Modified gravity as an
alternative to dark
energy

Lecture 2.
Theory of modified gravity models




Theory of modified gravity

e Requirements
Must explain the late time acceleration
Must recover GR on small scales
Must be free from pathologies

e Two examples to see how difficult it is to satisfy
these conditions!

f(R) gravity, DGP braneworld model



Example: f(R) gravity

e The modification should act at low energies
S=[dxy-gR =) s = [d*x J-gF (R)

Ricci curvature i1s smaller at low energies

example F(R) - R—’u—4
R

#  must be fine-tuned Ll H,
cf. high energy corrections

F(R) =R+ aR?



e Late time acceleration
Friedman equation now becomes 4™ order
differential equation

— acceleration a(t) oC t2

this analysis does not include matter/radiation



Problem

e f(R) theory Is equivalent to BD theory
Legendre transformation F"(R) =0

S = [d‘xJ-gF(R)
S=[d'x/9 (F@)+R-9F (9) R=¢

= S=[d*x(yR-V({))

This is BD theory with @,, =0 (Wands, Chiba) 4
The potential is of order v (¥)0 4* for F(R)= R—%



e Contradicts to solar system constraints
the potential is of order H{,1 and can be neglected
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correction iIs tiny... (Amendola et.al astro-ph/0603703)



e |nstability with matter

F(R):R$H—4 CDTT
R

(MCDTT model has a singularity in 0 |

the late accelerating phase) R

This instability was known by
Dolgov & Kawasaki for a static
source
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The condition for the instability
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(Hu and Sawicki astro-ph/0702278)
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Engineering f(R) models
e Can we avoid solar system constraints?
Hu and Sawicki oo T
2\N 15
C,(R/m°)" +1 g"
Starobinsky yas
F(R)=R+ }{(H (R/m))" _1] T
lim ., f(R)=R-C+DR™  lim,_, f(R)=0

no ‘cosmological constant’



Quasi-static perturbations

Linear perturbations
ds® = —(1+2¥)dt* +a(t)* (1+ 2d)dx?
Equations of motion in BD theory vy =y,+¢
(3+ 2w, )V°p =a’°6R-87Ga’sp_ D

VO =-47xGa’sp, —%Vzgo

P

O+Y¥Y=—¢p 510



e GR and BD Iimit

(3+ 2wy, V@ =a’sR-87Ga’sp,

VD =-47xGa’sp, —%Vzgp

O+Y¥Y =—¢

oo §J5R+O

(3+ 2w, )V =-87xGa’dp,

OR =871Go,
o’ V2D = -47Ga’ (2(1+ gp) j op,,
VD = —47Z'Gaz5pm 3+ 2wy,
(D + ‘“P — O LP 2 + a)BD (D 7/ (D
1+ g,



e f(R) gravity g, =0,y =F(R)

dR
linearisation SR =( j5FR =3m’p
dF,
3Vp =-3m°a‘p-8rGa‘dp, 1

The inverse of mass determines the length

scales where the scalar propagates

on large scales L >m™ we recover GR L
on small scalesL < m™ we recover @y, =0

enhances Newtonian potential and
growth rate of structure formation
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e Example (Hu and Sawicki 0705.1158)

R R2 R?
f(R)=F(R)-R >C-f > mt=,/6f —2
(R) (R) OCAR+1 RO \/ RO R?

In the cosmological background m-1132 /1';R_06 Mpc
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fro controls the deviation  Fractional difference of linear
from LCDM growth rate compared to LCDM



e On small scales, we get »,, =0
this contradicts with solar system constraints?

m‘ldepends on curvature and becomes smaller
for dense region RS
J m'=,/6f, —%

Chameleon mechanism p, ~10™g/cm’, p .., =10 g/cm’
mass of the filed becomes large for dense region
and hides the scalar degree of freedom

In general linearization SR =R-R, breaks down and
need to solve the non-linear equation for ¥ =k,
2 3
\% 87G P 2p° dV




e Example of solutions (Huand sawicki 0705.1158)
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O Singularity prOblem (Frolov, Kobayashi and Maeda)
2

BD scalar y =1+ f., (F;OJ

potential
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W = 1 corresponds to curvature singularity

this can be reached in strong gravity




f(R) gravity summary

e Nalve models do not work

low curvature modification in action changes
GR even In high curvature regime

e Contrive models using Chameleon mechanism
can give acceptable cosmology & weak gravity

O(1) modification of GR on cosmological scales
but additional mechanisms would be needed for
strong gravity

Complicated version of quintessence?



