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Fig. la. Diagram of gravitational instability in the ‘big-bang’ model. The region of instability is

located to the right of the line Mi(2); the region of stability to the left. The two additional lines of

the graph demonstrate the temporal evolution of density perturbations of matter: growth until the

moment when the considered mass is smaller than the Jeans mass and oscillations thereafter. It is

apparent that at the moment of recombination perturbations corresponding to different masses
correspond to different phases.
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o Adiabatic fluctuation mode not scale invariant.
o Entropic fluctuation modes acquire a scale-invariant
EAp—— spectrum of curvature perturbations on super-Hubble
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source o Transfer of to adiabatic fluctuations on super-Hubble
' scales (similar to curvaton scenario).

@ Horizon problem: absent.
SGC
Structure o Flatness problem: addressed - see later.

Moduli q .
o Size and entropy problems: not present if we assume
that the universe begins cold and large.

Introduction

Paradigms

String Gas
Cosmology

Other

Discussion

94/117



Solution to the flatness problem

String Gas

Brandenberger

Introduction

FatEL The energy density in the Ekpyrotic field scales as

p(a) = poa 3(+W) (6)

I and thus dominates all other forms of energy density
(including anisotropic stress) as the universe shrinks —

quasi-homogeneous bounce, no chaotic mixmaster
Sl behavior.

Cosmology

Perturbations

SGC
Structure

Moduli

Other

Discussion

95/117



Spectrum of Adiabatic Fluctuations

String Gas
If a(t) ~ tP then conformal time scales as n ~ t'~P.

Brandenberger

Introduction The solution of the mode equation for v is

Paradigms
Inflatior

vk(n) = cin “ + con, (7)

where ¢; and ¢, are constant coefficients and « ~ p for
Perturbations p << 1

Applications
Inflatior

Hence, the power spectrum in not scale invariant:

String Gas

Cosmology
Z(t 2
Pelk ) = (o KVt
Moduli
ot ~ K3k k2P  k2(1-pP) (8)

Discussion

96/117



Spectrum of Entropy Fluctuations |

String Gas

Brandenberger

Consider a second scalar field x with the same negative
exponential potential

Introduction

Paradigms
nfl . 2 " -

Sxk+ (K2 4+ V")éxk = 0. 9)
Perturbations
Applications 5 e k2 E ) =0 10
Inflatior Xk ( — t2) Xk - * ( )
‘ Vacuum initial conditions
String Gas
Cosmology 1 '
sac Sxk — _\/ﬂelkt as k(—t) — oo (11)

Moduli

Other

Discussion

97/117



Spectrum of Entropy Fluctuations |l

String Gas

Brandenberger

Solution:

Introduction
Paradigms

Inflation: 5>(k A f{(1)

3p(—kt) ~ k—3/2 (12)

in the super-Hubble limit.
Perturbations

Applications
Inflatior

. Hence

String Gas

Cosmology PX(k) ~ ksk_s ~ ko, (13)
SGC
Structure

i.e. a scale-invariant power spectrum.

Moduli
Other

Discussion

98/117



Origin of the Entropy Mode

String Gas

Brandenberger

Introduction

Paradigms

@ New Ekpyrotic Scenario (Buchbinder, Khoury and
Ovrut (2007); Creminelli and Senatore (2007); Lehners
et al (2007)) Assume a second scalar field x with the
same Ekpyrotic potential.

o Extra metric degrees of freedom which arise when the
Ekpyrotic scenario is considered in terms of its 5-d
String Gas M-theoretic origin (T. Battefeld, RB and S. Patil (2005)).

Cosmology

SGC
Structure

Moduli
Other

Discussion

99/117



Challenges for the Ekpyrotic Scenario

String Gas

Brandenberger

Introduction

Paradigms

o Description of the bounce.
Perturbz i iti i
erliBaions o Initial conditions for fluctuations.

Applications

Inflatior

String Gas
Cosmology

SGC
Structure

Moduli

Other

Discussion

100/117



String Gas

Brandenberger

Paradigms

Inflationz
Expansion

Matter Dominated

Perturbations

Applications
Infl T
Bounce

String Gas
Cosmology

SGC
Structu

Moduli
Other

Discussion

@ Discussion

101/117



Review of Inflationary Cosmology

String Gas
Context:

Brandenberger
Introduction (%] General Relat|V|ty
el P o Scalar Field Matter

Inflationz

Perturbations

Applications
Inflatior

String Gas
Cosmology

SGC
Structure

Moduli
Other

Discussion

102/117



Review of Inflationary Cosmology

String Gas
Context:

Brandenberger

Introduction Q General Relat|V|ty

Paradigms o Scalar Field Matter
Inflation:

