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Evidence	
  of	
  dark	
  energy


O  Supernovae 
 
O  Cosmic Microwave Background 

O  Baryon Acoustic Oscillations 

O  Large Scale Structure�


The ΛCDM model is consistent with  
a large number of experiments.�




The	
  cosmic	
  coincidence	
  problem


In the ΛCDM model:�
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Figure 6.1: Plot of dΩΛ/dN versus log10 a, assuming flat space with Ω(0)
Λ = 0.7. The spike is very

close to the present epoch: this is the coincidence problem.

To illustrate the issue, we plot the derivative dΩΛ/dN (where N = ln a) in Fig. 6.1. We find
that the only epoch in which this quantity is not close to zero is the present. If ρ(0)

Λ /ρ(0)
m was just

10 or 100 times smaller, we would not see any accelerated expansion. If it were a few orders of
magnitude larger than unity, the spike would occur at a large redshift and probably we would not
call it a coincidence at all.

The coincidence problem is not specific to the cosmological constant. Almost all acceptable
dark energy models we will see in the next Chapters behave similarly to the cosmological constant
and their zcoinc also turns out to be very close to zero. Therefore we discuss this problem in terms
of a general dark energy density ρDE.

Barring the case that this coincidence is after all just a coincidence, or that all the observational
evidence in favor of acceleration is systematically wrong, cosmologists have proposed several ways
out of this problem. The first class of explanations is based on models in which ρDE responds to
the trend of ρm and catches up with it irrespective of the initial conditions of ρDE. In this case
ΩDE is non-zero for a considerable duration and this alleviates the coincidence problem. However,
the acceleration starts very recently and therefore a coincidence arises again. The problem is in
fact that this behavior is based on attractor-like solutions such as the so-called tracker models, see
Sec. 7.2.3.

The second class of explanation argues that there is no coincidence and in fact Ωm and ΩDE

have always, or most of the time, been similar. In principle this is not difficult to realize: it is
sufficient to postulate two components, one that clusters, the other that does not because of a large
sound speed, and to regulate their equations of state so that they are always similar. The main
problem here is that either (i) the common equation of state always satisfies the condition for cosmic
acceleration and hence it is difficult or impossible to be consistent with many observations such as
the growth of large-scale structure, or (ii) the equation of state changes right when it is needed,
i.e. today, and therefore another coincidence arises – this time between the epoch of acceleration
and the present. Models that belong to this class are for instance the scaling attractors discussed
in Sec. 8.5.3. A related possibility is to build a model with several epochs of acceleration; it is then
just a matter of reasonable chance to be witnessing one. Here again the difficulty is to realize a
sufficient period of structure formation.

The third class is the anthropic one. According to it we live in a universe with ρDE ≈ ρm because
this is the highest dark energy density allowed by the requisite of sufficient structure formation and,
in general, higher energy vacua are more likely than lower ones. So our universe is the most likely
among the “life-sustaining” universes. We discuss anthropic arguments in Sec. 6.6.

The fourth class is the “backreaction” argument. The coincidence between ρDE and ρm may
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The cosmic coincidence problem has different insight in scalar fields dark energy.�




Cosmological	
  scaling	
  solutions

during the epochs of radiation domination (RD) or matter domination (MD). �


deduce the associated potential.
The equation of evolution ~3! of the background fluid

density can be integrated to give

r
B
5r

B0
x2m with x[

a
a0
, ~16!

where a subscript 0 refers to quantities evaluated at a given
initial time. We now look for scaling solutions, i.e., solutions
such that

rf5rf0x2n,Pf5S n321 D rf . ~17!

Since n/3215122V/rfP@21;1# , we deduce that n
P@0,6# ~let us emphasize that this is a priori no longer true
when jfi0). Using Eqs. ~9!, ~10!, such a solution must sat-
isfy

ḟ25
n
3 rf and V~f!5S 12

n
6 D rf . ~18!

Now, the Friedmann equation ~13! implies that the field
should satisfy

df

dx 5
A

xA11B2xn2m with B[ArB0
rf0

and

A[An
k
A rf0

rf01r0
5An

k
Vf0. ~19!

This can be integrated for different relative values of m and
n.

A. m5n case

In that situation, Eq. ~19! leads to

f2f05
n
l
ln x with l21[

Vf0

Ank
~20!

and, then using Eq. ~18!, to the potential

V~f!5S 12
n
6 D rf0e2l(f2f0). ~21!

