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‘ Outline of lectures

= Lecture 1
o Basics of lensing
o Thin lenses: 2D reconstruction

= Lecture 2
o Cosmological lensing
a 3D reconstruction
o Cosmological Parameter Estimation

= Lecture 3
o Observations, problems and surveys
o Probing Dark Energy with lensing
o Probing Gravity

Lensing by
ordinary matter
(stars, planets,
galaxies)

Lensing by Dark
Matter

Effects of Dark
Energy

Effects of
Modifying Gravity




The cosmology you need, in one slide
Metric :  ds? = c2dt* — a*(t) [dr? + S2(r)(d6? + sin” 0d¢?)]

r = comoving distance label; t = cosmic time, a(t) = scale factor = 1/(1+z), and
proper distances = comoving distances x a(t)

NO GR in this, just symmetry. Note: space may be curved, with curvature k, so
Si(r) = rosinh(r/rg), r, rosin(r/rg) for k = —1,0,1
GR = Hubble parameter H(a) = a1 da/dt obeys the Friedmann equation:
H?(a) — 81Gp/3 = —k/a* (v = GM(< r)/r = constant)
Dark energy contribution to p is controlled by continuity equation:

% (pqa3) = —pqa2 = —w(a)pqc2 This defines the ‘equation of state’ w(a)

H?(a) = H? {Qma_?’ +(1=Q)a 2+ Q exp {fla da‘?/ 11+ w(a’)]H

Photons have ds?=0, so for radial orbits, dr = -dt/a(t), so , — cfal da'/[a"*H (a")]
And the angular diameter distance is D 4 (r) = a(t)S(r)



Growth of fluctuations

Linear perturbation theory (GR specific):

Assuming DE is smooth,

0+ 2H — 4nGpmd = 0
where 6=0p,,/0m-



Influence of Dark Energy

In GR, Dark Energy

_ influences cosmology

¥y through

2ond| o Distance Measurements, and
o Growth Rate,

o both via H(a) or equivalently
the expansion rate a(t)




Basics of Lensing

The Bending of Light

The bend angle:

(circular symmetry)

G(R) = 2GR
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The lens equation:

Dse — Dgﬁ + Dypgo
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‘ Point mass lens

= Lens equation soluble analytically:
5_g_ AGM Dis

029 DLDS
= Quadratic for 6:
92 — 36— 02 =0

= where the Einstein Angle is
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Einstein Rings

0 \/ﬁ? ,
Qi—zi 4-|—(9E

If B = 0 then the image is a complete ring.

Requires surface density ¥ > M/(rD%0%) = Y..it, the Critical Surface Density

Y = C2DS
= ArGDrDrs




Magnitication and Amplification

Lensing preserves surface brightness —
brightness proportional to solid angle:




Planet detection

3- Btellar Lens
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‘ (General thin lens

Surface mass density 2(5) 4 o

rce plane

= Bend angle is a 2D vector (on the sky)

. 4GD.D YR
62( ): G L LS/dQQIZ(Q_’)(Q_’ 8)
Dgc? 16— 4|2
= Bend angle is 2D gradient of lensing potential ;ohsewer
Schneider
o(0) = 26PLDLs / 20756 In(|f— ")) (thin lens)
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2D Poisson Equation

¢ satisfies the 2D Poisson equation:
V() = 2r(6)

k 18 the convergence

— —

k(0) = 3(0)/Zcrit
k depends on source distance, as well as
lens properties. It is not directly observable

We will see how this equation allows us to

invert image data (via¢) to obtain the surface
mass density



Caustics and critical lines

Kk > 1 Is a sufficient (but not necessary)
condition for ‘infinite’ magnification.
Magnification is never infinite (to do so

assumes a point source and geometrical
optics), but can be very large...

Highly magnified images occur if the source
IS close to a , Image on a
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‘ Amplification, Magnification & Shear

1

5 (P11 + @ 22)

1

2 (11— @22) =D1¢

12 = Dagp



€1

Complex Shear nd o
0¥ o

The complex shear is ey
Y =71+ 12 C] O r:;{:?
Sy

Lensing preserves surface brightness, so the amplification of the source is

1 1

A

T detd; (1—r)2— P

Note that the overall magnification of the image is usually unobservable, so

l—g1 —g2
Ai' =(1—~k
i =1 ) ( —g2 1+ an )
where g is the reduced shear, which is what can be more easily measured. g =

v/(1 — k) =~ ~ for weak lensing, where || < 1.

