RESCEU夏の学校（青森）31．Aug． 2008

$$
\begin{gathered}
\text { 重カレンズ } \\
\text { における } \\
\text { 摂動論 } \\
\text { 港田秀相 } \\
\text { (弘前大学 } \\
\text { 理工学部) }
\end{gathered}
$$

§1．はじめに

重カレンズ

直接，重力（質量）を反映
対象
ダークエネルギー
ダークマタ
ダークオブジェクト（系外惑星等）

異なるアプローチ（モデル化）

流体近似（連続体）

宇宙論的重カレンズ レンズ＝銀河，銀河可，大構造質点近以（離散性）マイクロ重カレンズ レンズ＝星，惑星，MACHO

疑問（その1）

レンズ＝N質点

レンズ＝連続体
一致するはず（証明？）
N有限性の効果は？

すでに N有限性効果は観測されている

クエーサーマイクロ重カレンズ レンズ $=$ 銀河（ + 星）

光源＝クエーサー

Q2237+0305 = Einstein Cross

Wambsganss, LRR (91)

Time Variability

Wambsganss, LRR (91)

Q2237+0305 = Einstein Cross Time Variability

Eigenbrod et al. ArXiv:0709.2828

疑問（その2）

そもそも
質点系のレンズ方程式の解
＝像の位置
が得られないか？
（解析的な表式）

Udalski et al. ApJL (04)

Gaudi et al. Science (08)

困難

1 体は2次方程式
2体でさえ解けない複素5次方程式（Witt 90）実5次方程式 （Asada 02，Asada et al 04）

ガロアの定理

5次以上の代数方程式
は代数的方法では解けない

代数的方法＝四則演算とべき根
解の公式が知られていない

方針

䢅密解はあきらめる
代わりに
振動解を追求する
勧測誤差があるので近似解で実用上は十分

$$
\begin{aligned}
& \text { §2. 複素変数の定式化 } \\
& \text { Bourassa and Kantowski }(73,75) \\
& \text { 重カレンズ (2次元写像) } \\
& \text { 光源面 } \\
& \vec{\beta} \\
& \text { レンス面 } \\
& \vec{\theta} \\
& \mathrm{w}=\mathrm{w} \mathrm{x}+\mathrm{i} \mathrm{w} \mathrm{y} \\
& z=x+i y
\end{aligned}
$$

2変数か陽に連立

Single－Complex－Variable Polynomial

Witt（90）
Z＊を消去して
Z のみの代数方程式
$\mathbf{N}^{2}+1$ 次

$$
\begin{aligned}
& (z-w) \prod_{l=1}^{N}\left(\left(w^{*}-\epsilon_{l}^{*}\right) \prod_{k=1}^{N}\left(z-\epsilon_{k}\right)+\sum_{k=1}^{N} \nu_{k} \prod_{j \neq k}^{N}\left(z-\epsilon_{j}\right)\right) \\
& =\sum_{i=1}^{N} \nu_{i} \prod_{l=1}^{N}\left(z-\epsilon_{l}\right) \\
& \times \prod_{m \neq i}^{N}\left(\left(w^{*}-\epsilon_{m}^{*}\right) \prod_{k=1}^{N}\left(z-\epsilon_{k}\right)+\sum_{k=1}^{N} \nu_{k} \prod_{j \neq k}^{N}\left(z-\epsilon_{j}\right)\right)
\end{aligned}
$$

振動

質量比 $\nu_{i}=M_{i} / M_{\text {tot }}<1$ を展開パラメタとして逐次計算

$$
z=\sum_{p_{2}=0}^{\infty} \sum_{p_{3}=0}^{\infty} \cdots \sum_{p_{N}=0}^{\infty} \nu_{2}^{p_{2}} \nu_{3}^{p_{3}} \cdots \nu_{N}^{p_{N}} z_{\left(p_{2}\right)\left(p_{3}\right) \cdots\left(p_{N}\right)}
$$

ゼロ次解

$\alpha_{i} \equiv-1 / w_{i}^{*}$
$\alpha_{ \pm}=\frac{w}{2}\left(1 \pm \sqrt{1+\frac{4}{w w^{*}}}\right)$
ϵ_{i}
$w_{i}=w-\epsilon_{i}$