This solution corresponds to the scalar field dominated
universe of Ratra and Peebles @11# and to their scaling solu-
tion in the case m53 and m54 ~i.e., radiation or matter
dominated universe!. Note that with such a potential, rf will,
by construction, mimic the evolution of the background fluid
and that we do not have to assume that Vf!1.
Note, however, that, if the scalar field has reached the

attractor from very early time, rf behaves like radiation and
thus contributes to a non-negligible part of the radiation con-
tent during the nucleosynthesis and it has been shown that it
implies the constraint Vf0,0.15 @20,12#. Moreover, since
vf50 in the matter era, such a field will not explain the

supernovae measurements ~which seem to favor vf520.6
@30#! even if it can account for a substantial part of the dark
matter.

B. mfin case

In this case we have

df

dx 5
A

xA11B2xn2m , ~22!

which can be integrated (B.0) to give @31#

f2f05
2A
m2n ln@

A11~B21x (m2n)/2!21B21x (m2n)/2# .

~23!

Again, using Eq. ~18!, we can deduce the potential

V~f!5S 12
n
6 D rf0x2n, ~24!

x being given by Eq. ~23!. Indeed, we only get the potential
in a parametric form, but when B@1 ~i.e., when the perfect
fluid drives the evolution of the universe! x can be eliminated
from Eqs. ~23!, ~24! to give

V~f!5S 12
n
6 D rf0Sm2n

2A B D 22n/(m2n)

~f2f0!
22n/(m2n).

~25!

When m53 and m54, we recover the Ratra-Peebles result
@11# as well as the Liddle-Scherrer result @16# for all m. This
parametric general form of the potential seems, however, not
to have been exhibited before.

IV. NONMINIMALLY COUPLED SCALAR FIELDS WITH
A POWER LAW POTENTIAL

A. Existence of a scaling solution

The former procedure cannot be applied when the field is
nonminimally coupled since it is impossible, for instance, to
write a closed equation for df/dx as in Eq. ~19!. Moreover,
we are interested in a field evolving in a given potential. We
assume that the field evolves in an inverse power law poten-
tial and show that there exist scaling solutions, the stability
of which is then studied.
We assume that the potential takes the form

V~f!5V0Mp
4S f

Mp
D 2a

with a.0, ~26!

with Mp being the Planck mass. The universe is dominated
by the perfect fluid so that ~we assume mfi0)

H5
2
m

1
t2t0

, a5a0~ t2t0!2/m, v
B
5
m
3 21. ~27!

Redefining Mp(t2t0)AV0 as t and f/Mp as f , the Klein-
Gordon equation ~6! becomes
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 with negative potentials induced by the non-minimal coupling to gravity.�
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where primes are e-folding derivatives and we have rescaled � = �. Since H 0 = �3
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in the perfect fluid dominant epoches, Eq. (13) can be rewritten as
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Similarly, the e↵ective potential (9) with rescaled � is given by
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(�) = V (�)� 3⇠
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(1� 3w)H2�2, (15)

and one can find that V
e↵

(�) = V (�) for w = 1/3.

Considering near MD where 0  w ⌧ 1/3, the condition |�| ⌧ p
2V (�)/|⇠H2| leads to

V
e↵

(�) ' V (�) and the cosmological evolution is govern by the field potential V (�), which

we do not interested in this work. On the other hand, if the field value satisfies the condition

|�| � p
2V (�)/|⇠H2|, then Eq. (15) becomes

V
e↵

(�) ' � 3⇠

22

H2�2. (16)

In this case, we have a negative potential V
e↵

(�) < 0 for ⇠ > 0.

Taking the slow-roll conditions (12) into account, the condition of a negative e↵ective

potential (16) also implies that

|�| �
p

2V (�)/|⇠H2| �
q
V�/|⇠H2|. (17)

Provided that |�| < 1, Eq. (14) can be reduced as (0  w ⌧ 1/3):

�00 +
3

2
(1� w)�0 � 3⇠ (1� 3w)� = 0, (18)

which leads to an unique solution

�(N) = C
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e�+N + C�e
��N , (19)

where C± are constants to be determinated by initial conditions and
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9

16
(1� w)2 + 3⇠(1� 3w). (20)

For ⇠ > 0, one finds that �
+

> 0, and thus e�+N = a�+ corresponds to an increasing

mode; and e��N = a�� is a decreasing mode as �� < 0. For ⇠ = 0, �
+

= 0 holds, which

indicating the constant mode of a massless scalar field. For ⇠ < 0, no increasing mode exsits

since �±  0.
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De Sitter expansion:�
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Remarkably, the de Sitter expansion during the V
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domination epoch cannot last forever,

since the subdominant energy density of ⇢� (the second term in the right-hand side of Eq.