Perturbations Q phase W|th a(t) ~ etH

Applications
Inflatior

String Gas
Cosmology

SGC
Structure

Moduli
Other

Discussion

102/117



Review of Inflationary Cosmology

String Gas
Context:

Brandenberger

Introduction Q General Relat|V|ty

Paradigms o Scalar Field Matter
Inflation:

Perturbations Q phase W|th a(t) ~ etH

Applications o requires matter with p ~ —p

Inflatior
Bounce

String Gas
Cosmology

SGC
Structure

Moduli
Other

Discussion

102/117



Review of Inflationary Cosmology

String Gas
Context:

Brandenberger

Introduction Q General Relat|V|ty

Paradigms o Scalar Field Matter
Inflation:

Perturbations Q phase W|th a(t) ~ etH

Applications o requires matter with p ~ —p

Inflatior
Bounce

@ requires a slowly rolling scalar field ¢

String Gas
Cosmology

SGC
Structure

Moduli
Other

Discussion

102/117



Review of Inflationary Cosmology

String Gas
Context:

Brandenberger

Introduction Q General Relat|V|ty

Paradigms o Scalar Field Matter
Inflation:

Perturbations Q phase W|th a(t) ~ etH

Applications o requires matter with p ~ —p

Inflatior
Bounce

@ requires a slowly rolling scalar field ¢
String Gas @ - in order to have a potential energy term

Cosmology

sac o - in order that the potential energy term dominates
e sufficiently long

Moduli

Other

Discussion

102/117



Review of Inflationary Cosmology

String Gas
Context:

Brandenberger

Introduction (%] General Relat|V|ty
Paradigms o Scalar Field Matter

Inflation:
Perturbations Q phase W|th a(t) ~ etH
Applications o requires matter with p ~ —p

@ requires a slowly rolling scalar field ¢

Sring Gas @ -in order to have a potential energy term
osmology
sGe o - in order that the potential energy term dominates

Structure

sufficiently long
— field values |¢| > my, or fine tuning.

Moduli

©

Other

Discussion

102/117



Initial Condition
Inflation

String Gas

Brandenberger

Introduction
Paradigms

Inflatio
Expal

Perturbations

Applications

Inflatior

String Gas
Cosmology

SGC
Structure

Moduli

Problem for Small Field

Other

Discussion

103/117



String Gas

Brandenberger

Introduction

Perturbations
Applications

Inflatior
Bounce

String Gas
Cosmology

SGC
Structure

Moduli
Other

Discussion

Phase Space Diagram for Small Field Inflation

(s
<

slow roll region

104/117



String Gas

Brandenberger

Introduction
Paradigms
Inflatione
Expansion

Matte minatec
Emergen

Perturbations

Applications

Inflatior

String Gas
Cosmology

SGC
Structure

Moduli
Other

Discussion

105/117



Phase Space Diagram for Large Field Inflation

String Gas

Brandenberger

Introduction

Paradigms

Perturbations SlOW roll
Applications tra] eCtory

String Gas ;:

Cosmology

Y&

SGC +
Structure - m

Moduli

Other

Discussion

I,

106/117



Successes of Inflation

String Gas

Brandenberger

. @ Solves horizon problem
ntroauction

Paradigms o Solves flatness problem

o Solves size and entropy problems

Perturbations

Applications
Inflatior

String Gas
Cosmology

SGC
Structure

Moduli
Other

Discussion

107/117



Successes of Inflation

String Gas

Brandenberger

P @ Solves horizon problem
ntroauction

Paradigms o Solves flatness problem

: @ Solves size and entropy problems

o Causal generation mechanism for cosmological
Perturbations ﬂuctuations

Applications
Inflatior
Bounce

String Gas
Cosmology

SGC
Structure

Moduli
Other

Discussion

107/117



Successes of Inflation

String Gas

Brandenberger

P @ Solves horizon problem
ntroauction

Paradigms o Solves flatness problem

: @ Solves size and entropy problems

o Causal generation mechanism for cosmological
Perturbations ﬂuctuations

Applications

o Predicted slight red tilt of the power spectrum of
cosmological perturbations.

String Gas
Cosmology

SGC
Structure

Moduli
Other

Discussion

107/117



Successes of Inflation

String Gas

Brandenberger

S @ Solves horizon problem
ntroauction

Paradigms o Solves flatness problem

: @ Solves size and entropy problems

o Causal generation mechanism for cosmological

Perturbations fluctuations
Applications

o Predicted slight red tilt of the power spectrum of
cosmological perturbations.

Sty o Predicted nearly Gaussian fluctuations.

