Modified gravity as an alternative to dark energy

Lecture 2.

Theory of modified gravity models

Theory of modified gravity

- Requirements
 - Must explain the late time acceleration
 - Must recover GR on small scales
 - Must be free from pathologies
- Two examples to see how difficult it is to satisfy these conditions!

f(R) gravity, DGP braneworld model

Example: f(R) gravity

The modification should act at low energies

$$S = \int d^4x \sqrt{-g} R \quad \Longrightarrow \quad S = \int d^4x \sqrt{-g} F(R)$$

Ricci curvature is smaller at low energies example $F(R) = R - \frac{\mu^4}{R}$ μ must be fine-tuned $\mu \Box H_0$ cf. high energy corrections

$$F(R) = R + \alpha R^2$$

this analysis does not include matter/radiation

Problem

• f(R) theory is equivalent to BD theory Legendre transformation $F''(R) \neq 0$

$$S = \int d^{4}x \sqrt{-g} F(R)$$

$$S = \int d^{4}x \sqrt{-g} \left(F(\phi) + (R - \phi)F'(\phi) \right) \qquad R = \phi$$

$$\implies S = \int d^{4}x \left(\psi R - V(\psi) \right)$$

This is BD theory with $\omega_{BD} = 0$ (Wands, Chiba) The potential is of order $V(\Psi) \Box \mu^4$ for $F(R) = R - \frac{\mu^4}{R}$

- Contradicts to solar system constraints the potential is of order H_0^4 and can be neglected
- Cosmology

inclusion of radiation/ matter Nariai 1969

 $\omega_{BD} = 0$ BD theory yields $a(t) \propto t^{1/2}$ for any kind of matter MD era does not exist !

We expected to recover GR at early times where the correction is tiny...

(Amendola et.al astro-ph/0603703)

Engineering f(R) models

Can we avoid solar system constraints?
 Hu and Sawicki

$$F(R) = R - m^2 \frac{c_1 (R/m^2)^n}{c_2 (R/m^2)^n + 1}$$

Starobinsky

$$F(R) = R + \lambda \left[\left(1 + \left(\frac{R}{m} \right)^2 \right)^{-n} - 1 \right]^{0} \frac{1}{0.001} \frac{1}{0.01} \frac{1}{0.01} \frac{1}{10} \frac{1}{100} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10}$$

5 -

$$\lim_{m^{2}/R \to 0} f(R) = R - C + DR^{-2n} \qquad \lim_{R \to 0} f(R) = 0$$

no 'cosmological constant'

n=1

n=4

Quasi-static perturbations

Linear perturbations

$$ds^{2} = -(1+2\Psi)dt^{2} + a(t)^{2}(1+2\Phi)d\bar{x}^{2}$$

Equations of motion in BD theory $\psi = \psi_0 + \varphi$

$$(3+2\omega_{BD})\nabla^2\varphi = a^2\delta R - 8\pi G a^2\delta\rho_m$$
$$\nabla^2\Phi = -4\pi G a^2\delta\rho_m - \frac{1}{2}\nabla^2\varphi$$
$$\Phi + \Psi = -\varphi$$

• GR and BD limit

$$(3+2\omega_{BD})\nabla^{2}\varphi = a^{2}\delta R - 8\pi Ga^{2}\delta\rho_{m}$$

$$\nabla^{2}\Phi = -4\pi Ga^{2}\delta\rho_{m} - \frac{1}{2}\nabla^{2}\varphi$$

$$\Phi + \Psi = -\varphi$$

$$\delta R = 8\pi G\delta\rho_{m}$$

$$\nabla^{2}\Phi = -4\pi Ga^{2}\delta\rho_{m}$$

$$\nabla^{2}\Phi = -4\pi Ga^{2}\delta\rho_{m}$$

$$\Phi + \Psi = 0$$

$$(3+2\omega_{BD})\nabla^{2}\varphi = -8\pi Ga^{2}\delta\rho_{m}$$

$$\nabla^{2}\Phi = -4\pi Ga^{2}\left(\frac{2(1+\omega_{BD})}{3+2\omega_{BD}}\right)\delta\rho_{m}$$

$$\Psi = \frac{2+\omega_{BD}}{1+\omega_{BD}}\Phi \equiv \gamma^{-1}\Phi$$

$$\gamma \equiv -\frac{\Phi}{\Psi} = \frac{1}{2}$$

enhances Newtonian potential and growth rate of structure formation

 J_{R0} controls the deviation from LCDM

Fractional difference of linear growth rate compared to LCDM

• On small scales, we get $\omega_{BD} = 0$ this contradicts with solar system constraints?