(33)) scales as a2�2 , which is growing with time.
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Asymptotic universe:�
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For su�ciently large N such that �
3

� 6/(�2

3

� 6⇠ � 12⇠�
3

), the left-hand side of Eq.

(37) becomes negligible and the lowest order of the Friedmann equation is given by ⇢� = 0.

The asymptotic solution thus behaves as �2

3

⇠ H�2 / a3(1+wf ), and one can solve via Eq.

(35) to find that

wf =
�3 + 2⇠

3(1 + 2⇠)
, and �

3

=
4⇠

1 + 2⇠
. (39)

Note that the equation of state satisfies �1 < wf < 0 as we consider 0 < ⇠ < 3/2, and

therefore the scalar field will always dominate the universe after the phase of V
0

domination.

IV. EXPONENTIAL POTENTIAL V (�) = V

0

e

���

We now revisit the model with V (�) = V
0

e���, where � > 0, and we impose the slow-roll

conditions (12), which leads to the constraint �2 ⌧ 1. 2 Rescaling � = �, we may rewrite

Eq. (14) with the exponential potential as

�00 +
3

2
(1� w)�0 � 3⇠ (1� 3w)�� �

2V
0

H2

e��� = 0. (40)

2 See [12] for detail analysis on scaling solutions in the regime of �2
> 1.
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�
3
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4
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r
9

16
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✓
�2

3

2
� 3⇠ � 6⇠�

3

◆
H2�2

3

. (38)
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3

� 6/(�2

3

� 6⇠ � 12⇠�
3

), the left-hand side of Eq.

(37) becomes negligible and the lowest order of the Friedmann equation is given by ⇢� = 0.
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3
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wf =
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3(1 + 2⇠)
, and �

3

=
4⇠

1 + 2⇠
. (39)

Note that the equation of state satisfies �1 < wf < 0 as we consider 0 < ⇠ < 3/2, and

therefore the scalar field will always dominate the universe after the phase of V
0

domination.
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2 See [12] for detail analysis on scaling solutions in the regime of �2
> 1.
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3
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4⇠
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therefore the scalar field will always dominate the universe after the phase of V
0

domination.

IV. EXPONENTIAL POTENTIAL V (�) = V

0

e

���
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0
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0 < ⇠ < 3/2

that of the cosmological constant. On the other hand, a cosmological scaling solution can

exist in the limit with |�| � p
2V

0

/|⇠H2| where V
0

/|⇢�| ⌧ 1. In this case the e↵ective

potential is negative as given by (16), and the equation of state (26) can be reduced as

w�(w, ⇠) = w � 2

3
�
1

(w, ⇠), (28)

which is agree with (24). Note that for ⇠ > 0, the equations of state

w�(0, ⇠) =
1

2
�

r
1

4
+

4

3
⇠, (29)

is negative in MD.

For 0 < ⇠ < 3/2, Eq. (29) implies that �1 < w� < 0, and the constant potential V
0

(which behaves as a cosmological constant with wV0 = �1) can gradually dominate ⇢�. After

V
0

become dominant, ⇢� and V
e↵

(�) will turn into be positive and the scaling solution will

break down.

For ⇠ � 3/2, Eq. (29) shows that w�  �1 and that the nonminimal coupling term will

always dominate ⇢�. In this case, ⇢� is always negative and one may check that the evolution

becomes singular within few e-foldings after ⇢� dominates the universe.

The domination of V
0

with 0 < ⇠ < 3/2 gives rise to the familiar de Sitter expansion

where we can assume that w = �1, H 0 = 0 and H = H
ds

is a constant. In this regime, Eq.

(13) is simplified as

�00 + 3�0 � 12⇠� = 0, (30)

where 0 < ⇠ < 3/2. The corresponding solution (keeping only the increasing mode) reads

�
2

= C
2

e�2N , (31)

where

�
2

= �3

2
+

r
9

4
+ 12⇠, (32)

and the energy density (6) is of the form

⇢� = V
0

+
1

2

✓
�2

2

2
� 3⇠ � 6⇠�

2

◆
H2

ds

�2

2

. (33)

Remarkably, the de Sitter expansion during the V
0

domination epoch cannot last forever,

since the subdominant energy density of ⇢� (the second term in the right-hand side of Eq.