Cosmology

SGC
Structure

Moduli

Other

Discussion

107/117



Successes of Inflation

String Gas

Brandenberger

S @ Solves horizon problem
ntroauction

Paradigms o Solves flatness problem

: @ Solves size and entropy problems

o Causal generation mechanism for cosmological
Perturbations ﬂuctuations

Applications

o Predicted slight red tilt of the power spectrum of
cosmological perturbations.

Sty o Predicted nearly Gaussian fluctuations.

Cosmology

sac o Little sensitivity on initial conditions.

Structure

Moduli

Other

Discussion

107/117



Successes of Inflation

String Gas

Brandenberger

@ Solves horizon problem

Introduction

Paradigms o Solves flatness problem
: @ Solves size and entropy problems

o Causal generation mechanism for cosmological
Perturbations ﬂuctuations

Applications

o Predicted slight red tilt of the power spectrum of
cosmological perturbations.

Sy o Predicted nearly Gaussian fluctuations.

Cosmology

sac o Little sensitivity on initial conditions.

Structure

Moduli o Self consistent effective field theory formulation.

Other

Discussion

107/117



Conceptual Problems of Inflationary
Cosmology

String Gas

Brandenberger

Introduction

Paradigms

ot @ Singularity problem
o Trans-Planckian problem for cosmological fluctuations
e o Cosmological constant problem

Applatons o Nature of the scalar field ¢ (the “inflaton")

o Applicability of General Relativity?
String Gas @ Consistency with String Theory?

Cosmology

SGC
Structure

Moduli
Other

Discussion

108/117



Trans-Planckian Problem

String Gas

Brandenberger

post

inflation “ Huobble radius

Introduction T

pl
Paradigms tR _ x

. horizon
inflation
Perturbations Y /
Applications
0

String Gas
Cosmology

SGC
Structure

uli
Other

Discussion

109/117



String Gas

Brandenberger

Introduction

Paradigms

A

Perturbations

Applications
flatior

String Gas
Cosmology

SGC
Structure

Moduli
Other

Discussion

post

inflation

Q

Trans-Planckian Problem

“ Huobble radius

=
= x
e
ke
pt horizon

Success of inflation: At early times scales are inside
the Hubble radius — causal generation mechanism is
possible.

109/117



Trans-Planckian Problem

String Gas

Brandenberger

post

inflation “ Huobble radius

Introduction 1
pl

Paradigms tR _ x

flati 7

P -
pt horizon
inflation

Perturbations Y /
Applications

flatior 0

o Success of inflation: At early times scales are inside

String Gas

Gosmology the Hubble radius — causal generation mechanism is
SGC possible.

Structure

o Problem: If time period of inflation is more than 70H~",
then \p(t) < Iy at the beginning of inflation

Moduli
Other

Discussion

109/117



String Gas

Brandenberger

Introduction

Paradigms

Perturbations

Applications
flatior

String Gas
Cosmology

SGC
Structure

Moduli
Other

Discussion

Trans-Planckian Problem

post

inflation “ Huobble radius

o Success of inflation: At early times scales are inside
the Hubble radius — causal generation mechanism is
possible.

o Problem: If time period of inflation is more than 70H~",
then \p(t) < Iy at the beginning of inflation

@ — new physics MUST enter into the calculation of the

fluctuations.
109/117



String Gas

Brandenberger

Recent Reference: A. Linde, V. Mukhanov and A. Vikman,
arXiv:0912.0944

o It is not sufficient to show that the Hubble constant is
smaller than the Planck scale.

Introduction

Paradigms

Ferlurbatons o The frequencies involved in the analysis of the

il cosmological fluctuations are many orders of

Sounee magnitude larger than the Planck mass. Thus, “the
S't,.mg - methods used in [1] are inapplicable for the description
S of the .. process of generation of perturbations in this
Srueture scenario."

Moduli

Other

Discussion

110/117



Applicability of GR

String Gas

Brandenberger

e In all approaches to quantum gravity, the Einstein action

Paradigms is only the leading term in a low curvature expansion.

o Correction terms may become dominant at much lower
energies than the Planck scale.

Ferlurbations o Correction terms will dominate the dynamics at high

il curvatures.

s o The energy scale of inflation models is typically

String Gas n~ 1 016Gev

Cosmology

SGC @ — 7 too close to my, to trust predictions made using

Structure GR

Moduli

Other

Discussion

111/117



Zones of Ignorance

String Gas

Brandenberger

Introduction

dign

post

inflation

Perturbations

Applications

inflation

String G
Cosmolog

Other

Discussion

» ¢ super—Planck density ¢ s

- Hubble radios

/- regions of ignorance

112/117



Inflation and Fundamental Physics?

String Gas

Brandenberger

Introduction

Paradigms o In effective field theory models motivated by
superstring theory there are many scalar fields,
potential candidates for the inflaton.

