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§１．はじめに
重力レンズ

ダークエネルギー
ダークマター

直接、重力（質量）を反映

ダークオブジェクト(系外惑星等)

対象



質点近似（離散性）

流体近似（連続体）
異なるアプローチ(モデル化)

レンズ＝銀河、銀河団、大構造

レンズ＝星、惑星、MACHO

宇宙論的重力レンズ

マイクロ重力レンズ



疑問（その１）
レンズ ＝ N質点

レンズ ＝ 連続体
N⇒∞

一致するはず（証明？）
N有限性の効果は？



N有限性効果は観測されている

レンズ＝銀河（＋星）

すでに

クエーサーマイクロ重力レンズ

光源＝クエーサー



Q2237+0305 
     = Einstein Cross

Wambsganss, LRR (91)



Wambsganss, LRR (91)

Time Variability
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Fig. 9. OGLE-III light curves (Udalski et al. 2006) of all four
quasar images from April 2004 to December 2006 (dots),
compared with the photometry derived by integrating our
VLT spectra through the OGLE V-band (dark triangles). The
1−sigma error bars correspond to the photon noise in the
spectrum. We shift the OGLE-III light curve of image D by
−0.5 mag with respect to the published values. The bottom
panel displays the seeing values for each observations.

epochs, and of B and C on 28 different epochs. Several ex-
tracted spectra of image A are shown in Fig.6. As a sanity
check, we compared our results with the OGLE-III photomet-
ric monitoring of QSO 2237+0305 (Udalski et al. 2006). We
integrated our quasar spectra in the corresponding V-band to
estimate, from the spectra, the photometric light curves as if
they were obtained from imaging. In Fig. 9, we compare our
magnitude estimates with the actual OGLE-III measurements.
The overall agreement is very good for images A, B, and C.
For image D, we have to shift the OGLE-III light curve by
−0.5 mag with respect to the published values. Interestingly,
this shift is not needed when we compare our results with the
previous OGLE data from the provisional calibration presented
in the years 2004−2006. The previous OGLE data also agreed
with the photometry of Koptelova et al. (2005). This changed
when Udalski et al. (2006) reviewed their calibration and gave
image D a larger magnitude of approximately 0.5 mag. They
stated that the steep rise of brightness of image D at the end
of the 2000 OGLE-II season leaded to an overestimate of the
extrapolated magnitude for the beginning of the 2001 OGLE-
III season. But this is now discrepant with the photometry of
Koptelova et al. (2005). We think that the new extrapolation of
the light curve of image D from the end of season 2000 to the
beginning of season 2001 might be uncertain, leading to the
observed shift between our data and the OGLE-III light curve

of image D. However, aside from this shift, the agreement be-
tween the OGLE photometry and our integrated VLT spectra is
also very good for image D.

4. Multi-component decomposition

Different emission features are known to be produced in re-
gions of different characteristic sizes. As microlensing magni-
fication varies on short spatial scales, sources of different sizes
are magnified by differing amounts (e.g. Wambsganss et al.
1990). Emission features from smaller regions of the source are
more highly variable due to microlensing than features emitted
in more extended regions. In order to study the variation of
each spectral feature independently, we need to decompose the
spectra into their individual components.

4.1. Method

In our analysis of the 1-D spectra of the four quasar images, we
follow the multi-component decomposition (MCD) approach
(Wills et al. 1985, Dietrich et al. 2003) implemented in Sluse
et al. (2007). This method is applied to the rest-frame spectra,
assuming they are the superposition of (1) a power law con-
tinuum, (2) a pseudo-continuum due to the merging of Fe II
and Fe III emission blends, and (3) an emission spectrum due
to the other individual BELs. We consider the following emis-
sion lines : C IV λ1549, He II λ1640, O III] λ1664, Al II λ1671,
Al III λ1857, Si III] λ1892, C III] λ1909, and Mg II λ2798. All
these features are fitted simultaneously to the data using a stan-
dard least-square minimization with a Levenberg-Marquardt
based algorithm adapted from the Numerical Recipes (Press
et al. 1986).

In the first step, we identify the underlying nonstellar
power-law continuum from spectral windows that are free
(or almost free) of contributions from the other components,
namely the iron pseudo-continuum and the BELs. We use the
windows 1680 ≤ λ ≤ 1710 Å and 3020 ≤ λ ≤ 3080 Å.
After visual inspection of the iron templates by Vestergaard et
al. (2001), we do not expect significant iron emission in these
windows.