(33)) scales as a2�2 , which is growing with time.

7

�1(w, ⇠) = �3

4
(1� w) +

r
9

16
(1� w)2 + 3⇠(1� 3w)

Ve↵(�) = V0 �
1

2
⇠R�2

⇢� =
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✓
�2
1

2
� 3⇠ � 6⇠�1

◆
H2�2

1 < 0
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w� = �1

⇢� = V0 +
1

2

✓
�2
3

2
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◆
H2�2

3 > 0
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pH
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 with flat potentials.�
Cosmological	
  scaling	
  solutions


De Sitter expansion:�


Let us focus on the case of ⇠ > 0, where the decreasing mode (/ e��N) becomes negligible

with the expansion of the universe. In this case the solution can be approximated as

� = C
+

e�+N . (21)

Taking this solution into Eq. (6), the energy density reads

⇢� = V (�) +
1

2

✓
�2

+

2
� 3⇠ � 6⇠�

+

◆
H2�2. (22)

Keeping in mind that �
+

= 0 for w = 1

3

and �
+

= �3

4

+
q

9

16

+ 3⇠ for w = 0, the condition

|�| � p
2V (�)/|⇠H2| thus gives (for 0  w ⌧ 1/3)

⇢� ' 1

2

✓
�2

+

2
� 3⇠ � 6⇠�

+

◆
H2�2, (23)

where it can be checked that ⇢� < 0 when ⇠ > 0.

The energy density with |⇢�| / H2�2 / a2�+�3(1+w) indicates that the equation of state

takes the form

w�(w, ⇠) = w � 2

3
�
+

(w, ⇠), (24)

where we obtain w�(
1

3

, ⇠) = 1

3

and w�(0, ⇠) =
1

2

�
q

1

4

+ 4

3

⇠.

B. Constant potential V (�) = V

0

Let us now study the evolution with a flat potential V (�) = V
0

where V� = 0. In this

model, the solution (19) is exact for arbitrary initial conditions. Here, we may denote the

solution during RD and MD as

�
1

= C
1

e�1N , (25)

where the decreasing mode has been neglected and we set C
1

= C
+

and �
1

= �
+

.

The equation of state w� = P�/⇢� with the solution (25) is then given by

w� = �1� 2�
1

� 3(1 + w)

3

✓
1� V

0

⇢�

◆
, (26)

where

⇢� = V
0

+
1

2

✓
�2

1

2
� 3⇠ � 6⇠�

1

◆
H2�2

1

. (27)

In the case where V
0

dominates the energy density, namely ⇢� ⇡ V
0

, the scalar field is

slow-rolling in the constant potential and it has an equation of state w� ⇡ �1 similar to

6

Scaling phase (RD & MD):�


that of the cosmological constant. On the other hand, a cosmological scaling solution can

exist in the limit with |�| � p
2V

0

/|⇠H2| where V
0

/|⇢�| ⌧ 1. In this case the e↵ective

potential is negative as given by (16), and the equation of state (26) can be reduced as

w�(w, ⇠) = w � 2

3
�
1

(w, ⇠), (28)

which is agree with (24). Note that for ⇠ > 0, the equations of state

w�(0, ⇠) =
1

2
�

r
1

4
+

4

3
⇠, (29)

is negative in MD.

For 0 < ⇠ < 3/2, Eq. (29) implies that �1 < w� < 0, and the constant potential V
0

(which behaves as a cosmological constant with wV0 = �1) can gradually dominate ⇢�. After

V
0

become dominant, ⇢� and V
e↵

(�) will turn into be positive and the scaling solution will

break down.

For ⇠ � 3/2, Eq. (29) shows that w�  �1 and that the nonminimal coupling term will

always dominate ⇢�. In this case, ⇢� is always negative and one may check that the evolution

becomes singular within few e-foldings after ⇢� dominates the universe.

The domination of V
0

with 0 < ⇠ < 3/2 gives rise to the familiar de Sitter expansion

where we can assume that w = �1, H 0 = 0 and H = H
ds

is a constant. In this regime, Eq.

(13) is simplified as

�00 + 3�0 � 12⇠� = 0, (30)

where 0 < ⇠ < 3/2. The corresponding solution (keeping only the increasing mode) reads

�
2

= C
2

e�2N , (31)

where

�
2

= �3

2
+

r
9

4
+ 12⇠, (32)

and the energy density (6) is of the form

⇢� = V
0

+
1

2

✓
�2

2

2
� 3⇠ � 6⇠�

2

◆
H2

ds

�2

2

. (33)

Remarkably, the de Sitter expansion during the V
0

domination epoch cannot last forever,

since the subdominant energy density of ⇢� (the second term in the right-hand side of Eq.

