RESCEU-DENET joint meeting & summer school

Stability of Freund-Rubin compactification

Shunichiro Kinoshita

(University of Tokyo)

with S. Mukohyama and T. Kobayashi

Introduction

- De Sitter spacetime
 - It well describes our accelerating Universe in the early epoch and in the present epoch
- Realization the Universe in higherdimensional theories
 - We need to stabilize the compact extradimensions
 - Without stabilization, it is impossible to obtain effective 4D theory
- We want successful embeddings of 4D de Sitter space in higher-dimensions

RESCEU-DENET joint meeting

Freund-Rubin compactification

Simple model with compactification and stabilization mechanism by flux
 There is a *q*-form flux field for stabilizing the *q*-*F*(*q*) dimensional compact space, considering (*p*+*q*)-dimensional spacetime
 Introducing bulk cosmological constant allows an

external de Sitter space and an internal manifold with positive curvature

 We obtain a (p+q)-D product spacetime dS_p and S^q, Freund-Rubin solution:

$$ds^{2} = -dt^{2} + e^{2ht} d\vec{x}_{p-1}^{2} + \rho^{2} d\Omega_{q}^{2} \qquad F_{(q)} = b\epsilon_{(q)}$$

Freund and Rubin 1980

Dynamical stability of

Freund-Rubin compactifibations

R. Bousso, O. DeWolfe and R. C. Myers 2003

 The analysis of linear perturbations show that there are two channels of instabilities in the scalar sector

 Homogeneous excitation (/=0 mode)
 Inhomogeneous excitations with higher

multi-pole moments (/ 2 mode)

RESCEU-DENET joint meeting

Homogeneous mode (/=0)

- It is so-called volume modulus or radion, which corresponds to the change of the radius of the extra-dimensions
- It becomes unstable as the Hubble parameter h of dS_p becomes very large (the flux density b small)

- Stability condition:

$$h^2 \le \frac{2\Lambda(p-2)}{(p-1)^2(p+q-2)}$$
 or $b^2 \ge \frac{2\Lambda}{(p-1)(q-1)}$

 This seems to be a generic feature of de Sitter compactifications for other models

RESCEU-DENET joint meeting

Higher multi-pole modes (/ 2)

- It corresponds to deformation of the shape of the internal compact space
- It becomes unstable as the flux density *b* becomes very large (the Hubble parameter *h* small, including Minkowski)

- Stability condition:

$$h^2 \ge \frac{2\Lambda[2+q-3pq+(p-1)q^2]}{q(q-3)(p-1)^2(p+q-2)}$$
 or $b^2 \le \frac{4\Lambda}{q(q-3)(p-1)}$.

- These tachyonic modes appear as the number of the extra-dimensions is large, q 4

RESCEU-DENET joint meeting

Thermodynamic argument

S. K., Y. Sendouda and S. Mukohyama 2007

 The instability arising from /=0 mode can be interpreted based on thermodynamic argument using de Sitter entropy

- Entropy: $S = \frac{\mathcal{A}}{4} = \frac{\Omega_{p-2}}{4h^{p-2}}\Omega_q \rho^q$, Total flux: $\Phi = \oint F_{(q)}$

- Relation between entropy and total flux

$$\mathrm{d}S = -\frac{\Omega_{p-2}b}{4(p-1)h^p}\mathrm{d}\Phi$$

The entropy is a function of the total flux

RESCEU-DENET joint meeting

Correlation between dynamical and thermodynamic stability

 The family of solutions is divided into two distinct branches: high-entropy and low entropy branches Entropy

17.5 15

7.5

0.75

0.8

Total flux Φ

S^{12.5'} The high-entropy branch must be preferred thermodynamically

Dynamically stable solutions for /=0 mode exactly correspond to those of the high-entropy branch

RESCEU-DENET joint meeting

0.9

0.85

Deformed solutions

 The higher multi-pole instabilities suggests the existence of a new branch of solutions - Solutions with a deformed internal space We explore warped product solutions such that the p-D external space has a de Sitter symmetry with a warp factor and the q-D internal space is a deformed sphere $ds^{2} = e^{2\phi(r)} [-dt^{2} + e^{2ht} d\vec{x}_{p-1}^{2}] + e^{-\frac{2p}{q-2}\phi(r)} [dr^{2} + a^{2}(r) d\Omega_{q-1}^{2}],$ ansatz $F_{(q)} = be^{-\frac{2p(q-1)}{q-2}\phi}a^{q-1}\mathrm{d}r\wedge\mathrm{d}\Omega_{q-1},$

• The system is similar to FRW cosmology with scalar field \uparrow

EOM:

$$\begin{cases} \phi'' = -(q-1)\mathcal{H}\phi' - \frac{q-2}{p(p+q-2)}V_{\phi}(\phi), & \to \phi \\ \mathcal{H}' = -\mathcal{H}^2 - \frac{p(p+q-2)}{(q-1)(q-2)}\phi'^2 + \frac{2}{(q-1)(q-2)}V(\phi), & \mathcal{H} \equiv \frac{a'}{a} \end{cases}$$
Potential: $V(\phi) \equiv \frac{p(p-1)}{2}h^2e^{-\frac{2(p+q-2)}{q-2}\phi} + \frac{b^2}{2}e^{-\frac{2p(q-1)}{q-2}\phi} - \Lambda e^{-\frac{2p}{q-2}\phi} \end{cases}$

Trivial FR solution corresponds to $\phi(r) = \text{const.}$ at the bottom of $V(\phi)$

RESCEU-DENET joint meeting

Dynamical stability of new branch of solutions

Entropy argument

Correlation between thermodynamic and dynamical stability exists for deformed solutions

RESCEU-DENET joint meeting

Summary

We have studied new solutions in Freund-Rubin compactification
- We found warped solutions with a deformed sphere of the internal space in the case $p=4$ and $q=4$
 New branch emanates from the marginally stable solutions for the /=2 mode
We have analyzed linear perturbations of deformed Freund-Rubin solution
 The deformed solutions are stable for the region where Freund-Rubin solutions are unstable for /=2 mode
 Correlation between thermodynamic stability and dynamical stability exists for FR solutions and deformed solutions

RESCEU-DENET joint meeting

Page 18