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Composition of protoplanetary disks

® Primordial composition of disks: Y PISCtS

e mainly H; and He gas
evolatile elements (~0.9wt%; C, N, O)
® elements (~0.4wt%)

® Planets selectively retain metals
=> The disk composition is changed

® Disk gas eventually accretes onto stars

Does planet formation alter
stellar surface composition?



Solar composition anomaly

Sun-";. RS S Solar twins

~ Stars with similar metallicity,
~mass, age, and temp. to the Sun

Solar photospherlc abundances are
dlfferent from solar twms ones

Melendez+09 |



Solar composmon anomaly

Solar abundances .
normallzed by the average of solar twms ones

abundant volatile refractory .
L in the Sun o(volatiles) = 0.011 dex | fag the Sun haS
o(refractories) = 0.007 dex
0o | 1 ~ refractory-poor
| | “abundances
- compared to most -
0.04 “solar twins

o difference: ~10% |
- e.g., Melendez+09,.Ramirez+09__.
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One caveat

& stellar structure is important in this scenario

because accreting materials are distributed only in the surface conv.zone

convective radiative

Zone core
refractory-poor gas refractory-poor gas
Fully convective stars Stars w/ a large radiative core
-> Alternation is limited -> Strong alteration

even if planets are formed



Purpose of this study

* Chambers (2010) concluded that formation of 4Me rocks induces

the compositional difference between the Sun and solar-twins
with assuming the internal structure of main-sequence stars

* cf. the present-day Sun has a radiative structure (conv.zone=0.025Mo)

* However, planets are formed and disks exist around pre-MS stars,
which have in general much thicker convective zones

We revisit this scenario
with up-to-date models of pre-MS evolutions



Basic equations and settings

= Stellar structure equations (1D) solved with a public code MESA

or
. Continuity oM.
2. Momentum 88]\]; -
3. Energy 8({]9\147,.
4. Temp. gradient ;\Z
5. Composition (%)

1

M;: mass coordinate

Paxton+11,13,15

by accretion

4dmr?p
GMT . o .
- (hydrostatic equilibrium)
e 79 e %entropy m]ectlon
nuc a ad
GM,T
= —4WT4PV (w/ MLT)

() e (%)

nuclear reaction diffusion

m Settings:

Accretion:

0.01Mo = 1Mo in 10Myr

Composition: Z=0.02, Deuterium content = 28 ppm

Asplund+09



Method: Heat injection by accretion

Energy Eq.

ol

oM. Thue T Sy

0s
T'— + €.44

Eadd = € Lacc/ My |eotropyinjection

by accretion

Radiative cooling

* Lacc: the gravitational energy of accreting materials (=GMxM/Rx)

A fraction (&) of Lacc is injected into the star
¢ “Lacc 1s uniformly redistributed in the entire star = Mx—!

We change ¢ from 0 to 0.5



Internal structure evolutions

1

0 0.9 | e In the classical evolution case
O 0.8 | conv.zone (w/o accretion), the surface
£ 0.7 | -
== _ conv. zone shrinks at ~30Myr
- Q 06 _
2 c 05 ¢
089 04! radiative zone
) : 03 | | * With ¢=0, it shrinks more
K § 0.2 | | rapidly
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Internal structure evolutions

Base of surface

onv.zone [My]
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1 o ]n the classical evolution case

(w/o accretion), the surface
conv. zone shrinks at ~30Myr

* With &=0, it shrinks more
rapid|

er10)



Internal structure evolutions

1 —

— 0.9 M~ | ®1n the classical evolution case
gg 8? fony. zone ¢=0.1 {  (w/o accretion), the surface
“:C; ';' 06 &=0.5 | conv.zone shrinks at ~30Myr
2 c 05}

SR 04| diati -‘
°2 03 radiative zone€ |, \with &=0, it shrinks more
<5 02| rapidly

“ O-g) A (see also Baraffe+Chabrier10)
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® |nternal structure evolutions of young stars are sensitive to
the accretion heat (¢)

® Even with =0, the conv. zone is thicker (0.1 Mo)
than that of MS stars (0.025M¢) before ~10Myr



Required rock mass for the comp. anomaly

e Chambers (2010):With a 0.025Me convective zone,
4Me rock retention can compensate for the compositional differences

between the Sun and solar-twins

Required rock mass
with pre-MS structures

o=0: ~30Meo
e=0.1: ~100Ma
e=0.5: ~120Me

The rocky objects in the solar system
are at most ~4Me

-> Insufficient for the requirements...
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Mczef: time-averaged
convective-zone mass



- *not to scale

-0 Br:en+07. |

| Prlmordlal ‘s
- ~20Ms

“In total, puil?e_ ro‘ck’s“ are
at most 4M@

—_—

_Outer planets
| ‘_"beyond snow Ime .
. w SR S ~ retain much more sollds;
mcludmg cores of glant planets e (~| SOM@ in total) |

~ (Jupiter, ..., Neptune), TNOs, ejected
e 'ObJECtS from t'h'e early solar system .



Required rock mass for the comp. anomaly

g Total solid mass in the solar-system planets A
~150Me
Required rock mass The rest:
with pre-MS structures solar photospheric composition
to create the comp. anomaly ice-to-rock ratio fice/rock = 2.0
*&=0: ~30Meo Lodders03
e =0.1: ~100Mo
¢ =0.5: ~120Ma

\_ _J

N

We obtained the constraints:
The solar composition anomaly can be originated
from planet formation

|fﬁce/rock= 11, 02, 0.1 in the solar-system planets
for¢= 0,0.1, 0.5



Summary

‘We. reV|S|ted the solar composmonal anomaly W|th up-to date |
- pre-MS evolutlon models and found |

s (I) Stellar structure evolutlons are senS|t|ve to accretlon heat (f)

) Rocky planet formatlon alone cannot explaln the anomaly

- &) lfflce/mck ~ 0 1-1.1 (for 5—0 ) 5) in the solar—system planets
~ the anomaly can be originated from the planet formation

rocks . Jees

B _:proto-Sunjl

Retention of
ISOM@ condensates

19% ices + 81% rocks |
(6—0 1, ficerrock=0. 23)

Refactry-poor -

composition