Note that A;; is symmetric - not all locally linear distortions are allowed.



Estimating Shear (more details later)

Measure the ellipticity e of a galaxy. It is related to the intrinsic ellipticity

e’ and reduced shear g by
_ ety
o 1 _|_g>|<68

€

Average over sources: (e*) =0= (e) =g i.e. e is unbiased

Note: error in g dominated by scatter in es.

For ‘Cosmic Shear’ g ~ 0.01. scatterin es~ 0.3



2D (Dark) Matter reconstruction: thin lens

Given a set of weak shear estimates, how do
we map the matter?
o We can estimate shear, but we would like «

o From «x we can obtain the surface density %, if we
know the source redshifts




Work in Fourier space in 2D on sky. Expanding

— - =

Ky = /d25ﬁ(0) exp(il - 0)

etc, then since 2k = V2¢ and D1 = (V{ — V3)/2 and Dy = V Vs,

1
/ﬁ?[ = —§£2¢£"

1
N = —5(@—53)%
Yor = —lilady

where (2 = (2 4 (2 = |{]2.



Estimator for K,

The following are estimators of xz:

(? (2
(ff - 53) e (25152) o

Variance in these estimators is proportional to

2 64 d 2 64
0 ana o, ——————
“ (7 —£3)* “(20142)?

respectively, where o2 is the variance in the source ellipticity distribution.

Optimal (inverse variance weighted) estimator for x is

X 02 — 12 2010
fg = ( 2 )fﬁﬁ (—62 )ezz-




Estimating convergence

Multiplication in € space = convolution in real space.
Quick way to solve these equations is (kaiser & Squires 1993).

Remember D;D; = (V?)?/4, so

vi = Do
— 2D,V %k
= D;v; = 2D;D;V %k
=x = 2D,V %,

But we know the solution to V2 in 2D:

i

L1 L
V20, (f) = — / 20;(F)In |6 — 6]



Differentiate and sum:

2 2—»,[71(7) cos(2a) +72(7)sin(2a)]
m(@)-ﬂ/d@ 70

where « is the angle between 0 and 0.

Tempting: Replace integral by a sum over galaxies, and ~ by its estimator, e:

A(0) = 2 Z le1(0y) cos(2a) + ea(8,) sin(2av)]

nm g |(99 _(9|2

where n is the mean surface density of sources.

This is unbiased, but has infinite noise (from shot noise in ). Solution is to
smooth, at some point in the analysis.

Note - we can’t get x;_g - this is an example of the mass-sheet degeneracy.



Supercluster Abell 901 /2

3Mpc/h

(Gray et al., 2002)
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‘Bullet cluster’

Challenges MOND, TeVeS

Dark Matter

(Lensing)
Galaxies

Markevitch et al 2002

Hot Gas (X-ray) Clowe et al 2004



Shear field is not a vector field, it is a spin-weight 2 field

Rotating a coordinate system locally by v, a spin-weight s object transforms to

Scalar fields have s=0

Shear is s=2 because an axis rotation by 7/4 changes
y by n/2




‘831/2




‘ Tangential and cross shear

We now define the tangential shear by

Tt = _Re(fye_%(p) ’

and the cross shear by




Cluster masses from mean tangential
shear

Important for Dark Energy — see later.

(This treatment is from Schneider, SAAS-FEE lectures)

The aim here is to estimate lensing masses from the shear field, with no as-
sumptions about symmetry.
We start with Gauss’ theorem in 2D:

/d2§v2¢ — jlds%-ﬁ

where 71 is an outward normal vector.