 m^{-1} depends on curvature and becomes smaller for dense region $m^{-1} = \sqrt{6f_{R0}\frac{R_0^2}{R^3}}$

Chameleon mechanism $\rho_0 \approx 10^{-30} g / cm^3$, $\rho_{galaxy} \approx 10^{-24} g / cm^3$ mass of the filed becomes large for dense region and hides the scalar degree of freedom

In general linearization $\delta R = R - R_0$ breaks down and need to solve the non-linear equation for $\psi = F_R$

$$-\frac{\nabla^2}{a^2}\psi = -\frac{8\pi G}{3}\delta\rho_m + \frac{2\psi^3}{3}\frac{dV}{d\psi}$$

• Example of solutions (Hu and Sawicki 0705.1158)

• Singularity problem (Frolov, Kobayashi and Maeda) BD scalar $\psi = 1 + f_{R0} \left(\frac{R_0}{R}\right)^2$ potential

 $\psi = 1$ corresponds to curvature singularity

this can be reached in strong gravity

f(R) gravity summary

- Naïve models do not work
 Iow curvature modification in action changes
 GR even in high curvature regime
- Contrive models using Chameleon mechanism can give acceptable cosmology & weak gravity
 - O(1) modification of GR on cosmological scales
 - but additional mechanisms would be needed for strong gravity
 - Complicated version of quintessence?

Example 2. braneworld model

(Dvali, Gabadadze, Porrati)

$$S = \frac{1}{32\pi Gr_c} \int d^5x \sqrt{-g_{(5)}} R_{(5)} + \frac{1}{16\pi G} \int d^4x \sqrt{-g} R + \int d^4x \sqrt{-g} L_m$$

• Crossover scale r_c
 $r < r_c$ 4D Newtonian gravity
 $r > r_c$ 5D Newtonian gravity
M gravity leakage
Infinite extra-dimension

Cosmology in DGP model

• Friedmann equation (Deffayet)

$$\frac{H}{r_c} = H^2 - \frac{8\pi G}{3}\rho$$

early times $Hr_c >> 1$

4D Friedmann

late times
$$\rho \to 0$$
 $H \to \frac{1}{r_c}$

As simple as LCDM model (and as fine-tuned as LCDM $r_c \approx H_0$)

Quasi-static perturbations Silva and KK hep-th/0702169

• Non-linearity of brane bending mode $ds^{2} = -N^{2} (1+2\Psi) dt^{2} + A^{2} (1+2\Phi) d\vec{x}^{2} + (1+2G) dy^{2}$ $+ 2r_{c} \varphi_{,i} dy dx^{i}$ Solving bulk perturbations imposing regularity condition in the bulk junction conditions on a brane

$$-\nabla^{2}\Phi = 4\pi G a^{2}\rho\delta + \frac{1}{2}\nabla^{2}\varphi, \qquad \Phi + \Psi = -\varphi \qquad \beta = 1 - 2Hr_{c}\left(1 + \frac{\dot{H}}{3H^{2}}\right)$$
$$3\beta(t)\nabla^{2}\varphi + r_{c}^{2}\left\{\partial_{j}\left(\partial^{j}\varphi \nabla^{2}\varphi\right) - \partial_{j}\left(\partial^{i}\varphi \partial_{i}\partial^{j}\varphi\right)\right\} = 8\pi G a^{2}\rho\delta$$

