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The main challenge for planetesimal formation: radial drift

(Birnstiel, Fang, & Johansen, 2016) (Okuzumi et al., 2012)

I Pebbles grow to a characteristic size where the growth time-scale equals
the radial drift time-scale (Birnstiel et al., 2012; Lambrechts & Johansen, 2014)

I Growth time-scale tgr = R/Ṙ, drift time-scale tdr = r/ṙ

I Yields cm-sized pebbles in inner disc and mm-sized pebbles in outer disc,
in good agreement with observations

I Bouncing and fragmentation would result in even smaller pebble sizes

I Planetesimals can only form by direct sticking in pressure bumps (Drazkowska

et al., 2013) or if pebbles are extremely fluffy (Okuzumi et al., 2012)
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Streaming instability
I The streaming instability arises in the streaming motion of particles

through the gas (Youdin & Goodman, 2005)

I Metallicity Z = Σp/Σg determines filament formation

I Filaments reach high densities well above the Roche density
(Johansen et al., 2007; 2009; Bai & Stone, 2010; Johansen et al., 2015)

⇒ Collapse to form planetesimals
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Gravitational collapse
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I Initial Mass Function of planetesimals at up to 5123 resolution

I Differential mass distribution is well fitted by a power law with
dN/dM ∝ M−1.6

(Johansen et al., 2015)

I Results with Pencil Code and Athena are very similar (Simon et al., 2016)

I Most of the mass resides in the largest planetesimals

I Characteristic planetesimal size of ∼100 km

I Small planetesimals dominate in number
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Metallicity threshold

(Carrera et al., 2015)

I The streaming instability makes filaments above threshold metallicity

I Carrera, Johansen, & Davies (2015) mapped the metallicity threshold as
a function of St in 2-D simulations

I Lowest around a sweetspot at St ∼ 0.1 (1 cm at 10 AU)

I The threshold also depends on the radial pressure support (Bai & Stone, 2010)
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Forming planetesimals by photoevaporation

(Carrera, Gorti, Johansen, & Davies, 2017)

I Photoevaporation models including X-rays, EUV and FUV show increase
in dust-to-gas ratio (Gorti et al., 2015)

I Typically 50–100 ME of pebbles remain after gas disc gone

I Pebbles turn into planetesimals when including prescription for streaming
instability (Carrera et al., 2017)

⇒ Efficient delivery of planetesimals to debris disc phase

? How do we form the cores of gas giants and super-Earths early?
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Pebble accretion
(Johansen & Lambrechts, 2017, AREPS)
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(Lambrechts & Johansen, 2012)

I Pebbles can be accreted from the entire Hill radius of a protoplanet

I Pebble accretion speeds up core formation significantly relative to
planetesimal accretion
(Johansen & Lacerda, 2010; Ormel & Klahr, 2010; Lambrechts & Johansen, 2012)

⇒ Cores can form well within the life-time of the protoplanetary gas disc,
even at large orbital distances
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Planetary growth tracks

I Rapid pebble accretion can explain how planets remain in the
protoplanetary disc despite planetary migration
(Bitsch, Lambrechts, & Johansen, 2015; Bitsch & Johansen, 2016)

I Initial growth driven by accretion of planetesimals and pebbles, but
pebble accretion dominant beyond ∼0.01ME

I Cores emerging within 10 AU migrate to become hot Jupiters

I Giant planets ending in cold orbits must start beyond 15 AU in the disc
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Forming the giant planets of the Solar System
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I Giant planets undergo substantial migration

I All four giant planets of the Solar System are consistent with formation
near the CO ice line

I The water ice line is efficient at creating super-Earths (Ormel et al., 2017)
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Achieving the conditions for the streaming instability early
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I Lots of ongoing work on early planetesimal formation at ice lines

I Pebbles may grow large by condensation outside ice lines (Ros & Johansen, 2013)

I Dust pile up inside ice line to trigger streaming instability (Ida & Guillot, 2016)

I Pile up of ice outside ice line (Schoonenberg & Ormel, 2017)

? Do planetesimals form in an early and a late generation?
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Nucleation versus condensation
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I Heterogeneous nucleation describes the formation of first ice layer on
silicate substrate

I Ice clusters are unstable due to contact angle θ > 0

I Requires substantial super-saturation to nucleate ice (Iraci et al., 2010)

I Experimental data: Scrit = −0.0626T + 13

⇒ Silicate grains can not nucleate ice at the ice line
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The effect of nucleation on icy pebble growth
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I The saturation ratio is near one outside ice line

⇒ Silicate grains can not nucleate ice anywhere in the disc

I Penetrating pebbles grow to centimeter sizes by condensation

I CO2 requires S > 1 to nucleate on Si and H2O substrates (Glandorf et al., 2002)

⇒ Could explain dark rings of protoplanetary discs (Zhang et al., 2015)
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Summary

I The streaming instability produces an IMF that is very top-heavy

I Photoevaporation of gas triggers the formation of planetesimals

I Accretion of the pebbles is very rapid and can explain how gas
giants can form before gas dissipation

I Rapid pebble accretion leads to the formation a wide range of
planetary classes despite planetary migration

I Ice lines may act as sites for early pebble and planetary growth, thus
defining the final architecture of the planetary system