Since V?¢ = 2k, then for a circular region,

0
2/ d? 9k zej[d—
i (V) P



LHS o mass enclosed in the circle:
S 0

0) =Y.t | 2IK(D) = =Xepiz G dp—

m(6) = Serit [ PTRD) = §Tori § o'

2
dm(0)  m(0) chm%dgp 0

Hence

77 g 3

Now, on the z-axis,

029 1 1 7 7
502 = ¢11 = 2 (11 + P22) + 5 ($,11 — @,22) = K(0) +1(0)
Since on this axis, v1 = —,
0% ¢
902 = "3(9) - %(9)

and since this is now independent of ¢ explicitly, it holds generally, and the line
integral is then expressible in terms of the average x and ~; around the circle:

dm(0)  m(0)

do T + 7-‘-ezcrit [<'Ii(9)> o <’Yt(9)>]



Now, the mass enclosed can be written in terms of the average convergence on
circles (), or in terms of the average in the circle, &:

0
m(0) = Sere [1025(0)] = Sepiy /0 49 (K(9)) 27

The second of these gives

dm/(0)

W = 27Tezcrit </€(0)>

and substituting this and the first (for m) into the differential equation for m
gives

(i) = R — (k)
For clusters, if we take a large radius where (k) is small, we can estimate m
from the average tangential shear, via k.



Conclusions of mass modelling ot clusters

well with those from other methods, where they
are relaxed (lensing doesn’t care)

Clusters are rather — consistent with NFW
Clusters often show in lensing maps
generally consistent with standard cosmological model

strongly constrained — SIDM smooths the
central profile, and reduces asymmetry, leading to too few arcs and
severe distortions

Note that the convergence in MOND-type gravity theories is not
proportional to surface density, but they still have problems with the
bullet cluster.



Cosmic Shear: lensing by clumpy Universe

Problem: for cosmic shear, lens is all the way
along the line-of-sight

DEFLEXION DES RAYONS LUMINEUX TRAVERSANT L’UNIVERS, EMIS PAR DES GALAXIES LOINTAINES.




‘ Cosmological Lensing

For a weakly-perturbed Universe

ds® = (1 + @) Adt? — (1 — 20_\211) a2(t) [dr2 + S;%(T)dﬁﬂ

2
where ® is the (Newtonian) gravitational potential.

We take & = W, relevant if no anisotropic stresses
Note: in general lensing depends on ® + ¥ (exercise for student).

Convenient to work with conformal time dn = cdt/a(t), and flat sky df, ,:

ds® = a?(n) {(1 + 26—3’) dn? — (1 - @) [dr? + Si(r)(d63 + db;)]

c? |
[T

Solve for r(n) for unperturbed radial ray: 0 = dn? — dr?...




Geodesic equation:

d2a? LT dzt dz”
dp? Y dp dp

parametrised in terms of some p, and the affine connection is

1 090  O09sr  O0Guu
A _ T oA M . j
How = { oxV? i Oxt  0x° }

pr T o

= 0,

Geodesic equation for 7:
d*n B 2& .
dp2 T a777

By choosing the unit of p appropriately, we find
dn 1

dp_?'



Light propagation equation

Geodesic equation for 6, (similarly for 6,), in a flat universe

0, 2d6, 2 9%

dn2  rdn 2206,

Simplifies to
d*z 2 o
i V4
dn? c?

where X = rf is the transverse displacement

EXERCISE: Generalise the result for the propagation of light to a
non-flat Universe:

d*&
+ kx = ——V<I>
dn T



Cosmological lensing potential

Remarkably, we can write the shear as the D, gradients
of a potential, just as with a thin lens:

Solve L
d=x 2 =
=—-——=Vo
dn? c?
Integrate along radial ray (Born approximation), and use dr = —dn
2 (7,00
T — (9@ - 5 d ' — 7'
x;i=7r =) r o (r—1")
(I reversed the order of integration).




Image distortions: nearby rays

Make Taylor expansion of gradient:

0?d
890;8:6;-

2 T
Az; = rAf; — A0 / dr'r’(r —r')
¢ 0

or

Ax; =1A0;(0i; — @.ij)

and Ax; becomes r(; at the source.

and

L2 Sk(r—1r") -
¢(r):c—2/ i )

is the Cosmological Lensing Potential. We have generalised this to the non-flat
case for completeness.