(33)) scales as a2�2 , which is growing with time.
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potential is negative as given by (16), and the equation of state (26) can be reduced as
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which is agree with (24). Note that for ⇠ > 0, the equations of state
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+

4

3
⇠, (29)

is negative in MD.

For 0 < ⇠ < 3/2, Eq. (29) implies that �1 < w� < 0, and the constant potential V
0

(which behaves as a cosmological constant with wV0 = �1) can gradually dominate ⇢�. After

V
0

become dominant, ⇢� and V
e↵

(�) will turn into be positive and the scaling solution will

break down.

For ⇠ � 3/2, Eq. (29) shows that w�  �1 and that the nonminimal coupling term will

always dominate ⇢�. In this case, ⇢� is always negative and one may check that the evolution

becomes singular within few e-foldings after ⇢� dominates the universe.

The domination of V
0

with 0 < ⇠ < 3/2 gives rise to the familiar de Sitter expansion

where we can assume that w = �1, H 0 = 0 and H = H
ds

is a constant. In this regime, Eq.

(13) is simplified as

�00 + 3�0 � 12⇠� = 0, (30)

where 0 < ⇠ < 3/2. The corresponding solution (keeping only the increasing mode) reads

�
2

= C
2

e�2N , (31)

where

�
2

= �3

2
+

r
9

4
+ 12⇠, (32)

and the energy density (6) is of the form

⇢� = V
0

+
1

2

✓
�2

2

2
� 3⇠ � 6⇠�

2

◆
H2

ds

�2

2

. (33)

Remarkably, the de Sitter expansion during the V
0

domination epoch cannot last forever,

since the subdominant energy density of ⇢� (the second term in the right-hand side of Eq.

(33)) scales as a2�2 , which is growing with time.

7

Asymptotic universe:�


To calculate the cosmological evolution after the de Sitter expansion, we assume that the

asymptotic universe has a constant equation of state w = wf that satisfies

�00 +
3

2
(1� wf )�

0 � 3⇠ (1� 3wf )� = 0. (34)

Again, by neglecting the decreasing mode, the solution is given by

�
3

= C
3

e�3N , (35)

where

�
3

= �3

4
(1� wf ) +

r
9

16
(1� wf )2 + 3⇠(1� 3wf ). (36)

Provided that the scalar field is the dominant species of the universe, the Friedmann

equation shows

3H2 = 2⇢�, (37)

where the energy density

⇢� = V
0

+
1

2

✓
�2

3

2
� 3⇠ � 6⇠�

3

◆
H2�2

3

. (38)

For su�ciently large N such that �
3

� 6/(�2

3

� 6⇠ � 12⇠�
3

), the left-hand side of Eq.

(37) becomes negligible and the lowest order of the Friedmann equation is given by ⇢� = 0.

The asymptotic solution thus behaves as �2

3

⇠ H�2 / a3(1+wf ), and one can solve via Eq.

(35) to find that

wf =
�3 + 2⇠

3(1 + 2⇠)
, and �

3

=
4⇠

1 + 2⇠
. (39)

Note that the equation of state satisfies �1 < wf < 0 as we consider 0 < ⇠ < 3/2, and

therefore the scalar field will always dominate the universe after the phase of V
0

domination.

IV. EXPONENTIAL POTENTIAL V (�) = V

0

e

���

We now revisit the model with V (�) = V
0

e���, where � > 0, and we impose the slow-roll

conditions (12), which leads to the constraint �2 ⌧ 1. 2 Rescaling � = �, we may rewrite

Eq. (14) with the exponential potential as

�00 +
3

2
(1� w)�0 � 3⇠ (1� 3w)�� �

2V
0

H2

e��� = 0. (40)

2 See [12] for detail analysis on scaling solutions in the regime of �2
> 1.
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3
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(37) becomes negligible and the lowest order of the Friedmann equation is given by ⇢� = 0.

The asymptotic solution thus behaves as �2
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(35) to find that
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. (39)

Note that the equation of state satisfies �1 < wf < 0 as we consider 0 < ⇠ < 3/2, and

therefore the scalar field will always dominate the universe after the phase of V
0

domination.

