X-ray Studies of Supernova Remnants and Neutron Stars ~ from Suzaku toward ASTRO-H

Toshio Nakano
University of Tokyo
Max Lab → RESCEU

1. Suzaku and ASTRO-H

2. Supernova Remnants and Neutron Stars

Products of Core-Collapse Supernova (SN)

What kind of SN explosion can produce Magnetar?

2. Supernova Remnants and Neutron Stars

Products of Core-Collapse Supernova (SN)

 $E_{\rm G} \sim GM^2/R_{\rm ns} = 10^{53} \, {\rm erg} \rightarrow E_{\nu}$ $E_{\rm k} \sim 10^{51} {\rm erg}$? Ejecat ISM Interstellar medium Black Body temperature ~ keV Thermal Plasma Remaining Compact object ~ keV **Neutron Star (NS)** (or Black Hole)

X-ray observation is useful to study SNR and NS

3. X-ray Spectra "Suzaku" → "ASTRO-H"

The progenitor of the magnetar was very massive (> 20 M_{\odot}). However, explosion energy was typical (10⁵¹ erg).

3. X-ray Spectra "Suzaku" → "ASTRO-H"

Why not a Black hole We cannot find $E \sim 10^{52}$ erg expected to produce NS.

Remaining questions for Astro-H

Suzaku Reslut

The progenitor of the magnetar was very massive (> 20 M_{\odot}). However, explosion energy is estimated as typical (10^{51} erg).

4. X-ray Spectra "Suzaku" → "ASTRO-H"

Many lines are resolved by high Energy resolution of SXS Resonance, Intercombination, and forbidden lines can be separated. Doppler effect can allow us to measure the shock velocity directly.

5. Direct measurement of expansion energy

6. Summary

- We analyzed Suzaku data of SNR CTB109 hosting Magnetar.
- The progenitor mass is estimated as much larger than 20 M_{\odot}
- We do not observe huge explosion energy to leave NS.
- Expected energy will be possibly found with ASTRO-H SXS.