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Outline of lectures

Lecture 1
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Thin lenses: 2D reconstruction
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Lecture 3
Observations, problems and surveys
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Probing Gravity
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ordinary matter 
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Lensing by Dark 
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Effects of Dark 
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r = comoving distance label; t = cosmic time, a(t) = scale factor = 1/(1+z), and 
proper distances = comoving distances x a(t)

The cosmology you need, in one slide
Metric : ds2 = c2dt2 − a2(t)
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Dark energy contribution to r is controlled by continuity equation:

Photons have ds2=0, so for radial orbits, dr = -dt/a(t), so

DA(r) = a(t)Sk(r)

This defines the ‘equation of state’ w(a)

GR fl Hubble parameter H(a) ª a-1 da/dt obeys the Friedmann equation:

NO GR in this, just symmetry.  Note: space may be curved, with curvature k, so

And the angular diameter distance is 



Growth of fluctuations

Linear perturbation theory (GR specific):

where d=drm/rm.



Influence of Dark Energy

In GR, Dark Energy 
influences cosmology 
through 

Distance Measurements, and 
Growth Rate, 
both via H(a) or equivalently 
the expansion rate a(t)



Basics of Lensing

The bend angle:
(circular symmetry)

The lens equation:
P

α̃(R) = 4GM(<R)
Rc2

R



Point mass lens

Lens equation soluble analytically:

Quadratic for θ:

where the Einstein Angle is

Two images at 



Einstein Rings



Magnification and Amplification

Lensing preserves surface brightness → 
brightness proportional to solid angle:



Planet detection



General thin lens

Bend angle is a 2D vector (on the sky)

Bend angle is 2D gradient of lensing potential
Schneider



2D Poisson Equation

satisfies the 2D Poisson equation:

k depends on source distance, as well as 
lens properties.  It is not directly observable
We will see how this equation allows us to 
invert image data (via ) to obtain the surface 
mass density



Caustics and critical lines

κ > 1 is a sufficient (but not necessary) 
condition for ‘infinite’ magnification.
Magnification is never infinite (to do so 
assumes a point source and geometrical 
optics), but can be very large…
Highly magnified images occur if the source 
is close to a caustic, image on a critical line



J. Wambsganss



Arcs

A2218

HST



Amplification, Magnification & Shear

Define the (inverse) amplification matrix:
β

θ



Complex Shear



Estimating Shear (more details later)

Note: error in g dominated by scatter in es.  

For ‘Cosmic Shear’ g ~ 0.01. scatter in es ~ 0.3



2D (Dark) Matter reconstruction: thin lens

Given a set of weak shear estimates, how do 
we map the matter?

We can estimate shear, but we would like k
From k we can obtain the surface density S, if we 
know the source redshifts





Estimator for κl



Estimating convergence

Multiplication in l space = convolution in real space.  
Quick way to solve these equations is (Kaiser & Squires 1993):





Supercluster Abell 901/2

3Mpc/h

A901a
A901b

A902

(Gray et al., 2002)



A901 cluster

Gray et al 2004



‘Bullet cluster’

Challenges MOND, TeVeS

Markevitch et al 2002

Clowe et al 2004Hot Gas (X-ray)

Dark Matter

(Lensing)

Galaxies



Diversion on shear and spin-weights

Shear field is not a vector field, it is a spin-weight 2 field

Scalar fields have s=0
Shear is s=2 because an axis rotation by p/4 changes    
g by p/2



s = ½



Tangential and cross shear
We now define the tangential shear by

γt ≡ −Re(γe
−2iϕ),

and the cross shear by
γ× ≡ −Im(γe

−2iϕ)

M.Bradac

ϕ



Cluster masses from mean tangential 
shear
Important for Dark Energy – see later.

(This treatment is from Schneider, SAAS-FEE lectures)



LHS ∝ mass enclosed in the circle:

m(θ) = Σcrit
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Now, the mass enclosed can be written in terms of the average convergence on
circles hκi, or in terms of the average in the circle, κ̄:

m(θ) = Σcrit
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¤
= Σcrit

Z θ

0

dϑhκ(ϑ)i2πϑ



Conclusions of mass modelling of clusters

Masses mostly agree well with those from other methods, where they 
are relaxed (lensing doesn’t care)
Clusters are rather centrally concentrated – consistent with NFW
Clusters often show substructure in lensing maps 
Baryon fractions generally consistent with standard cosmological model
Self-interacting dark matter strongly constrained – SIDM smooths the 
central profile, and reduces asymmetry, leading to too few arcs and 
severe distortions
TeVeS: Note that the convergence in MOND-type gravity theories is not 
proportional to surface density, but they still have problems with the 
bullet cluster.