We characterize the spectral continuum (measured in the
restframe) with a power law fν ∝ ν

αν , which translates in wave-
length to fλ ∝ λαλ with the relation αν = −(2 + αλ), i.e.

fλ = f0

(

λ

λ0

)αλ

= f0

(

λ

λ0

)−(2+αν )

where λ0 = 2000 Å and where αν is the commonly used canon-
ical power index.

Next, we fit the BELs with Gaussian profiles. We consider
a sum of three profiles to fit the absorption feature in the C IV
emission line. Two profiles are used for the C III] line and one
single profile is used to fit simultaneously the O III] and Al II
lines. All other BELs are fitted with one single profile. We
then subtract the BELs and the continuum from the spectra.
We consider the residuals as coming from the emission blends
of Fe II and Fe III. Hence the averaged and normalized residu-
als over all epochs define our first iron pseudo-continuum tem-

Eigenbrod et al. 
ArXiv:0709.2828

Q2237+0305 
     = Einstein Cross
Time Variability



疑問（その２）
そもそも
質点系のレンズ方程式の解
＝像の位置

が得られないか？
（解析的な表式）



No. 2, 2005 JOVIAN-MASS PLANET IN OGLE-2005-BLG-071 L111

Fig. 1.—Light curve of OGLE-2005-BLG-071, showing it contains a planet. Apart from the anomaly near the peak, this was an ordinary high-magnification event,
implying the caustic is small. The triple peak (two large symmetric peaks surrounding a small peak) shows the source passed three cusps of a caustic, the middle one
being weak (insets), which implies a normalized star-companion separation b ∼ 1. The interval between peaks (and so cusps) is Dt p 3 days, implying the shear
induced by the companion is small, g p Dt/4tE ! 0.02, so the mass ratio q of the companion is also small, q p gb2 ! 0.03. More detailed fitting shows q p 0.0071.

lar Einstein radius vE) u0, and the Einstein radius crossing time
tE. Three parameters specify the lens geometry: the mass ratio
q, the separation of the two components (normalized to vE) b,
and the angle of source-lens relative motion with respect to the
binary axis a. In addition, if the source is resolved by the magni-
fication pattern, one must specify the ratio of the source size to
the Einstein radius, r p v

*
/vE. Finally, for each observatory/filter

combination there is a source flux fs and a background flux fb such
that the total flux is f p Afs ! fb, where A is the magnification.
Given that the parameter space is obviously very large and

somewhat complex, how do we know that there are no non-
planetary solutions? One way to tell is to conduct a wide search
for solutions, which we have done. However, it is also useful
to have analytic arguments to ensure that a solution is not
lurking in a corner of parameter space that one did not try.
The following argument rests just on the gross features of

the light curve: First, the anomaly occurs near the peak of an
otherwise normal event, when it is 3 mag above baseline, so
A 1 16, that is, the normalized source-lens separation is u !
0.06. This already implies that the caustic is small and so must
be either a central caustic (generated by a wide or close com-

panion) or the “central-caustic end” of a resonant caustic. The
central caustics of wide and close binaries (with b ↔ b"1) are
mathematically nearly identical (Dominik 1999; An 2005), and
the central-caustic end of a resonant caustic is very similar to
these. The twin-peaked structure can only be generated by the
source’s passing close to, but not over, two cusps of this central
caustic. Peaks can also be caused by passing over a caustic,
but in that case they are highly asymmetric, with a much faster
rise for the first peak and a much faster decline for the second.
This alternate scenario is clearly ruled out by the form of the
light curve. Third, there is a small “bump” between these two
peaks. This can only be caused by passing a third, much weaker
cusp. All these features are matched by the caustic geometry
shown in the lower right inset to Figure 1 and cannot be
matched by caustics that lack this three-pronged morphology.
The fact that the two peaks are of almost equal height implies

that the source must pass nearly perpendicular to the binary axis,
a ∼ !90". The fact that the middle peak is so much weaker
than the outer two implies that the caustic is extremely asym-
metric. Such asymmetric caustics occur only when b is close
to unity: for b k 1 or b K 1, the caustics are diamond shaped.