‘ Recap: cosmological lensing

. 2 T ! .
= Cosmological lensing potential: |¢(7) = —2/ dr’ r ,T)‘I’(T’) (Hat)
0

c rT
. 1
K(r) = B (¢,11 + @,22)
. 1
n(r) = 501 —dz2)=Dig
72(r) = ¢12 =Da¢
Using Poisson’s equation
3HZQ
Vip®=—"2-"¢
3D 2a(t)

where 6 = p/p — 1 is the fractional matter overdensity, the convergence is

o sema i Al oD
2@ 2c2 /0 o r alr




Averaging over source redshift distribution

If the source probability distribution is p(r), then the convergence averaged over
a line-of-sight is

-
/

K= /OOO dr'k(r")p(r")

Reversing the order of integration,

_ 3HEQ,, [ g(r) .,
R=—3 /0 drrmcS(r)

o= [y (50,

Cosmology theory does not predict &(r), but only its statistical properties,
e.g. Power spectrum P(k), or the correlation function.

where




Connection to cosmological parameters

= Consider 2-point quantities (e.g. power spectrum, correlation
function)

= Relate to the 3D matter power spectrum P(k):

(6xop) = (2m)20P (k — K P(k).

where Fourier transform of §(x) is Jx.

/ d'}:@ F{.(@)E_?;E'@

A / drr
0

g(r)

a(r)

/dii—? d(re, -r)e_ig'@

A=3H:Q,,/2c*




5 [ o 5 ., Ak dPK
(Kekp) = AE/ dr G(r / dr' G(r' /dz&)dz@"
¢ ; (r) ; (r') (2m)3 (27)3
(OO ) explikyr — iky'r") exp(ik, .© — iK', .@") exp(—il.© + il .&')

(5,0*) term gives a delta function Gr) = -rg(-rj/a-(-rj

This introduces P( kﬁ +k%) ~ P(lk.]).

k|| integral gives another delta function.

@, O’ integrations give more delta functions

(heki) = (2m)267 (€ = £) Po(|€]).

Convergence Power

3H20 \* [ _—E Spectrum
PH{{?}:( 0 m)‘/n dr [@ P(l/r:r).

2c?




Example 2-point statistic: shear correlation

function
= Shear correlations are observable x\| | —alds clul.lal,lil,lwl -
- B N 0CDM (1,1,/4) -
Exercise: Show that Py (¢) = P.({). i ‘\H ACDM (1,1/4) -
: - "'x\ll——[-:dﬂ (1,1/4) — 4%
d2/ /6 ' \-—-EdS (0.6,1/2) {1 Tn|
AN P (0)e* N
(77" )0 (2m)2 7(E)e <
(e . J
_ Pﬁ ¢ }E'Ht.ms:pdl_. S
2n)? (€)e 2
dl
flarcmin]




‘ E- and B-modes

Jain & Seljak

Lensing essentially produces

only E modes B modes from galaxy clustering, 2"d-
order effects (both small), imperfect
PSF modelling, optics systematics,
intrinsic alignments of galaxies

Presence of B-modes indicates
something is wrong




'Cosmic shear maps

Statistical properties
depend on

a) how clumpy the
Universe is (via P)

b) the source distances
(via g(r))

c) ther(z), S(r)
relations

(we measure p(z), not

p(r))

= can probe cosmology




Recent results: CFHTLS

2xl0-4 T T T T T T T T T T
1.5x10-4 —E (c)
> 10 s
D : =
o 5x10°% | ‘l.
kil - . *ess
§] _————§—§——-§——l}—ﬁ—ﬁ-ﬂ—rﬂ-¢——ﬁ——ﬂ—ﬂ-—99
_EKID-5:§|||| I Ll I I B |
1 10
flarcmin |

22 sq deg; median z=0.8. o high compared with WMAP |

Hoekstra et al 2005; see also Semboloni et al 2005

But: original estimate of p(z) was from Hubble
Deep Field galaxies — and HDF is very small and
subject to large sample variance
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‘ Challenges I: photometric redshifts

= Spectroscopy is too slow.

= Can estimate redshifts to within 0.02-0.1, depending on number and
wavelength of bands, and type of galaxy.

" COMBO-17

For accurate Dark Energy studies,
the photo-z distribution has to be
calibrated very accurately — with
systematic error in the median z of
a few times 103 or better. This
needs ~10° spectroscopic
redshifts (WFMOS?)

