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Introduction Frame independence Matter point of view Summary

Introduction
Why do we consider scalar-tensor theory of gravity?

• Naturally arises in higher dimensional theories.
• Attractive from a renormalization point of view.
• Favoured by recent Planck observational results.
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Introduction

What is the Scalar-tensor theory of gravity? It considers a
scalar field non-minimally coupled to gravity:

S ∼
∫

d4x
√
−g̃
{
F (φ)R̃ + L̃(φ)

}
This form of the action is called Jordan frame.

By means of a conformal transformation, i.e.

g̃µν = F−1gµν ...
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Frame independence

...one can bring the Jordan frame into the Einstein-Hilbert
action, that is

S ∼
∫

d4x
√
−g {R + L(φ)} , (1)

the so-called Einstein frame.

What is the advantatge of such a transformation?
• Very well know how to deal with EH action (and much
easier!).

• Physical observables are in fact frame independent
(Deruelle and Sasaki, 2011).
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Frame independence

However, what about the matter sector?

• Matter minimally couples to g̃ .

• As long as we have successful inflation in the Einstein
frame we can choose the matter metric g̃ by a conformal
transformation.

• How different can g̃ and g be?

• Can this matter point of view leave observational
imprints?
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Review: PL Inflation
We consider power-law inflation to illustrate this points. The
Inflaton field φ in a potential V (φ) = V0e

−λφ gives rise to
(p = 2/λ2): (Lucchin and Matarrese, 1985)

a = a0 (t/t0)
p φ = 2

λ
ln(t/t0) H = p/t ε = 1/p .

The curvature and tensor power spectrum under the slow-roll
approximation are given by

PRc (k) =
(

H2

2πφ̇

)2
= p

8π2
H2

0
M2

pl

(
k
k0

) −2
p−1

,

PT (k) = 2
π2

H2

M2
pl
= 16

p
PRc (k) .

We need p � 1 for a successful inflation. (r = 16/p)
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Curvaton model

For simplicity, let us take a curvaton as a representative of
matter. The curvaton is a scalar field χ that:

• Initially is subdominant

• Has a non-vanishing initial energy density

• Dominates after inflaton decays

• Right after decays and contributes to the scalar
power spectrum

7 / 14



Introduction Frame independence Matter point of view Summary

Curvaton model

Our curvaton is a matter field and therefore lives in the Jordan
frame, i.e.

Sm ∼
∫

d4x
√
−g̃
(
−g̃µν∂µχ∂νχ− m̃2χ2) .

The power-spectrum for the curvaton under the sudden decay
approximation is given by (Lyth and Wands, 2002)

Pχ(k) = r?
δχ2

χ2
?

= r?
H̃2

(2πMplχ?)2
,

where r? is the energy density fraction of the curvaton at
decay.
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Matter point of view

Matter is coupled to the Jordan g̃ so our conformal
transformation yields

ã = F−1/2a and dt̃ = F−1/2dt . (2)

Let us take a concrete example inspired in a dilationic
coupling, that is

F (φ) = eγλφ/Mpl = (t/t0)
2γ . (3)
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Matter point of view
After integrating time, the Jordan scale factor is given by
another power-law

ã = ã0 (t̃/t̃0)
p̃

H̃ = p̃/t̃ , (4)

where p̃ − 1 = p−1
1−γ . (p̃ can be negative!)

Exponential

Inflation

Super-inf.

Η

H
� HΗ , p

� L

Figure: Jordan conformal hubble parameter H̃ as a function of the conformal time η
and p̃. For p̃ < 0 we have super-inflation.

10 / 14



Introduction Frame independence Matter point of view Summary

Jordan Power Law
The curvaton follows the Jordan power law. This time the
power spectrum takes the same form but with p̃ instead of p.
For p̃ < 0 the spectrum is blue!

ñχ − 1 =
−2
p̃ − 1

. (5)

Such a blue tilt might induce the formation of primordial
black holes.
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Figure: Power-spectrum for the Jordan power-law case.
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Jordan Bounce

We can consider a slightly more complicated transformation,
e.g.

F (φ) =
(
1+ e

−γλ
2Mpl

φ
)−2

=
(
1+ (t/t0)

−γ
)−2

. (6)

It corresponds to a bouncing Jordan frame!

ã ≈
{

a0(−t̃/t̃0)p̃ |t̃| � t̃0 (t̃ < 0)
a0(t̃/t̃0)

p t̃ � t̃0
. (7)

The singularity has been sent to t̃ → −∞.
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Jordan Bounce
We find a blue tilt at short scales that gives an apparent
suppresion.
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Figure: Power-spectrum for the Jordan bouncing frame.
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Summary

With a simple analytic model we have shown that:

• In the scalar-tensor theory the matter point of view can
be very different although we have inflation in the
Einstein frame!

• Depending on which frame matter is minimally coupled, it
can leave important features, e.g. to the power spectrum.

• We easily obtain a blue tilt at large scales (for the
super-inf. case) and a blue tilt at short scales (for the
bouncing case).
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