IV. EXPONENTIAL POTENTIAL V (�) = V

0

e

���

We now revisit the model with V (�) = V
0

e���, where � > 0, and we impose the slow-roll

conditions (12), which leads to the constraint �2 ⌧ 1. 2 Rescaling � = �, we may rewrite

Eq. (14) with the exponential potential as

�00 +
3

2
(1� w)�0 � 3⇠ (1� 3w)�� �

2V
0

H2

e��� = 0. (40)

2 See [12] for detail analysis on scaling solutions in the regime of �2
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Note that the equation of state satisfies �1 < wf < 0 as we consider 0 < ⇠ < 3/2, and
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2
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+
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3
⇠, (29)

is negative in MD.

For 0 < ⇠ < 3/2, Eq. (29) implies that �1 < w� < 0, and the constant potential V
0

(which behaves as a cosmological constant with wV0 = �1) can gradually dominate ⇢�. After

V
0

become dominant, ⇢� and V
e↵

(�) will turn into be positive and the scaling solution will

break down.

For ⇠ � 3/2, Eq. (29) shows that w�  �1 and that the nonminimal coupling term will

always dominate ⇢�. In this case, ⇢� is always negative and one may check that the evolution

becomes singular within few e-foldings after ⇢� dominates the universe.

The domination of V
0

with 0 < ⇠ < 3/2 gives rise to the familiar de Sitter expansion

where we can assume that w = �1, H 0 = 0 and H = H
ds

is a constant. In this regime, Eq.

(13) is simplified as
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2
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e�2N , (31)

where
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+
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9

4
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✓
�2

2
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◆
H2
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. (33)

Remarkably, the de Sitter expansion during the V
0

domination epoch cannot last forever,

since the subdominant energy density of ⇢� (the second term in the right-hand side of Eq.

(33)) scales as a2�2 , which is growing with time.
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FIG. 1. Evolutions of energy density ratio and equation of state as functions of N ⌘ ln a with

(kq, ⇠,⌦
(z=0)

� ) = (�1,�0.3, 0.7) and potential-free (V (�) = 0) case. In the left panel, the dotted,

solid and dashed line correspond to the energy density ratio of radiation, matter and quintessence

field, respectively. In the right panel, the tracker behavior in RD and MD are presented.

In the case kq⇠ > 0, we may approximate � = C
1

tl1 since l
2

indicate a decreasing mode.

The equation of state is given by

w� = �1� ⇢̇�
3H⇢

= �1 +
2(1� l

1

)

3A

⇢� � V
0

⇢�
, (41)

i.e., w� = 1/3 in RD and w� = l
1

in MD. Fig. 1 shows the cosmological evolutions of

⌦i = ⇢i/⇢c and w� as functions of N ⌘ ln a, where ⇢c is the critical density. Here, we fix

⇢
(z=0)

r /⇢
(z=0)

m = 3⇥ 10�4 and ⌦(z=0)

� = 0.7 as the boundary condition. In the right panel, we

observe that the trackers EoS follows Eq. (41), w� = 1/3(' �0.3) in RD (and MD) era.

V. COSMOLOGICAL PERTURBATIONS

In this section, we study the linear perturbation equations of the nonminimally coupled

scalar field. We consider the perturbed metric in the Newtonian gauge with the FRW

background of the form

ds2 = a2(⌧)
⇥� (1 + 2 ) d⌧ 2 + (1� 2��ij +Dij) dx

idxj
⇤
, (42)

where ⌧ is the conformal time,  and � are the scalar metric potentials and Dij is a

symmetric tensor that satisfies the traceless and transverse conditions: Dii = 0, @iDij = 0.
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j , (45)

where vM denotes the peculiar velocity of matter; and ⇡i
j is the traceless tensor perturbation,

and i, j = 1, 2, 3.
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turbation, that is �(x) = �(⌧) + ��(~x). Taking the perturbed metric and the perturbed

energy-momentum tensor into Eq. (2), we obtain the components of the perturbed field

equation as
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�
1 + ⇠2�2

� ⇥
3H (�0 +H )� @k@

k�
⇤

+2

�
�0��0 � �02 

�� 6⇠H(�0 + 2H�)��+ 6⇠��0(2H + �0)

+2⇠�(@2��� 3H��0) = a22�⇢M , (46)

(0i) : 2
�
1 + ⇠2�2

�
@i (�0 +H )� (1 + 2⇠)2�0@i��

+22⇠�@i (H��� ��0 + �0 ) = �a22 (⇢M + PM) @ivM , (47)

and the spatial part (ij) is divided into

(i = j) : 2
�
1 + ⇠2�2

� ⇥�H2 + 2H0� +H 0 + �00 + 2H�0⇤

�(1 + 4⇠)2

�
�0��0 � �02 

�
+ 22⇠
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⇤
��
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(i 6= j) :  = � , (49)

where primes are derivatives with respect to ⌧ .