Udalski et al. ApJL (04)



Gaudi et al. Science (08)



困難
１体は２次方程式
２体でさえ解けない
複素5次方程式 (Witt 90)

(Asada 02, Asada et al 04)

実5次方程式



ガロアの定理
５次以上の代数方程式
は代数的方法では解けない

解の公式が知られていない

代数的方法＝四則演算とべき根



方針

摂動解を追求する

厳密解はあきらめる

代わりに

観測誤差があるので
近似解で実用上は十分



§２．複素変数の定式化

重力レンズ
光源面 レンズ面

（2次元写像）

β θ

z=x+iyw=wx+iwy

Bourassa and Kantowski (73,75)



Gravitational Lensing by N Point Mass 5

2 POLYNOMIAL FORMALISM USING COMPLEX VARIABLES

We consider a lens system with N point mass. The mass and two-dimensional location of

each body is denoted as Mi and the vector Ei, respectively. For a later convenience, let us

define the Einstein ring radius angle as

θE =

√√√√4GMtotDLS
c2DLDS

, (1)

where G is the gravitational constant, c is the light speed, Mtot is the total mass
∑N

i=1 Mi and

DL, DS and DLS denote distances between the observer and the lens, between the observer

and the source, and between the lens and the source, respectively. In the unit normalised by

the Einstein ring radius angle, the lens equation becomes

β = θ −
N∑

i

νi
θ − ei

|θ − ei|2
, (2)

where β = (βx, βy) and θ = (θx, θy) denote the vectors for the position of the source and

image, respectively and we defined the mass ratio and the angular separation vector as

νi = Mi/Mtot and ei = Ei/θE = (ex, ey)

In a formalism based on complex variables, two-dimensional vectors for the source, lens

and image positions are denoted as w = βx + iβy, z = θx + iθy, and εi = ex + iey, respectively.

By employing this formalism, the lens equation is rewritten as

w = z −
N∑

i

νi

z∗ − ε∗i
, (3)

where the asterisk ∗ means the complex conjugate. The lens equation is non-analytic because

it contains both z and z∗.

3 EMBEDDING THE LENS EQUATION INTO AN ANALYTIC

POLYNOMIAL

The complex conjugate of Eq. (3) is expressed as

w∗ = z∗ −
N∑

i

νi

z − εi
. (4)

This expression can be substituted into z∗ in Eq. (3) to eliminate the complex variable z∗.

As a result, we obtain a (N2 + 1)-th order analytic polynomial equation as (Witt 1990)

(z − w)
N∏

l=1



(w∗ − ε∗l )
N∏

k=1

(z − εk) +
N∑

k=1

νk

N∏

j "=k

(z − εj)





c© 2008 RAS, MNRAS 000, 1–20

Gravitational Lensing by N Point Mass 5

2 POLYNOMIAL FORMALISM USING COMPLEX VARIABLES

We consider a lens system with N point mass. The mass and two-dimensional location of

each body is denoted as Mi and the vector Ei, respectively. For a later convenience, let us

define the Einstein ring radius angle as

θE =

√√√√4GMtotDLS
c2DLDS

, (1)

where G is the gravitational constant, c is the light speed, Mtot is the total mass
∑N

i=1 Mi and

DL, DS and DLS denote distances between the observer and the lens, between the observer

and the source, and between the lens and the source, respectively. In the unit normalised by

the Einstein ring radius angle, the lens equation becomes

β = θ −
N∑

i

νi
θ − ei

|θ − ei|2
, (2)

where β = (βx, βy) and θ = (θx, θy) denote the vectors for the position of the source and

image, respectively and we defined the mass ratio and the angular separation vector as

νi = Mi/Mtot and ei = Ei/θE = (ex, ey)

In a formalism based on complex variables, two-dimensional vectors for the source, lens

and image positions are denoted as w = βx + iβy, z = θx + iθy, and εi = ex + iey, respectively.

By employing this formalism, the lens equation is rewritten as

w = z −
N∑

i

νi

z∗ − ε∗i
, (3)

where the asterisk ∗ means the complex conjugate. The lens equation is non-analytic because

it contains both z and z∗.

3 EMBEDDING THE LENS EQUATION INTO AN ANALYTIC

POLYNOMIAL

The complex conjugate of Eq. (3) is expressed as

w∗ = z∗ −
N∑

i

νi

z − εi
. (4)

This expression can be substituted into z∗ in Eq. (3) to eliminate the complex variable z∗.