Example 2. braneworld model

(Dvali, Gabadadze,Porrati)
. 1 1 4 4
T [ d°X =9 Ry + ﬂdo XJ-gR+ [d*x{-gL,

e Crossover scale [,

' <I, 4D Newtonian gravity
r>r 5D Newtonian gravity

gravity leakage

Infinite extra-dimension



Cosmology in DGP model

e Friedmann equation (Deffayet)

i —H? —%p

I 3
early times Hr, >>1 4D Friedmann
late times p — 0 H —>£

I

C

As simple as LCDM model
(and as fine-tuned asLCDM r, = H, )



Quasi-static perturbations

Silva and KK hep-th/0702169

e Non-linearity of brane bending mode
ds® =—N?(1+2¥)dt* + A’ (1+20)dx* + (1+ 2G)dy*

+ 21,0, dydx’ 7,
Solving bulk perturbations =
Imposing regularity condition in the bulk

junction conditions on a brane

—VzCD=47zGa2p5+%V2gp, O+¥=—0p ﬁ=1—2Hrc(1+3ﬂ2j

3B(1)V2p+17 {a (' Vip)-0,(dp 8i8jgp)} = 87Ga’ps



|_ | near th eo ry Lue et.al, KK and Maartens

e Solutions for metric perturbations
ds® =—(1+2%)dt* +a(t)’ (1+2d)dx’

a
k? 1
¥T:—47Z'G(l+—jp5, _wp
3 D2+ - — -
Wgp :E(IB_]-)D Oo@) a

H
—1-2Hr |1+
p [ 3H2)



Non-linear evolution

1
—VZCD=47ZGa2p5+EV2g0, O+¥Y =-¢

3B()V2p + 17 {aj (0’9 Vip)-0,(d'p 6i8j¢))} - 87Ga’pd

e Non-linearity of brane bending becomes important

when B°(Hr)?00@) <6 0
p=1-2Hr,| 1+

then Vol 51 V20 [ H2S
I

C

GR Is recovered on non-linear scales



Spherically symmetric solution

(Gruzinov; Middleton, Siopsis; Tanaka; Lue, Sccoccimarro, Starkman)

do T 2 r ’ I 3_
dr_rZA(r)’ A(r) = 3,8( )[\/H(rj 1]

Vainstein radjus Solar system constraints
8rir. \3 ' ' o
r*:[ ng) oM A avoided if r > H;
9p
I rc
4D Einstein 4D BD oD
ot ,Brr CD:r—g(l—i],
2r ,8 2r 3p
LP:—r—g 4 /Brr \{J:_r_g(l_l_i]
2r S 2r 3,3




Problem

e Ghost

Negative BD parameter .
3 H
WDap :E('B_l) ,8=1—2HrC£1+3H2j

In Einstein frame, kinetic term for the scalar —E,B
if £ <0 the scalar becomes a ghost 2

ghost mediates anti-gravity and suppressed the growth of
structure



e Strong coupling problem
Covariant effective theory
Minkowski background

S =%(aﬂ¢)2 +%(aﬂqo)2 o). A=[—2j

We need quantum gravity below A =1000km !
This is due to the fact ¢ disappears as I, —> ©

e Strong gravity
no known BH solution



DGP gravity summary

e Classically, the model works very well

there is only one parameter and we do not need to
Introduce additional mechanism to recover solar
system constraints

e Theory shows pathologies at quantum level
there are debates on whether they are fatal or not

KK, Class.Quant.Grav.24:R231-R253,2007.arXiv:0709.2399 [hep-th]



Common features in f(R) and
DGP

e 3 regime of gravity
-1

M. -1
i(R) Scalar My GR
GR tensor
Solar system Large scale structure

—

DGP oD

o~ () r~H,
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