5z/(14z)

Wolf et al
2004

| ||| L |||I|'|4;|'|"

1 L 1
18 20 22 24
Raper (mag)



Reanalysis of recent data

100 square degree survey

. . Qm 0.59
(Benjamin et al 2007). Better p(z), o5 = 0.84 + 0.07 (_)
from CFHTLS photozs 0.24

1.2

it
08l

06

normalised n(z)

0al |/

02
/

0

0 05 1 1.5 2 25 3 35 4
4

Removes serious tension between
lensing results and WMAP.

Reason: poor redshift distributions used T
previously




Density fluctuations
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‘ 3D lensing

= With photo-zs, much more is possible:

o 3D gravitational potential and matter density
reconstruction

o Better cosmological parameter estimation
o Better control of systematics




3D matter density reconstruction

Taylor 2001

Can invert lensing potential:
. 2 [ (1 1 -
¢(T) — —C2 A d’r (—T/ — —> (I)(T’)

o) = S o |12 20t

=

to

and hence to the mass overdensity:

- 202, {2 |20




3D reconstruction: COSMOS field

Massey et al 2007 ey 07 v . THEINTERUATIORMAL WESKY AR O SN

MEUROBIOLOGY
Robots that think
they're insects
PANDEMIC FLU

Why the 1918 outbreak
was so deadly

MOLECULAR MAGNETS
An attractive proposition

THE UNS;EEN
UNIVERSE

Darkmatter maps reveal
cosmicscaffolding

ien AERR AMRB W96

= s -
G g hasansion \derees |IHH|||||‘|| ||”>

Beware! Mass-sheet degeneracy in
3D; poor resolution in z (200 Mpc)
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3D Mass Reconstruction — A901

20

= Potential Field: _ '

20

= Galaxy density:
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Cosmology and Dark Energy

= Measurable Effects of Dark Energy:
a Distance-redshift relation

Y
7“—/0 dzH(z’)

where the Hubble parameter is given by

H?(a) = Hj [Qma_?’ + Qpa? + Qg  exp (3/ — [1 4+ w(a’)]
1
o Growth rate of perturbations

Assuming DE is smooth,

O+ 2H — AnGpmd =0




Dark energy from clusters: the shear-
ratio test

Recall that for a circular aperture,

(Ye) = R = (K),

and that
o > . 47TGDLDL52
A Zcrit B CQDS
" ArGa(z1) Sk(r1)a(zs) Sk(rs — 1)
— Tal\ 2 )op\TL)al2s )op\Ts — Ty,
— Y — ) .
) [ < >] c2a(zs)Sk(rs)

All the cluster physics is in the term in square brackets.
If we take ratios of average tangential shears, the cluster distribution drops out,
leaving

(ve)1 Sk(r2)Sk(ri —rr)

(ve)2 Sk(r1)Sk(re —rr)

for two source shells 1 and 2.



3D Statistical Analysis

With 3D source positions, why project at all?
Treat survey as a discretely-sampled, very noisy, 3D field

+7 —




‘ Steps to 3D: lensing 1n slices
(Tomography)

Dividing the source distribution
Improves parameter estimation
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Need to oo beyond linear theory

= Need to go beyond linear theory to get good
signal-to-noise in weak lensing

™

"
x

Linear Nonlinear




Nonlinear Power Spectrum

Nonlinear P(k) is quite accurately
known, from N-body simulations

Baryons? Affect high k
k> 10, or 2?7 Debate 2/

Smith et al 2003



Where does signal come from?

Most signal for w=p/pc? from

» Best to target z~1 for measuring w
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COMBO 17 — Dark Energy results: 3D

shear only

First 3D shear power T T T

spectrum analysis NI B

Two fields (0.5 sqdeg) 2’|

Smaller error bars than ~ Z 7} 1

2D (from galaxies with "

photozs) T R
- —2.5 -2 -1.5 -1 -0.5 0

Figure 2. The one-parameter maximum likelihood constraint on
w from the CDFS and 511 fields using the 3D cosmic shear anal-
wvsls. The dashed line shows the most likely value and the dot-
dashed show the one-parameter 1-o constraints.