Cosmic Shear: lensing by clumpy Universe

Problem: for cosmic shear, lens is all the way 
along the line-of-sight



Cosmological Lensing





Light propagation equation



Cosmological lensing potential

Remarkably, we can write the shear as the Di gradients 
of a potential, just as with a thin lens:

x
θ



Image distortions: nearby rays

Make Taylor expansion of gradient:



Recap: cosmological lensing
Cosmological lensing potential:



Averaging over source redshift distribution

Need to 
average this 
over p(r)

Cosmology theory does not predict δ(r),  but only its statistical properties, 
e.g. Power spectrum P(k), or the correlation function.



Connection to cosmological parameters

Consider 2-point quantities (e.g. power spectrum, correlation 
function)
Relate to the 3D matter power spectrum P(k):



‚δkδ*k’Ú term gives a delta function

Θ, Θ’ integrations give more delta functions

Convergence Power 
Spectrum



Example 2-point statistic: shear correlation 
function

Shear correlations are observable



E- and B-modes

Lensing essentially produces 
only E modes

Presence of B-modes indicates 
something is wrong

B modes from galaxy clustering, 2nd-
order effects (both small), imperfect 
PSF modelling, optics systematics, 
intrinsic alignments of galaxies

Jain & Seljak



Cosmic shear maps

Statistical properties 
depend on 

a) how clumpy the 
Universe is (via P)

b) the source distances 
(via g(r))

c) the r(z), Sk(r) 
relations

(we measure p(z), not 
p(r))

fl can probe cosmology



Recent results: CFHTLS

Hoekstra et al 2005; see also Semboloni et al 2005

22 sq deg; median z=0.8. s8 high compared with WMAP

Ωm

w

σ8

But: original estimate of p(z) was from Hubble 
Deep Field galaxies – and HDF is very small and 
subject to large sample variance



Challenges I: photometric redshifts
Spectroscopy is too slow.
Can estimate redshifts to within 0.02-0.1, depending on number and 
wavelength of bands, and type of galaxy.

COMBO-17

Wolf et al 
2004

For accurate Dark Energy studies, 
the photo-z distribution has to be 
calibrated very accurately – with 
systematic error in the median z of 
a few times 10-3 or better.  This 
needs ~105 spectroscopic 
redshifts (WFMOS?)



Reanalysis of recent data

100 square degree survey
(Benjamin et al 2007).  Better p(z), 

from CFHTLS photozs

Removes serious tension between 
lensing results and WMAP.

Reason: poor redshift distributions used 
previously



Tegmark 2004



3D lensing

With photo-zs, much more is possible:
3D gravitational potential and matter density 
reconstruction
Better cosmological parameter estimation
Better control of systematics 



3D matter density reconstruction

Taylor 2001



3D reconstruction: COSMOS field

Massey et al 2007

Beware! Mass-sheet degeneracy in 
3D; poor resolution in z (200 Mpc)



3D Mass Reconstruction – A901

Potential Field:

Galaxy density:

Taylor et al, 2004



Cosmology and Dark Energy

Measurable Effects of Dark Energy:
Distance-redshift relation

Growth rate of perturbations



Dark energy from clusters: the shear-
ratio test



3D Statistical Analysis

With 3D source positions, why project at all?
Treat survey as a discretely-sampled, very noisy, 3D field

+z →



Steps to 3D: lensing in slices 
(Tomography)

Hu 1999

Dividing the source distribution 
improves parameter estimation



Need to go beyond linear theory

Need to go beyond linear theory to get good 
signal-to-noise in weak lensing

Linear Nonlinear



Nonlinear Power Spectrum

Nonlinear P(k) is quite accurately 
known, from N-body simulations
Baryons? Affect high k
k > 10, or 2? Debate

Smith et al 2003



Where does signal come from?

Most signal for w=p/ρc2 from 
l ~1000

Best to target z~1 for measuring w 



COMBO 17 – Dark Energy results:  3D 
shear only

First 3D shear power 
spectrum analysis
Two fields (0.5 sq deg)
Smaller error bars than 
2D (from galaxies with 
photozs)

Kitching, AFH et al 2007



COMBO-17 Dark Energy results: 
geometric test, and both together

• Note: Conditional error 
only

• From 0.75 square 
degrees only

Kitching, AFH et al 2007

w = -1.1 +/- 0.6
Not a competitive error, but proof of concept 
for future large 3D surveys



Challenges and prospects for weak 
lensing



Challenges II: Image quality
Shear is ~1%
Telescope optics & atmosphere may distort images to ~10%
Use stars to correct for the Point Spread Function (PSF) distortions



Correcting for telescope distortions

Can be even worse…

Weak lensing has been done 
successfully with this.