Perturbations @ The quantum gravity / string theory corrections to the
Applications scalar field potentials are not under controle in most
e models.

Sting Gas @ The key principles of superstring theory are not
Cosmology reflected in string inflation models.

SGC
Structure

Moduli

Other

Discussion

113/117



Successes of String Gas Cosmology

String Gas

Brandenberger

@ Solves horizon problem

Introduction

@ nonsingular

Paradigms . .
@ No trans-Planckian problem for cosmological
fluctuations.
o o Causal _generatlon mechanism for cosmological
Applications fluctuations
o Explains slight red tilt of the power spectrum of
cosmological perturbations.
String Gas
el o Explains nearly Gaussian fluctuations.
SGC
Structure o Natural initial state.

Moduli

o Follows from basic principles of superstring theory.

Other

Discussion

114/117



Conceptual Problems of String Gas Cosmology

String Gas

Brandenberger

Introduction

Paradigms

Corka @ Does not solve flatness problem.
Perturbations o Does not solve size and entropy problems.
Applications o No Self consistent effective field theory formulation.

Inflatior
Bounce

String Gas
Cosmology

SGC
Structure

Moduli

Other

Discussion

115/117



String Gas

Brandenberger

Paradigms

Inflationz
Expansion

Matter Dominated

Perturbations

Applications
Infl T
Bounce

String Gas
Cosmology

SGC
Structu

Moduli
Other

Discussion

@ Conclusions

116/117



Message

String Gas . . . .
String Gas Cosmology is an alternative to cosmological

inflation as a theory of the very early universe.

Brandenberger

Introduction

Paradigms
Inflatione

Perturbations

Applications

Inflatior

String Gas
Cosmology

SGC
Structure

Moduli
Other

Discussion

117/117



Message

String Gas . . . .
String Gas Cosmology is an alternative to cosmological

inflation as a theory of the very early universe.

Brandenberger

Introduction

o Based on fundamental principles of superstring theory.
@ Nonsingular.
o Fluctuations are thermal in origin.

Paradigms

Perturbations

A String Gas Cosmology makes testable predictions for
i cosmological observations

Bounce

String Gas
Cosmology

SGC
Structure

Moduli
Other

Discussion

117/117



Message

String Gas . . . .
String Gas Cosmology is an alternative to cosmological

inflation as a theory of the very early universe.

Brandenberger

Introduction

o Based on fundamental principles of superstring theory.
@ Nonsingular.
o Fluctuations are thermal in origin.

Paradigms

Perturbations

A String Gas Cosmology makes testable predictions for
i cosmological observations

Bounce

@ Blue tilt in the spectrum of gravitational waves [R.B., A.

String Gas

Gosmology Nayeri, S. Patil and C. Vafa, 2006]

SGC
Structure

Moduli
Other

Discussion

117/117



Message

String Gas . . . .
String Gas Cosmology is an alternative to cosmological

inflation as a theory of the very early universe.

Brandenberger

Introduction

o Based on fundamental principles of superstring theory.
@ Nonsingular.
o Fluctuations are thermal in origin.

Paradigms

Perturbations

A String Gas Cosmology makes testable predictions for
i cosmological observations

Bounce

@ Blue tilt in the spectrum of gravitational waves [R.B., A.

String Gas

Gosmology Nayeri, S. Patil and C. Vafa, 2006]

e o Poisson-suppressed nin-Gaussianities.

Moduli o Scale-dependent non-Gaussianities.
Other

Discussion

117/117



Message

String Gas . . . .
String Gas Cosmology is an alternative to cosmological

inflation as a theory of the very early universe.

Brandenberger

Introduction

o Based on fundamental principles of superstring theory.
@ Nonsingular.
o Fluctuations are thermal in origin.

Paradigms

Perturbations

A String Gas Cosmology makes testable predictions for
i cosmological observations

Bounce

@ Blue tilt in the spectrum of gravitational waves [R.B., A.

String Gas

Gosmology Nayeri, S. Patil and C. Vafa, 2006]

e o Poisson-suppressed nin-Gaussianities.

Moduli o Scale-dependent non-Gaussianities.

Other

Dynamical understanding of the Hagedorn phase is missing.

Discussion

117/117



	Introduction
	Paradigms
	Inflationary Expansion
	Matter Dominated Contraction
	Emergent Universe

	Review of the Theory of Cosmological Perturbations
	Applications
	Fluctuations in Inflationary Cosmology
	Fluctuations in the Matter Bounce Scenario
	Fluctuations in Emergent Cosmology

	String Gas Cosmology
	Structure Formation in String Gas Cosmology
	Moduli Stabilization
	Other Approaches to Superstring Cosmology
	Discussion
	Conclusions