Kitching, AFH et al 2007



' COMBO-17 Dark Energy results:
geometric test, and both together

i=] T T T
[ o

=

In(L)-Ln(L, )
-1 -0

—1.5

-2

1 . 1 . 1
-2 0 2
w

Figure 3. The dark energy geometric shear-ratio analysis ap-
plied to the supercluster Abell AO01/2. The dashed line marks
the maximum likelihood value, the dot-dashed lines show the one-
parameter 1-o limits. Note that the x-axis scale has been extended
relative to Figures 2 and 3 to encompass the confidence limits of
this analysis.

* Note: Conditional error

only

 From 0.75 square

degrees only

In(L)-In(T, )

—0.5
T

-1

w=-1.1+/-0.6

Not a competitive error, but proof of concept
for future large 3D surveys

Kitching, AFH et al 2007




Challenges and prospects for weak
lensing




Challenges II: Image quality

Shear is ~1%

Telescope optics & atmosphere may distort images to ~10%
Use stars to correct for the Point Spread Function (PSF) distortions
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‘ Correcting for telescope distortions

= Can be even worse...

w

ity

W

{ 4
e, e
:::'-._::___-'_'-':‘:.-'-"

Weak lensing has been done
successfully with this.

Select stars to correct the PSF




‘ Relating ellipticity to shear: KSB method

= Measure moments of the light distribution:

Ej_/d"zo(:?@f

Q:j — ‘41}?(931?1 f;ljm

KSB:

&

Seitz & Schneider:

= (Zum9m),
P\ Qu+Qn )]

!

2Q12

Q11+ Q22

e =

Q11 — Qa2 + 211

Q11+ Qoo + 2(Q11Q22 —

2.)1/2

!

[ —

e + 2'}’4‘928;5*

1+ |g|* + 2Re(ge’*)

E)E; p—

€~ Y | (Cleaner
1 — g*e transfor
mation)




Shapelets

Alternative shape measurement

Refregier, Massey, Bacon

T

Shear moves power from one
shapelet to another, diagonally by 2




‘ Systematics control:

. _ftrue __ _truey 2 _ ftrue
Yi—=71 =gy ) +myr T+

= Need to measure this to a systematic
uncertainty of ~0.3% (of 1%)

= Currently ~1% appears achievable (STEP
programme: Heymans et al; Massey et al)

= New model-fitting methods (lensfit) are
hitting target
= Better PSFs help
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Challenges III: Physical systematics

Ellipticity of galaxy S —_——
= e(source) + v R e
e, ~0.3;vy~0.01 B
Estimate y by averaging B
over many galaxies '
e~ ety

Hence | (ee*) = (yy*)

Provided galaxies are not intrinsically aligned <e.e ,*>=0



‘ Astrophysical complications

e Lensing analysis
assumes orientations of
source galaxies are
uncorrelated

= Intrinsic alignments

Weak lensinge = e +y

(ee”) = (" )* (Yy™)




Intrinsic alignments

(ee”) = (e*)* (vy™)

e.e*.) Theory: Tidal torques

< S S> Y d SOLUTION:
Downweight/discard pairs with

’* e similar photometric redshifts
e (Heymans & Heavens 2002; King & Schneider
- B 2002a,b)
O REMOVES EFFECT

~COMPLETELY

Heavens, Refregier & Heymans 2000, Croft &
Metzler 2000, Crittenden et al 2001 etc

— Brown et al

b o] 2000
PN T i
3 . m::lesi.i:”
“ @ 7| . Heymans
T T il s
g P T [——— OO0 T




Shear-intrinsic alignments
(e€%) = (L% )+ (Yy™) + 2(ev®)

Tidal field contributes to weak shear (of background)

Tidal field could also orient galaxies (locally) (Hirata and Seljak 2004)

Galaxy-intrinsic shear comelation function

T T
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1 11
SDSS: Mandelbaum et al 2005 Theory: Heymans, AFH et al 2006

Expect 5-10% contamination



Removing shear-intrinsic ellipticity
contamination

Solution not as easy as intrinsic alignments
0 massive galaxies largely responsible
o B-mode signature

o Signal has different redshift dependence from
weak IenSing (Hirata & Seljak 2004, King et al 2006, Heymans et al 2006)



