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Composition of protoplanetary disks

● Primordial composition of disks:

●mainly H2 and He gas
●volatile elements (~0.9wt%; C, N, O)

●refractory elements (~0.4wt%)
(“rock-forming elements’’; Fe, Mg, Si, etc.)

Asplund+09

(c) NASA

● Planets selectively retain metals
　➔ The disk composition is changed
● Disk gas eventually accretes onto stars

Does planet formation alter 
stellar surface composition?

Icy objects

Rocky objects



Sun Solar twins

≠
Stars with similar metallicity, 
mass, age, and temp. to the Sun

Solar composition anomaly

Solar photospheric abundances are 
different from solar twins’ ones

Melendez+09



Solar composition anomaly

e.g., Melendez+09, Ramirez+09

• the Sun has 
refractory-poor 
abundances 
compared to most 
solar twins

• difference: ~10%

Solar abundances  
normalized by the average of solar twins’ ones
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8 planets in the solar system

➔ Chambers10 claimed
4M⊕ rock retention 
can compensate for this



One caveat
stellar structure is important in this scenario

Fully convective stars 
➔ Alternation is limited

refractory-poor gas

Stars w/ a large radiative core 
 ➔ Strong alteration

refractory-poor gas

radiative 
core

convective 
zone

because accreting materials are distributed only in the surface conv. zone

even if planets are formed



Purpose of this study

• Chambers (2010) concluded that formation of 4M⊕ rocks induces 
the compositional difference between the Sun and solar-twins 
with assuming the internal structure of main-sequence stars

• cf. the present-day Sun has a radiative structure (conv. zone=0.025M⊙)

• However, planets are formed and disks exist around pre-MS stars, 
which have in general much thicker convective zones

We revisit this scenario 
with up-to-date models of pre-MS evolutions
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Basic equations and settings

1. Continuity 

2. Momentum 

3. Energy 

4. Temp. gradient 

5. Composition
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■ Stellar structure equations (1D) solved with a public code 

Mr: mass coordinate
Paxton+11,13,15

(w/ MLT)

■ Settings: Accretion:       0.01M⊙ ➔ 1M⊙ in 10Myr 
Composition:   Z=0.02, Deuterium content = 28 ppm

entropy injection 
by accretion

Asplund+09



Method: Heat injection by accretion

εadd = ξ Lacc/M★
• Lacc: the gravitational energy of accreting materials (=GM★Ṁ/R★) 

• A fraction (ξ) of Lacc is injected into the star 
• ξLacc is uniformly redistributed in the entire star ➔ M★–1

@l

@Mr
= "nuc � T

@s

@t
+ "addEnergy Eq.

entropy injection 
by accretion

We change ξ from 0 to 0.5

Disk

Radiative cooling

Proto- 
star



Internal structure evolutions
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(see also Baraffe+Chabrier10)

• With ξ=0, it shrinks more 
rapidly

● In the classical evolution case 
(w/o accretion), the surface 
conv. zone shrinks at ~30Myr
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Internal structure evolutions
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• With ξ=0, it shrinks more 
rapidly

● In the classical evolution case 
(w/o accretion), the surface 
conv. zone shrinks at ~30Myr
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Underlying physics 
Stars have the negative specific heat (cf. Virial theorem)

➔ Lower energy injection (i.e., lower ξ) = higher temp.
➔ Lower opacity (cf. Kramers law, κ∝T–3.5)

➔ Radiative cores develop more easily



conv. zone

Internal structure evolutions

(see also Baraffe+Chabrier10)

• With ξ=0, it shrinks more 
rapidly

● In the classical evolution case 
(w/o accretion), the surface 
conv. zone shrinks at ~30Myr
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• Internal structure evolutions of young stars are sensitive to 
the accretion heat (ξ)

• Even with ξ=0, the conv. zone is thicker (0.1M⊙) 　　　　　
than that of MS stars (0.025M⊙) before ~10Myr
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Required rock mass for the comp. anomaly

M
rock

= 4M�
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MCZ,eff: time-averaged 
convective-zone mass 

Required rock mass 
with pre-MS structures
• ξ=0:    ~30M⊕ 

• ξ=0.1: ~100M⊕ 

• ξ=0.5: ~120M⊕

• Chambers (2010): With a 0.025M⊙ convective zone, 　　　　　　　
4M⊕ rock retention can compensate for the compositional differences 
between the Sun and solar-twins

The rocky objects in the solar system 
are at most ~4M⊕

➔ Insufficient for the requirements…



* not to scale

 2.0M⊕{ Primordial: 
~2.0M⊕

O’Brien+07

Outer planets  
beyond snow line  
retain much more solids 
(~150M⊕ in total)

In total, pure rocks are 
at most 4M⊕

including cores of giant planets 
(Jupiter, …, Neptune), TNOs, ejected 
objects from the early solar system



Required rock mass for the comp. anomaly

Required rock mass
with pre-MS structures

to create the comp. anomaly
• ξ=0:    ~30M⊕ 

• ξ=0.1: ~100M⊕ 

• ξ=0.5: ~120M⊕

If fice/rock = 1.1, 0.2, 0.1 in the solar-system planets 

     for ξ =    0, 0.1, 0.5

Total solid mass in the solar-system planets
~ 150M⊕

The rest: 
solar photospheric composition
ice-to-rock ratio fice/rock = 2.0

Lodders03

We obtained the constraints:
The solar composition anomaly can be originated 
from planet formation    



Summary

rocks ices

Retention of  
150M⊕ condensates  

19% ices + 81% rocks

refractory-poor 
gas accretion  

(ξ=0.1, fice/rock=0.23)

We revisited the solar compositional anomaly with up-to-date 
pre-MS evolution models and found

(1) Stellar structure evolutions are sensitive to accretion heat (ξ)

(2) Rocky planet formation alone cannot explain the anomaly

(3) If fice/rock ~ 0.1–1.1 (for ξ=0–0.5) in the solar-system planets, 　
the anomaly can be originated from the planet formation

Refractory-poor 
composition

proto-Sun