 \mathcal{O}

Linear theory

• Solutions for metric perturbations $ds^{2} = -(1+2\Psi)dt^{2} + a(t)^{2}(1+2\Phi)d\vec{x}^{2}$ $k^{2} \qquad (1)$

$$\frac{k^2}{a^2} \Phi = 4\pi G \left(1 - \frac{1}{3\beta} \right) \rho \delta,$$
$$\frac{k^2}{a^2} \Psi = -4\pi G \left(1 + \frac{1}{3\beta} \right) \rho \delta,$$

$$\omega_{BD} = \frac{3}{2} \left(\beta - 1 \right) \Box O(1)$$
$$\beta = 1 - 2Hr_c \left(1 + \frac{\dot{H}}{3H^2} \right)$$

Non-linear evolution

$$-\nabla^{2}\Phi = 4\pi G a^{2}\rho\delta + \frac{1}{2}\nabla^{2}\varphi, \qquad \Phi + \Psi = -\varphi$$
$$3\beta(t)\nabla^{2}\varphi + r_{c}^{2}\left\{\partial_{j}\left(\partial^{j}\varphi \nabla^{2}\varphi\right) - \partial_{j}\left(\partial^{i}\varphi \partial_{i}\partial^{j}\varphi\right)\right\} = 8\pi G a^{2}\rho\delta$$

• Non-linearity of brane bending becomes important when $\beta^2 (Hr_c)^{-2} \square O(1) < \delta$ $\beta = 1 - 2Hr_c \left(1 + \frac{\dot{H}}{3H^2} \right)$ then $\nabla^2 \varphi \square \frac{H}{r_c} \sqrt{\delta} \square \nabla^2 \Phi \square H^2 \delta$

GR is recovered on non-linear scales

Spherically symmetric solution

(Gruzinov; Middleton, Siopsis; Tanaka; Lue, Sccoccimarro, Starkman)

$$\frac{d\varphi}{dr} = \frac{r_g}{r^2} \Delta(r), \quad \Delta(r) = \frac{2}{3\beta} \left(\frac{r}{r_*}\right)^3 \left(\sqrt{1 + \left(\frac{r_*}{r}\right)^3} - 1\right)$$

Vainstein radius

$$r_* = \left(\frac{8r_c^2 r_g}{9\beta^2}\right)^{-3}, \quad r_g = 2G_4 M$$

Solar system constraints are avoided if $r_c > H_0^{-1}$

 r_{c}

$$\frac{4\text{D Einstein}}{\Phi = \frac{r_g}{2r} + \frac{1}{\beta}\sqrt{\frac{\beta^2 r_g r}{2r_c^2}},} \qquad \Phi = \frac{r_g}{2r} \left(1 - \frac{1}{3\beta}\right),$$
$$\Psi = -\frac{r_g}{2r} + \frac{1}{\beta}\sqrt{\frac{\beta^2 r_g r}{2r_c^2}} \qquad \Psi = -\frac{r_g}{2r} \left(1 + \frac{1}{3\beta}\right)$$

Problem

Ghost

Negative BD parameter

$$\omega_{BD} = \frac{3}{2} \left(\beta - 1\right) \qquad \beta = 1 - 2Hr_c \left(1 + \frac{\dot{H}}{3H^2}\right)$$

In Einstein frame, kinetic term for the scalar $-\frac{3}{2}\beta$ if $\beta < 0$ the scalar becomes a ghost

ghost mediates anti-gravity and suppressed the growth of structure

Strong coupling problem
 Covariant effective theory
 Minkowski background

$$S = \frac{1}{2} \left(\partial_{\mu} \varphi \right)^{2} + \frac{1}{\Lambda} \left(\partial_{\mu} \varphi \right)^{2} \left(\Box \varphi \right), \quad \Lambda = \left(\frac{M_{4}}{r_{c}^{2}} \right)^{3}$$

We need quantum gravity below $\Lambda^{-1} = 1000 \text{ km}$! This is due to the fact φ disappears as $r_c \rightarrow \infty$

1

Strong gravity
 no known BH solution

DGP gravity summary

• Classically, the model works very well

there is only one parameter and we do not need to introduce additional mechanism to recover solar system constraints

• Theory shows pathologies at quantum level there are debates on whether they are fatal or not

KK, Class.Quant.Grav.24:R231-R253,2007.arXiv:0709.2399 [hep-th]

Common features in f(R) and DGP

• 3 regime of gravity