As a result, we obtain a (N2 + 1)-th order analytic polynomial equation as (Witt 1990)

(z − w)
N∏

l=1



(w∗ − ε∗l )
N∏

k=1

(z − εk) +
N∑

k=1

νk

N∏

j "=k

(z − εj)





c© 2008 RAS, MNRAS 000, 1–20

２変数が陽に連立



Single-Complex-Variable 
Polynomial

z * を消去して
zのみの代数方程式

N  +1次2

Witt (90)
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=
N∑

i=1

νi

N∏

l=1

(z − εl)

×
N∏

m!=i



(w∗ − ε∗m)
N∏

k=1

(z − εk) +
N∑

k=1

νk

N∏

j !=k

(z − εj)



 . (5)

Equation (A3) in Witt (1990) takes a rather complicated form because of inclusion of nonzero

shear γ due to surrounding matter. Bayer et al. (2006) uses a complex formalism in order

to discuss the maximum number of images in a configuration of point masses, by replacing

one of point deflectors by a spherically symmetric distributed mass. In their lens equation

(3) for point lenses, the plus symbol in front of the summation symbols in the parentheses

should read minus one. Only after taking account of this typo, their equation could agree

with Eq. (5). In order to show this agreement, one may use (−1)2N = 1 and (−1)2N−1 = −1.

It is worthwhile to mention that Eq. (5) contains not only all the solutions for the lens

equation (2) but also fiducial unphysical roots which do not satisfy Eq. (2), in price of the

manipuration for obtaining an analytic polynomial equation, as already pointed out by Rhie

() and Bayer et al. (). Such an inclusion of unphyscal solutions can be easily understood by

remembering that we get unphysical roots as well as true ones if one takes a square of an

equation including the square root. In fact, an analogous thing happens in another example

of gravitational lenses such as an isothermal ellipsoidal lens as a simple model of galaxies

(Asada et al. 2003).

In general, the mass ratio νi satisfies 0 < νi < 1, so that it can be taken as an expansion

parameter. Without loss of generality, we can assume that the first lens object is the most

massive, nemely m1 ≥ mi for i = 2, 3, · · · , N . Thus, formal solutions are expressed in Taylor

series as

z =
∞∑

p2=0

∞∑

p3=0

· · ·
∞∑

pN=0

νp2
2 νp3

3 · · · νpN
N z(p2)(p3)···(pN ). (6)

Up to this point, the origin of the lens plane is arbitrary. In the following,the origin of

the lens plane is chosen as the location of the mass m1, such that one can put ε1 = 0. This

enables us to simplify some expressions and to easily understand their physical meanings,

mostly because gravity is dominated by m1 in most regions except for the vicinity of mi

(i $= 1). Namely, it is natural to treat our problem as perturbations around a single lens by

m1 (located at the origin of the coordinates).

In numerical simulation codes or practical data analysis, however, one may use the co-

ordinates in which the origin is not the location of m1. If one wishes to consider such a case

c© 2008 RAS, MNRAS 000, 1–20



摂動
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ゼロ次解
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At the linear order in ν2, true solutions for the triple lens system has to agree with that for

the binary system, when one takes a limit as ν3 → 0. Therefore, out of the above three roots,

ones expressed by Eqs. (30) and (31) must be abandoned, because of their disagreement in

the limit as ν3 → 0.

6 PERTURBATIVE SOLUTIONS FOR A POLYNOMIAL FORMALISM 3:

N POINT-MASS LENS

Here, we investigate a lens system consisting of N point masses.

The polynomial lens equation (5) is expanded as

N∑

p2=0

N∑

p3=0

· · ·
N∑

pN=0

(ν2)
p2(ν3)

p3 · · · (νN)pN g(p2)(p3)···(pN )(z) = 0. (32)

For this equation, we seek a solution in expansion series as

z =
∞∑

p2=0

∞∑

p3=0

· · ·
∞∑

pN=0

(ν2)
p2(ν3)

p3 · · · (νN)pN z(p2)(p3)···(pN ). (33)

6.1 0th order

Zeroth order solutions are obtained by solving the (N2 + 1)th-order polynomial equation as

g(0)···(0) = 0. The roots are αi ≡ −1/w∗
i , α±, and εi (with multiplicity = N) for i = 2, · · ·N ,

where for later convenience we denoted

wi = w − εi. (34)