Removal of intrinsic-shear
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Just requires alignment of
galaxies w.r.t. tidal field to be
independent of redshift

Model it, or ‘null’ it (at expense of
worse noise; Joachimi &
| Schneider 2008)

Contamination signal expected to be

proportional to
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Pan-STARRS 1

1.8 m telescope on Maui, Hawaii

7 square degree 1.4 Gpixel camera

grizy filters |

31T steradian survey to median z ~ 0.6; K

deeper 70 sq deg MDS

= Very good image quality: ~2% PSF
distortions

= Due to start operating in early 2009

= US/UK/Germany




‘ Pan-STARRS 1 camera and tiling

Pan-STARRS Focd Surface

Focal Length 2.0 m

& 446 805 Scale 228 am/arcsec & 41888
gzz° e 830°
e TR
- [~ -\.

-3 f-!-DS

LR

Ar/%

-)-J 0.8 Ll— ea— e 50,2 Mote 2

/

Other large-area surveys: CFHTLS (finished), DES, HSC, LSST/PS4,
EUCLID, SNAP




Forecasting errors: the Fisher Matrix

D = data
The Fisher Matrix is: U = mean of data

C = covariance matrix of
data

1

Fij = (L.ij) = STr[CTIC,CTIC; 4+ C M),

tj

where we have defined the matrix M;; = (D,;;) =
/Jm;/%j +u,; u,t (Tegmark, Taylor, Heavens 1997).

Note — NO DATA!

Can analyse experimental design Q§




Conditional and Marginal Errors

The conditional error on 6, is (at least) 1
This assumes all other parameters \/F—
are known v

The marginal error on 6, is (at least) 1
This assumes all other parameters (F )zz
are also estimated from the data

The conditional error is almost never relevant and should not be

quoted. The marginal error is no smaller than the conditional error.
Obey this rule with real data too!



'Full 3D cosmic shear on the full sky

= Shear is referred to a coordinate system. How
do we correlate shears on a curved sky?

On small scales,

N = %(vl —iV2)(V1 —iV2)o

gives v with respect to a locally cartesian coordinate system.

Natural to refer shear components to
spherical coordinate system.

Generalise to (effectively) covariant
derivative on a sphere at fixed r:

1 ‘edth’ operator;
y(r)=—00¢(r) Newman & Penrose |
2 1966




‘ 3D shear analysis: Natural expansions

= Natural to expand ¢ in spherical harmonics and spherical Bessel
functions (flat space)

r,)I" =/ ﬂ'.lllz Z r"f”r Ji'f ’t‘j }ffii{g }

=0 m==f

= Now

0 Yo = [({—8)(l+ 5+ 1)]2 e41Yem

= S0, expand shear in spin-weight 2 spherical harmonics

‘o0 00 '3
)= [ dk Y Y s (R)iekr) Ve (0.0)

{=0m=—/¢




Shear to density field

Can then relate coefficients of y directly to
coefficients of dark matter fluctuations:

Je(kr)Y,™ (0, ¢) is an eigenfunction of Laplace’s equation,
so coefficients of § and ® are related very simply by —k2.

(Modifications if not flat)



Shear 3D power spectrum:

il.6
Expand the shear field in radial waves j,(kr) and transverse waves (¢ )e

y(k,)ocHsQ, [ dzdz, p(z, | 2)n(2) j, (k)

r(z) .
[ dr’(l—%j(nz') [k j, () o, )
0 A

"

Include

Integral nature Transform of
J photo-z

of lensing zandr arrors density field

Small-angle surveys (Heavens et al MNRAS 2006)
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o 3
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o

Pan-STARRS 1 plus Planck

e Combined
o Lensing
o CME

Parametrisation in terms of scale
factor a:
w(a) = w, + (1-a) w,

Note: this may not be a good
parametrisation for DE models.

Studies show only a few components of
w(a) can be measured.

