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The main challenge
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for planetesimal formation: radial drift
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Pebbles grow to a characteristic size where the growth time-scale equals
the radial drift time-scale (Birnstiel et al., 2012; Lambrechts & Johansen, 2014)

Growth time-scale ty, = R/R, drift time-scale tq, = r/F

Yields cm-sized pebbles in inner disc and mm-sized pebbles in outer disc,
in good agreement with observations

Bouncing and fragmentation would result in even smaller pebble sizes

Planetesimals can only form by direct sticking in pressure bumps (Drazkowska
et al, 2013) or if pebbles are extremely fluffy (Okuzumi et ai, 2012)



Streaming instability
» The streaming instability arises in the streaming motion of particles
through the gas (Youdin & Goodman, 2005)
> Metallicity Z = X,/ X, determines filament formation

> Filaments reach high densities well above the Roche density
(Johansen et al., 2007; 2009; Bai & Stone, 2010; Johansen et al., 2015)

= Collapse to form planetesimals
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Gravitational collapse
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Initial Mass Function of planetesimals at up to 512% resolution
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Differential mass distribution is well fitted by a power law with
dN/dM X M71'6 (Johansen et al., 2015)

Results with Pencil Code and Athena are very similar (Simon et al., 2016)
Most of the mass resides in the largest planetesimals

Characteristic planetesimal size of ~100 km
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Small planetesimals dominate in number



Metallicity threshold
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(Carrera et al., 2015)

» The streaming instability makes filaments above threshold metallicity

» Carrera, Johansen, & Davies (2015) mapped the metallicity threshold as

a function of St in 2-D simulations
> Lowest around a sweetspot at St ~ 0.1 (1 cm at 10 AU)

» The threshold also depends on the radial pressure support (Bai & Stone, 2010)



Forming planetesimals by photoevaporation
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(Carrera, Gorti, Johansen, & Davies, 2017)

> Photoevaporation models including X-rays, EUV and FUV show increase
in dust-to-gas ratio (Gorti et al., 2015)

Typically 50-100 Mg of pebbles remain after gas disc gone

Pebbles turn into planetesimals when including prescription for streaming
instability (carrera et al., 2017)

= Efficient delivery of planetesimals to debris disc phase

? How do we form the cores of gas giants and super-Earths early?



Pebble accretion

(Johansen & Lambrechts, 2017, AREPS)
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(Lambrechts & Johansen, 2012)

Pebbles can be accreted from the entire Hill radius of a protoplanet

Pebble accretion speeds up core formation significantly relative to

planetesimal accretion
(Johansen & Lacerda, 2010; Ormel & Klahr, 2010; Lambrechts & Johansen, 2012)

= Cores can form well within the life-time of the protoplanetary gas disc,
even at large orbital distances



Planetary growth tracks
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> Rapid pebble accretion can explain how planets remain in the

Pebble accretion

(Hill regime)

protoplanetary disc despite planetary migration
(Bitsch, Lambrechts, & Johansen, 2015; Bitsch & Johansen, 2016)

> Initial growth driven by accretion of planetesimals and pebbles, but

pebble accretion dominant beyond ~0.01Mg

» Cores emerging within 10 AU migrate to become hot Jupiters
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> Giant planets ending in cold orbits must start beyond 15 AU in the disc



Forming the giant planets of the Solar System
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> Giant planets undergo substantial migration

> All four giant planets of the Solar System are consistent with formation
near the CO ice line

> The water ice line is efficient at creating super-Earths (Ormel et al., 2017)



Achieving the conditions for the streaming instability early
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Lots of ongoing work on early planetesimal formation at ice lines

Pebbles may grow large by condensation outside ice lines (Ros & Johansen, 2013)

>
>
» Dust pile up inside ice line to trigger streaming instability (/da & Guiliot, 2016)
> Pile up of ice outside ice line (Schoonenberg & Ormel, 2017)

?

Do planetesimals form in an early and a late generation?
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Nucleation versus condensation
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» Heterogeneous nucleation describes the formation of first ice layer on
silicate substrate

Ice clusters are unstable due to contact angle 6 > 0

Requires substantial super-saturation to nucleate ice (iraci et al., 2010)
Experimental data: Scrit = —0.0626 T + 13

Silicate grains can not nucleate ice at the ice line
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The effect of nucleation on icy pebble growth
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> The saturation ratio is near one outside ice line
= Silicate grains can not nucleate ice anywhere in the disc
» Penetrating pebbles grow to centimeter sizes by condensation
» CO; requires S > 1 to nucleate on Si and H,O substrates (Glandorf et al., 2002)
= Could explain dark rings of protoplanetary discs (zhang et al., 2015)



Summary

» The streaming instability produces an IMF that is very top-heavy
» Photoevaporation of gas triggers the formation of planetesimals

> Accretion of the pebbles is very rapid and can explain how gas
giants can form before gas dissipation

» Rapid pebble accretion leads to the formation a wide range of
planetary classes despite planetary migration

> Ice lines may act as sites for early pebble and planetary growth, thus
defining the final architecture of the planetary system