Like in the binary lens, αi is unphysical, in the sense that it does not satisfy the lens equation

(2). By using all the 0-th order roots, g(0)···(0) is factorised

g(0)···(0)(z) = (z − α+)(z − α−)

×
N∏

j=2

(w∗
j )

N
N∏

k=2

(z − εk)
N

N∏

l=2

(z +
1

w∗
l

). (35)

6.2 1st order

Next, we seek 1st-order roots. In the similar manner in the double or triple mass case, we

can obtain a 1st-order root as

z(0)···(1k)···(0) = −g(0)···(1k)···(0)(α±)

g
′
(0)···(0)(α±)

, (36)

where 1k denotes that the k-th index is the unity, namely pk = 1.

c© 2008 RAS, MNRAS 000, 1–20
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f
′
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Therefore, the lens equation at O(m0) becomes linear in z∗(1) without including z(1). Imme-

diately, it determines z∗(1), whose complex conjugate provides

z(1) =
ε

(w∗ − ε∗)ε + 1
. (65)

This shows a clear difference between z(0) = ε and z(0) "= ε cases. Equation (51) for the latter

case contains both z(1) and z∗(1), so that we must use a relation such as Eq. (53).

7.6 2nd, 3rd and nth order (z(0) = ε)

Next, we consider the lens equation at O(m1), namely C(1) = D(0). This determines z∗(2) as

z∗(2) = (z∗(1))
2

(
C(1) −

1

ε∗

)
. (66)

Let us look for z(3). Equation of C(2) = D(1) provides z∗(3) as

z∗(3) = (z∗(1))
2C(2) +

(z∗(1))
3

(z∗(0))
2

+
(z∗(2))

2

z∗(1)

. (67)

By the same way, one can obtain perturbatively nth-order solutions z(n) around z(0) = ε.

8 PERTURBATIVE SOLUTIONS FOR ZZ∗-DUAL FORMALISM 2:

LENSING BY N POINT MASS

The purpose of this section is to extend the proposed method to a general case of gravita-

tional lensing by arbitrary number of point masses.

The lens equation is written as

C(z, z∗) =
N∑

k=2

νkDk(z
∗), (68)

where C(z, z∗) was defined by Eq. (39) and we defined

Dk(z
∗) =

1

z∗
− 1

z∗ − ε∗k
. (69)

C(z, z∗) and Dk(z∗) in the lens equation (68) are expanded as

C(z, z∗) =
∞∑

p2=0

∞∑

p3=0

· · ·
∞∑

pN=0

(ν2)
p2(ν3)

p3 · · · (νN)pN

×C(p2)(p3)···(pN )(z, z
∗), (70)

Dk(z
∗) =

∞∑

p2=0

∞∑

p3=0

· · ·
∞∑

pN=0

(ν2)
p2(ν3)

p3 · · · (νN)pN

×Dk(p2)(p3)···(pN )(z
∗), (71)

where C(p2)(p3)···(pN ) and Dk(p2)(p3)···(pN ) are independent of any νi. We seek a solution in

expansion series as

c© 2008 RAS, MNRAS 000, 1–20

16 H. Asada

Therefore, the lens equation at O(m0) becomes linear in z∗(1) without including z(1). Imme-

diately, it determines z∗(1), whose complex conjugate provides

z(1) =
ε

(w∗ − ε∗)ε + 1
. (65)

This shows a clear difference between z(0) = ε and z(0) "= ε cases. Equation (51) for the latter

case contains both z(1) and z∗(1), so that we must use a relation such as Eq. (53).

7.6 2nd, 3rd and nth order (z(0) = ε)

Next, we consider the lens equation at O(m1), namely C(1) = D(0). This determines z∗(2) as

z∗(2) = (z∗(1))
2

(
C(1) −

1

ε∗

)
. (66)

Let us look for z(3). Equation of C(2) = D(1) provides z∗(3) as

z∗(3) = (z∗(1))
2C(2) +

(z∗(1))
3

(z∗(0))
2

+
(z∗(2))

2

z∗(1)
. (67)

By the same way, one can obtain perturbatively nth-order solutions z(n) around z(0) = ε.

8 PERTURBATIVE SOLUTIONS FOR ZZ∗-DUAL FORMALISM 2:

LENSING BY N POINT MASS

The purpose of this section is to extend the proposed method to a general case of gravita-

tional lensing by arbitrary number of point masses.