Similarly, the linear perturbation for the Klein-Gordon equation can be derived as

��00 + 2H��0 � 6⇠(H0 +H2)��� @2��+ V����

+2⇠�[6(H0 +H2) + 9H�0 + 3H 0 + 3�00 + @2( � 2�)]

�4H�0 � 3�0�0 � �0 0 � 2�00 = 0. (50)
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⌦i = ⇢i/⇢c and w� as functions of N ⌘ ln a, where ⇢c is the critical density. Here, we fix
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� = 0.7 as the boundary condition. In the right panel, we

observe that the trackers EoS follows Eq. (41), w� = 1/3(' �0.3) in RD (and MD) era.

V. COSMOLOGICAL PERTURBATIONS

In this section, we study the linear perturbation equations of the nonminimally coupled

scalar field. We consider the perturbed metric in the Newtonian gauge with the FRW

background of the form

ds2 = a2(⌧)
⇥� (1 + 2 ) d⌧ 2 + (1� 2��ij +Dij) dx
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⇤
, (42)

where ⌧ is the conformal time,  and � are the scalar metric potentials and Dij is a

symmetric tensor that satisfies the traceless and transverse conditions: Dii = 0, @iDij = 0.
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A. Stability of the scalar field perturbation

Let us now investigate the stability of the scalar field evolving in the (nearly) flat poten-

tials, where the scaling solutions of interest may result in ⇢� < 0 with ⇠ > 0. By using Eq.

(49), the perturbed Klein-Gordon equation in Fourier space is simplified as

��00 + 2H��0 � 6⇠(H0 +H2)��+ (k2 + V��)��

+2⇠�[6(H0 +H2)�+ 12H�0 + 3�00 + k2�]

�4H�0�� 4�0�0 � 2�00� = 0. (51)

Given that we consider the potential is responsible for the late-time cosmic acceleration, the

term V�� ⌧ 2V ⇡ H2

0

can be neglected during the perfect fluid dominant epoches.

Taking 2

e↵

⌘ 2/(1 + ⇠2�2) and Eq. (49), we may rewrite Eqs. (46), (48) in Fourier

space as

3H (�0 +H�) + k2� =
a22

e↵

2
⇢(⌦M�M + ⌦���), (52)

�00 + 3H�0 +
�H2 + 2H0�� =

a22

e↵

2
⇢(c2s(M)

⌦M�M + c2s(�)⌦���), (53)

where ⌦i = ⇢i/⇢, �i = �⇢i/⇢i and c2s = w = �p/�⇢. In the limit ⌦� ⌧ 1, one can combine

Eq. (52) and Eq. (53) to obtain the equation for the scalar potential

�00 + 3H(1 + c2s)�
0 +

�
c2sk

2 + 3Hc2s +H2 + 2H0�� = 0. (54)

This means that the evolution of � is only govern by the dominant energy density, ⇢ = ⇢M ,

of the universe.

On the superhorizon scales where k ⌧ H, Eq. (54) becomes

�00 + 3H(1 + c2s)�
0 = 0, (55)

and its solution is given by � = Ca+Cb

R
d⌧/a3(1+c2s). Treating � as a constant by neglecting

the decaying part, we find that Eq. (51) (with k ! 0) becomes

��00 + 2H��0 � 6⇠(H0 +H2)�� = 0, (56)

where we have adopted the backgournd equation (10) with negligible potential (V� = 0),

that is

�00 + 2H�0 � 6⇠(H0 +H2)� = 0. (57)
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second part. Since the quintessence model with the exponential potential behaves a slow-

roll property at �2 < 2 [34], we consider the prior, 0 < � < 1, in the fitting. The detail

priors for cosmological and model parameters are shown in Table. I.

1. Case I: V (�) = const.

In order to keep the positive-definite of ⇢�, we fix ⇠ < 0 in both scalar-tensor and

teleparallel dark energy model. In Eq. (??) and (??), if the scalar field solutions exhibit

only the decreasing mode, the final state must be �, �̇ ! 0, which is indistinguishable to

⇤CDM model. Therefore, we choose the models with an increasing mode in each model,

denoting that kq⇠ > 0, in scalar-tensor theory and kt⇠ < 0 in the teleparallel dark energy.