Select stars to correct the PSF



Relating ellipticity to shear: KSB method

Measure moments of the light distribution:

KSB: Seitz & Schneider:

(Cleaner 
transfor
mation)



Shapelets

Refregier, Massey, Bacon

Shear moves power from one 
shapelet to another, diagonally by 2

Alternative shape measurement



Systematics control:

Need to measure this to a systematic 
uncertainty of ~0.3% (of 1%)
Currently ~1% appears achievable (STEP 
programme: Heymans et al; Massey et al)

New model-fitting methods (lensfit) are 
hitting target
Better PSFs help



Challenges III: Physical systematics

Ellipticity of galaxy       e 
= e(source) + γ
es ∼ 0.3; γ ~ 0.01
Estimate γ by averaging 
over many galaxies
e ~ es+ γ
Hence ‚ee*Ú = ‚γγ*Ú

Provided galaxies are not intrinsically aligned <eses*>=0



Astrophysical complications

Intrinsic alignments
• Lensing analysis 
assumes orientations of 
source galaxies are 
uncorrelated

Weak lensing e @ es + γ

‚ee*Ú = ‚ese*sÚ+ ‚γγ*Ú



Intrinsic alignments

Heavens, Refregier & Heymans 2000, Croft & 
Metzler 2000, Crittenden et al 2001 etc

‚ese*sÚ Theory: Tidal torques

Brown et al 
2000

Heymans 
et al 2003

SOLUTION:
Downweight/discard pairs with 
similar photometric redshifts 
(Heymans & Heavens 2002; King & Schneider 
2002a,b) 

REMOVES EFFECT 
~COMPLETELY

‚ee*Ú = ‚ese*sÚ+ ‚γγ*Ú



Shear-intrinsic alignments 
‚ee*Ú = ‚ese*sÚ+ ‚γγ*Ú + 2‚eγ*Ú

Tidal field contributes to weak shear (of background)

Tidal field could also orient galaxies (locally) (Hirata and Seljak 2004)

Expect 5-10% contamination

Theory: Heymans, AFH et al 2006SDSS: Mandelbaum et al 2005



Removing shear-intrinsic ellipticity 
contamination

Solution not as easy as intrinsic alignments
massive galaxies largely responsible
B-mode signature
Signal has different redshift dependence from 
weak lensing (Hirata & Seljak 2004, King et al 2006, Heymans et al 2006)



Removal of intrinsic-shear
Contamination signal expected to be 
proportional to 
DL DLS/DS 

Just requires alignment of 
galaxies w.r.t. tidal field to be 
independent of redshift

Model it, or ‘null’ it (at expense of 
worse noise; Joachimi & 
Schneider 2008)



1.8 m telescope on Maui, Hawaii
7 square degree 1.4 Gpixel camera
grizy filters
3π steradian survey to median z ~ 0.6; 
deeper 70 sq deg MDS
Very good image quality: ~2% PSF 
distortions
Due to start operating in early 2009
US/UK/Germany

Pan-STARRS 1



Pan-STARRS 1 camera and tiling

Other large-area surveys: CFHTLS (finished), DES, HSC, LSST/PS4, 
EUCLID, SNAP



Forecasting errors: the Fisher Matrix

The Fisher Matrix is:

Note – NO DATA!

Can analyse experimental design

D = data

μ = mean of data 

C = covariance matrix of 
data



Conditional and Marginal Errors

The conditional error on θi is (at least)
This assumes all other parameters 

are known

The marginal error on θi is (at least) 
This assumes all other parameters 
are also estimated from the data

The conditional error is almost never relevant and should not be 
quoted.  The marginal error is no smaller than the conditional error.  
Obey this rule with real data too!



Full 3D cosmic shear on the full sky

Shear is referred to a coordinate system.  How 
do we correlate shears on a curved sky?

Natural to refer shear components to 
spherical coordinate system.

Generalise to (effectively) covariant 
derivative on a sphere at fixed r:

)(ðð
2
1)( rr φγ =

‘edth’ operator; 
Newman & Penrose 
1966



3D shear analysis: Natural expansions
Natural to expand f in spherical harmonics and spherical Bessel 
functions (flat space)

Now

So, expand shear in spin-weight 2 spherical harmonics



Shear to density field

Can then relate coefficients of γ directly to 
coefficients of dark matter fluctuations:

(Modifications if not flat)



Shear 3D power spectrum:

Small-angle surveys (Heavens et al MNRAS 2006)

Expand the shear field in radial waves jl(kr) and transverse waves (l)  
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Pan-STARRS 1 plus Planck

(Heavens et al MNRAS 2007)

Parametrisation in terms of scale 
factor a:

w(a) = w0 + (1-a) wa

Note: this may not be a good 
parametrisation for DE models. 

Studies show only a few components of 
w(a) can be measured.



Combination with other experiments

CMB: Planck

BAO: WFMOS 2000 sq deg to z=1

SNe: 2000 to z=1.5



Combining 3D lensing, CMB, BAO, SNe

3.5% accuracy on w at z=0    
1% on w(z) at z~0.4

Flat

(10000 sq deg lensing survey: one third of PS1)



Future: Euclid, formerly DUNE

Other gravity theories will yield an expansion rate H(a)
Any H(a) can be mimicked by choosing Dark Energy with a certain 
w(a)
How do we tell whether GR+DE is preferred over modified gravity?
…via weak lensing and the growth rate
Needs a very extensive space-based survey: Euclid would be 
excellent
4 bands from space (+ ground)
20,000 square degrees
35 sources per square arcminute; median redshift z~1
Potential: Error on w = 0.01, Error on wa=0.06



Modified Gravity or Dark Energy?
Modified Gravity theory will give a certain H(a).
We can always find an ‘equation of state’ (strictly just p/ρ) to mimic this in 
GR:

Solve for any given H(a).  Exercise:

which depends on H(a) via the critical density

Supernovae cannot unambiguously distinguish GR from modified 
gravity [via r=c∫dz/H(z)]



Reproducing the expansion history with 
effective w(a)

Flat DGP expansion history is very close to GR + Dark Energy with



Minimal Modified Gravity

However, gravity theory affects the growth rate, so weak lensing can 
distinguish GR from modified gravity in principle.  

A convenient parametrisation for the growth rate is (Linder 2005)

γ ≅ 0.55 (GR) 
γ ≅ 0.68 (flat DGP)
Main question: is there any evidence that g deviates from GR value?



Bayesian Evidence

Bayesian method to answer such questions
Let models be M,M’ and data be D.  Let model parameters be θ (or 
θ’)
What we want is p(M|D)
Bayes’ theorem: p(M|D)=p(D|M)p(M)/p(D)
If we take a non-commital prior on models, p(M) = constant,
p(M|D) α p(D|M) α ∫ dθ p(D|θ,M) p(θ|M)

p(M|D) α ∫ dθ L(D|θ,M) = ‘EVIDENCE’ (here with flat priors)
B = ratio of evidences

EVIDENCE = Likelihood integrated over parameter space



Laplace approximation

Like Fisher, but for evidences
Assume likelihood is a 
multivariate gaussian
Integrate analytically
Include biases in parameter 
estimates 

Prior ranges for parameters

G is part of F

Heavens, Kitching, Verde, astroph/0703191



Prospects

Pan-STARRS 1 + Planck+BAO+SNe:  |lnB|=3.8  (DGP/GR)
Euclid + Planck + BAO + SNe: |lnB|=63   (DGP/GR)
Euclid should be able to find evidence for gravity theory beyond GR, 
if it is there.  

Compare GR with Dark Energy with a modified gravity model with the 
same expansion history.  

We take flat DGP braneworld model as example.

Euclid

Pan-STARRS
DES

DGP



Conclusions
Post-WMAP/2dF/SDSS, Dark Energy and Dark Matter 
are key scientific goals of cosmology

Lensing is powerful because it detects mass directly, and 
the connection with fundamental theory is very direct 
(simple physics)

Mass reconstruction puts limits on Dark Matter 
interactions, and baryon fraction

Lensing in 3D is very powerful for Dark Energy: 
accuracies of ~2% on w potentially possible with Pan-
STARRS 1

Main challenges - systematics:
Accurate shape measurement
Unbiased photo-zs
Removal of intrinsic-shear contamination

Can test GR vs modified gravity models from extra 
dimensions, by probing geometry and growth rate.  Euclid 
should be able to do this.
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