The lens equation is written as

C(z, z∗) =
N∑

k=2

νkDk(z
∗), (68)

where C(z, z∗) was defined by Eq. (39) and we defined

Dk(z
∗) =

1

z∗
− 1

z∗ − ε∗k
. (69)

C(z, z∗) and Dk(z∗) in the lens equation (68) are expanded as

C(z, z∗) =
∞∑

p2=0

∞∑

p3=0

· · ·
∞∑

pN=0

(ν2)
p2(ν3)

p3 · · · (νN)pN

×C(p2)(p3)···(pN )(z, z
∗), (70)

Dk(z
∗) =

∞∑

p2=0

∞∑

p3=0

· · ·
∞∑

pN=0

(ν2)
p2(ν3)

p3 · · · (νN)pN

×Dk(p2)(p3)···(pN )(z
∗), (71)

where C(p2)(p3)···(pN ) and Dk(p2)(p3)···(pN ) are independent of any νi. We seek a solution in

expansion series as

c© 2008 RAS, MNRAS 000, 1–20

展開パラメタνに関して線型



逐次解
Gravitational Lensing by N Point Mass 17

z =
∞∑

p2=0

∞∑

p3=0

· · ·
∞∑

pN=0

(ν2)
p2(ν3)

p3 · · · (νN)pN z(p2)(p3)···(pN ), (72)

where z(p2)(k3)···(pN ) is a constant to be determined iteratively.

Equation (69) shows that Dk(z∗) has a pole at z∗ = ε∗k. Therefore, we shall discuss two

cases of z(0) != εk or z(0) = εk separately.

8.1 0th order (z(0) != ε)

0-th order solutions are obtained by solving the equation as

C(z, z∗) = 0. (73)

This was solved in the previous section for the binary lens case. The solution is given as

z(0)···(0) = Aw with the coefficient A defined by Eq. (49).

8.2 1st order (z(0) != ε)

At the linear order in νk, Eq. (68) is

C(0)···(1k)···(0) = νkDk(0)···(0), (74)

where 1k denotes that the k-th index is the unity. This equation is rewritten as

z(0)···(1k)···(0) + a(0)···(1k)···(0) × z∗(0)···(1k)···(0) = b(0)···(1k)···(0), (75)

where we defined

a(0)···(1k)···(0) =
1

(z∗(0)···(0))
2

(76)

b(0)···(1k)···(0) =
ε∗k

z∗(0)···(0)(z
∗
(0)···(0) − ε∗k)

(77)

By using Eq. (53), we obtain

z(0)···(1k)···(0) =
b(0)···(1k)···(0) − a(0)···(1k)···(0)b∗(0)···(1k)···(0)

1 − a(0)···(1k)···(0)a∗
(0)···(1k)···(0)

. (78)

8.3 2nd order (z(0) != ε)

Let us consider two types of second-order solutions as z(0)···(2k)···(0) and z(0)···(1k)···(1l)···(0) sep-

arately.

First, we shall seek z(0)···(2k)···)0). At O(ν2
k), Eq. (68) becomes

z(0)···(2k)···(0) + a(0)···(2k)···(0)z
∗
(0)···(2k)···(0)

= b(0)···(2k)···(0), (79)
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where we defined

a(0)···(2k)···(0) =
1

(z∗(0)···(0))
2
, (80)

b(0)···(2k)···(0) = −Dk(0)···(1k)···(0) +
(σ∗

(0)···(2k)···(0))
2

z∗(0)···(0)

(81)

By using the relation (53) for Eq. (79), we obtain

z(0)···(2k)···(0) =
b(0)···(2k)···(0) − a(0)···(2k)···(0)b∗(0)···(2k)···(0)

1 − a(0)···(2k)···(0)a∗
(0)···(2k)···(0)

. (82)

Next, let us determine z(0)···(1k)···(1l)···(0). At O(νkνl) for k < l, Eq. (68) becomes

z(0)···(1k)···(1l)···(0) + a(0)···(1k)···(1l)···(0)z
∗
(0)···(1k)···(1l)···(0)

= b(0)···(1k)···(1l)···(0), (83)

where we defined

a(0)···(1k)···(1l)···(0) =
1

(z∗(0)···(0))
2
, (84)

b(0)···(1k)···(1l)···(0) = −Dk(0)···(1l)···(0) − Dl(0)···(1k)···(0)