Note that we tune the initial scalar �i to regulate the potential-to-dark energy density ratio.

TABLE II. Constraints on cosmological parameters (95% C.L.)

Parameter ⇠ = 0.1 ⇠ = 0.3 ⇤CDM

Baryon density 100⌦bh
2 = 2.21± 0.05 100⌦bh

2 = 2.21+0.05
�0.01 100⌦bh

2 = 2.22+0.04
�0.05

CDM density ⌦ch
2 = 0.119+0.003

�0.004 ⌦ch
2 = 0.118+0.004

�0.003 ⌦ch
2 = 0.118± 0.003

Neutrino mass ⌃m⌫ < 0.245 eV ⌃m⌫ < 0.245 eV ⌃m⌫ < 0.211 eV

Spectral index ns = 0.964± 0.011 ns = 0.964+0.011
�0.012 ns = 0.963+0.012

�0.009

Tensor-to-Scalar ratio r < 0.116 r < 0.118 r < 0.125

Potential V

0

/⇢� = 1.018+0.028
�0.018 V

0

/⇢� = 1.066+0.112
�0.066 –

In Fig. ??, we depict the 2D likelihood for the potential-to-dark energy density ratio,

V
0

/⇢�, versus the energy density of cold dark matter (CDM) ⌦ch
2 in scalar-tensor theory

and teleparallel dark energy. The potential-to-dark energy density ratio in teleparallel dark

energy is constrainted to be unity, corresponding to ⇤CDM limit. This consistent with

the potential-free analysis [30]: the observational data disagree with the kinetic energy and

e↵ective density from non-minimally coupled term. In contrast, the 2 � � confidence level

of the phantom type scalar-tensor theory constraint 0.639 < � < 1, which leaves more room

for potential. The other fitting results are listed in Table. II.
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VI. CONSTRAINTS FROM COSMOLOGICAL OBSERVATIONS

In this section, we perform the programs MGCAMB and CosmoMC to study the cos-

mological parameters and the model behavior of scalar-tensor theory and teleparallel dark

energy. In the modified CAMB program, we modify the background evolution of ⇤CDM

to that of modified quintessence model. The scalar perturbation follows the MGCAMB

program, in which the Newtonian gauge, shown in Eq. (61), (62) and (??), is used. Fur-

thermore, the tensor perturbation in Eq. (64) and (??) is also considered. The dataset is as

follows: the CMB data from Planck with both low-l (l < 50) and high-l (l � 50) parts and

WMAP with only the low-l one; the BAO data from BOSS DR11; and the SNIa data from

SNLS.

TABLE I. Priors for cosmological parameters.

Parameter Prior

Baryon density 0.5 < 100⌦bh
2

< 10

CDM density 10�3

< ⌦ch
2

< 0.99

Neutrino mass 0.01 < ⌃m⌫ < 2 eV

Spectral index 0.9 < ns < 1.1

Tensor-to-Scalar ratio 0 < r < 1

In this work, we focus on two types of potential which cover the ⇤CDM limit. Firstly,

we study the constant potential, V (�) = V
0

. In this potential, the dark energy can be

seperated into the cosmological constant plus the e↵ective energy from kinetic energy and

non-minimally coupled term. As the potential dominating the dark energy, V
0

/⇢� = 1, the

⇤CDM model is recovered; when the potential contribution vanishes, V
0

/⇢� = 0, it reduces

to the potential-free case. We search the allowed region of potential-to-dark energy density

ratio, V
0

/⇢�, to examine whether the non-minimal coupled model is prefered or not. As

mentioned in Ref. [30], the potential-free case is disagree with the observational data, so

the parameter priors in our program is located at 0.5 < V
0

/⇢� < 1. On the other hand,

a exponential potential, V = V
0

e���, is explored to study the non-constant case in the

second part. Since the quintessence model with the exponential potential behaves a slow-

roll property at �2 < 2 [34], we consider the prior, 0 < � < 1, in the fitting. The detail

13

 with flat potentials.�




Summary	
  for	
  the	
  moment


We study the cosmological evolution of a scalar field with negative 
(effective) potentials induced by the non-minimal coupling to gravity.  
 
For a constant potential, the negative potential exhibits an unique 
scaling solution that gives negative energy density to the scalar field 
when ξ > 0. 
 
We show that the negative energy density does not leads to instability 
on super-horizon scales, and that the asymptotic universe is of a 
power-law expansion. 
 
Observational constraints to the curvature-induced negative potential 
are investigated.�



