effective pressure of metal-silicate 
equilibration as a fraction of CMB 
pressure (increases as Earth grows) 
~ 0.7×PCMB

• Compositions (e.g. oxygen contents) 
of proto-Earth and impactors (4 fitting
parameters)



Evolution	of	element	concentrations	in	Earth’s	mantle

Final	core composition:	82	wt%	Fe,	5	wt%	Ni,	9	wt%	Si,	3	wt%O,	48	ppm	H