+
2σ∗

(0)···(1k)···(0)σ
∗
(0)···(1l)···(0)

z∗(0)···(0)

(85)

By using the relation (53) for Eq. (83), we obtain

z(0)···(1k)···(1l)···(0)

=
b(0)···(1k)···(1l)···(0) − a(0)···(1k)···(1l)···(0)b∗(0)···(1k)···(1l)···(0)

1 − a(0)···(1k)···(1l)···(0)a∗
(0)···(1k)···(1l)···(0)

. (86)

8.4 0th and 1st order (z(0) = εk)

Next, we investigate the vicinity of z = εk, which is a pole of Dk. The other pole of Dk is

z = 0, which makes C(z, z∗) divergent. Therefore, z = 0 and its neighbourhood is abandoned.

Let us focus on a root around z = ε.

We assume z = εk + νkz(0)···(1k)···(0) + O(ν2
k). Then, we obtain

C(0)···(0) = w − εk +
1

ε∗k
, (87)

D(0)···(−1k)···(0) = − 1

z∗(0)···(−1k)···(0)
. (88)

Therefore, the lens equation at O(ν0
k) becomes linear in z∗

(0)···(1k)···(0) without including

z(0)···(1k)···(0). Immediately, it determines z∗(0)···(1k)···(0), whose complex conjugate provides

z(0)···(1k)···(0) =
εk

(w∗ − ε∗k)εk + 1
. (89)
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where we defined

a(0)···(2k)···(0) =
1

(z∗(0)···(0))
2
, (80)

b(0)···(2k)···(0) = −Dk(0)···(1k)···(0) +
(σ∗

(0)···(2k)···(0))
2

z∗(0)···(0)

(81)

By using the relation (53) for Eq. (79), we obtain

z(0)···(2k)···(0) =
b(0)···(2k)···(0) − a(0)···(2k)···(0)b∗(0)···(2k)···(0)

1 − a(0)···(2k)···(0)a∗
(0)···(2k)···(0)

. (82)

Next, let us determine z(0)···(1k)···(1l)···(0). At O(νkνl) for k < l, Eq. (68) becomes

z(0)···(1k)···(1l)···(0) + a(0)···(1k)···(1l)···(0)z
∗
(0)···(1k)···(1l)···(0)

= b(0)···(1k)···(1l)···(0), (83)

where we defined

a(0)···(1k)···(1l)···(0) =
1

(z∗(0)···(0))
2
, (84)

b(0)···(1k)···(1l)···(0) = −Dk(0)···(1l)···(0) − Dl(0)···(1k)···(0)

+
2σ∗

(0)···(1k)···(0)σ
∗
(0)···(1l)···(0)

z∗(0)···(0)

(85)

By using the relation (53) for Eq. (83), we obtain

z(0)···(1k)···(1l)···(0)

=
b(0)···(1k)···(1l)···(0) − a(0)···(1k)···(1l)···(0)b

∗
(0)···(1k)···(1l)···(0)

1 − a(0)···(1k)···(1l)···(0)a∗
(0)···(1k)···(1l)···(0)

. (86)

8.4 0th and 1st order (z(0) = εk)

Next, we investigate the vicinity of z = εk, which is a pole of Dk. The other pole of Dk is

z = 0, which makes C(z, z∗) divergent. Therefore, z = 0 and its neighbourhood is abandoned.

Let us focus on a root around z = ε.

We assume z = εk + νkz(0)···(1k)···(0) + O(ν2
k). Then, we obtain

C(0)···(0) = w − εk +
1

ε∗k
, (87)

D(0)···(−1k)···(0) = − 1

z∗(0)···(−1k)···(0)

. (88)

Therefore, the lens equation at O(ν0
k) becomes linear in z∗

(0)···(1k)···(0) without including

z(0)···(1k)···(0). Immediately, it determines z∗(0)···(1k)···(0), whose complex conjugate provides

z(0)···(1k)···(0) =
εk

(w∗ − ε∗k)εk + 1
. (89)
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今後
離散性(有限N)に着目した応用
特異な増光現象
統計的性質（平均、分散等）予測

２

１

多重レンズ面への一般化

宇宙論的重力レンズへの応用