問題点

$$
\begin{aligned}
& \alpha_{i} \\
& \text { は元のレンズ方程式を満たさない } \\
& \text { 見かけの解 (非物理的) が混入 }
\end{aligned}
$$

多項式の次数 $=\mathbf{N}^{2}+1$ 次

代数学の基本定理－解の個数 $=\mathbf{N}^{\mathbf{2}+1}$ 個

N質点レンズの像の最大個数

$$
=5(N-1)
$$

Dual－Complex－Variables Formalism

 Zと Z^{*} の共存利点
元のレンズ方程式と等価

非物理的な見かけの解なし

$$
\begin{aligned}
& C\left(z, z^{*}\right)=\sum_{k=2}^{N} \nu_{k} D_{k}\left(z^{*}\right) \\
& \text { 展開パラメタッに関して線型 } \\
& D_{k}\left(z^{*}\right)=\frac{1}{z^{*}}-\frac{1}{z^{*}-\epsilon_{k}^{*}}
\end{aligned}
$$

逐次解

$$
z=\sum_{p_{2}=0}^{\infty} \sum_{p_{3}=0}^{\infty} \cdots \sum_{p_{N}=0}^{\infty}\left(\nu_{2}\right)^{p_{2}}\left(\nu_{3}\right)^{p_{3}} \cdots\left(\nu_{N}\right)^{p_{N}} z_{\left(p_{2}\right)\left(p_{3}\right) \cdots\left(p_{N}\right)}
$$

1 次解

$z_{(0) \cdots\left(1_{k}\right) \cdots(0)}=\frac{b_{(0) \cdots\left(1_{k}\right) \cdots(0)}-a_{(0) \cdots\left(1_{k}\right) \cdots(0)} b_{(0) \cdots\left(1_{k}\right) \cdots(0)}^{*}}{1-a_{(0) \cdots\left(1_{k}\right) \cdots(0)} a_{(0) \cdots\left(1_{k}\right) \cdots(0)}^{*}}$

$$
\begin{aligned}
a_{(0) \cdots\left(1_{k}\right) \cdots(0)} & =\frac{1}{\left(z_{(0) \cdots(0)}^{*}\right)^{2}} \\
b_{(0) \cdots\left(1_{k}\right) \cdots(0)} & =\frac{\epsilon_{k}^{*}}{z_{(0) \cdots(0)}^{*}\left(z_{(0) \cdots(0)}^{*}-\epsilon_{k}^{*}\right)}
\end{aligned}
$$

2次解

$$
z_{(0) \cdots\left(2_{k}\right) \cdots(0)}=\frac{b_{(0) \cdots\left(2_{k}\right) \cdots(0)}-a_{(0) \cdots\left(2_{k}\right) \cdots(0)} b_{(0) \cdots\left(2_{k}\right) \cdots(0)}^{*}}{1-a_{(0) \cdots\left(2_{k}\right) \cdots(0)} a_{(0) \cdots\left(2_{k}\right) \cdots(0)}^{*}}
$$

$$
z_{(0) \cdots\left(1_{k}\right) \cdots\left(1_{l}\right) \cdots(0)}
$$

$$
=\frac{b_{(0) \cdots\left(1_{k}\right) \cdots\left(1_{l}\right) \cdots(0)}-a_{(0) \cdots\left(1_{k}\right) \cdots\left(1_{l}\right) \cdots(0)} b_{(0) \cdots\left(1_{k}\right) \cdots\left(1_{l}\right) \cdots(0)}^{*}}{1-a_{(0) \cdots\left(1_{k}\right) \cdots\left(1_{l}\right) \cdots(0)} a_{(0) \cdots\left(1_{k}\right) \cdots\left(1_{l}\right) \cdots(0)}^{*}}
$$

3次解，4次解，．．

も同樣

§3．まとめ
 HA，in prep．（08）
 初のN体レンズの手計算
 摂動論 逐次解を構成
 × Single－Complex－Variable Polynomial
 O Dual－Complex－Variables Formalism

1 離散性（有限N）に着目した応用

宇宙論的重カレンズへの応用