(Heavens et al MNRAS 2007)




Combination with other experiments

CMB: Planck

BAO: WFMOS 2000 sq deg to z=1

SNe: 2000 to z=1.5




Combining 3D lensing, CMB, BAO, SNe

(10000 sq deg lensing survey: one third of PS1)

Flat

0 =2

Wa

3.5% accuracy on w at z=0 a
1% on w(z) at z~0.4




Future: FEuclid, formerly DUNE

Other gravity theories will yield an expansion rate H(a)
Any H(a) can be mimicked by choosing Dark Energy with a certain
w(a)

How do we tell whether GR+DE is preferred over modified gravity?
...via weak lensing and the growth rate

Needs a very extensive space-based survey: Euclid would be
excellent

Potential: Error on w = 0.01, Error on w,=0.06




Moditied Gravity or Dark Energy?

We can always find an ‘equation of state’ (strictly just p/p) to mimic this in
GR:

Friedmann: " 8r (o
TGp
H? =
+ a? 3
and y
o (pqa3) = —pqa2 = —w(a)pqa2
Solve for any given H(a). Exercise:
1 d 1

In

~3dlna Q@)
which depends on H(a) via the critical density
3H?(a)

8

w(a) =

Perit (CL) —

Supernovae cannot unambiguously distinguish GR from modified
gravity [via r=c/dz/H(z)]



Reproducing the expansion history with
ettective w(a)

= Flat DGP expansion history is very close to GR + Dark Energy with
wo = —0.78 w, = 0.32

where
w(a) = wy + we(l — a)

1

H? —H/r. = (87/3)p,

o
©

=
=

re = Hy ' /(1 —9,,)

o
-1

Growth gla)= d/a

e
@

o
o




Minimal Moditied Gravity

However, gravity theory affects the growth rate, so weak lensing can
distinguish GR from modified gravity

A convenient parametrisation for the growth rate is (Linder 2005)

\

) (Y da’

O —expd [ i, a) —1]Y

e [ D@y -1
v~ 0.55 (GR)

v=0.68 (flat DGP)



Bayesian Evidence

Bayesian method to answer such questions

Let models be M,\M’ and data be D. Let model parameters be 6 (or
0)

What we want is

Bayes’ theorem: p(M|D)=p(D|M)p(M)/p(D)

If we take a non-commital prior on models, p(M) = constant,
p(M|D) a p(DIM) a [ d6 p(D|6,M) p(8]M)

= ‘EVIDENCE’ (here with flat priors)
B = ratio of evidences

EVIDENCE = Likelihood integrated over parameter space



Laplace approximation

Like Fisher, but for evidences
Assume likelihood is a

multivariate gaussian
Integrate analytically _ IQ
Include biases in parameter b s

estimates
00n, = —(F'™")apGacdtc <~
G is part of F
p
o Vdet F | ]
B = (Qﬁ)_i( e k CXP (;_OQCEFQSOQIB) H Aeﬂ,’—i—(}
Vdet F” 2

q=1

Heavens, Kitching, Verde, astroph/0703191 Prior ranges for parameters



Prospects

Compare GR with Dark Energy with a modified gravity model with the
same expansion history.

We take flat DGP braneworld model as example.

Pan-STARRS 1 + Planck+BAO+SNe: InB|=3.8 (DGP/GR)
Euclid + Planck + BAO + SNe: InB|=63 (DGP/GR)
Euclid should be able to find evidence for grawty theory beyond GR,
if it is there. o F T ' I ]

=3 | I Euclid

o : , 1 | Pan-STARRS

S 7 _.- -7 | DES

0 > D.IE Ell-l {}IE :
DGP/ &y




Conclusions
b Y

Post-WMAP/2dF/SDSS, Dark Energy and Dark Matter
are key scientific goals of cosmology

Lensing is powerful because it detects mass directly, and
the connection with fundamental theory is very direct
(simple physics)

Mass reconstruction puts limits on Dark Matter
interactions, and baryon fraction

Lensing in 3D is very powerful for Dark Energy:
accuracies of ~2% on w potentially possible with Pan-
STARRS 1

Main challenges - systematics:

o Accurate shape measurement

o Unbiased photo-zs

o Removal of intrinsic-shear contamination

Can test GR vs modified gravity models from extra
dimensions, by probing geometry and growth rate. Euclid
should be able to do this.
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