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Testing gravity with
galaxy cluster

Tatsuya Narikawa Outline
(RESCEU,U-Tokyo) - Modified gravity

- Screening mechanism

» Cluster lensing

Based on - Summary
TN, Yamamoto, JCAP (2012)
TN, Kobayashi, Yamauchi, Saito, work in progress



Modified Gravity

* Motivation: Discovery of current cosmic acceleration
[Riess, Schmidt et al. ‘98, Perlmutter et al. ‘99]

—Breakdown of GR at large-scales / a >

» As an alternative to dark energy

- Modified gravity with extra fields ¢
Scalar-tensor gravity, f(R) gravity, DGP model|,

Galileon model, Decoupling-limit of Ghost-free massive
gravity, etc.

[Mukohyama-san’s talk]



Local Gravity Constraints
* In MG, new d.o.f. $ mediates fifth-force.

—deviation from GR on large-scales.
- However, local gravity constraints are strong:
— €.4. Vppn-1=(2.1£2.3)%10°5 by time-delay [Bertotti et al. ‘03]

- MG need to evade local gravity tests with
screening mechanisms!

[Cassini spacecraft]




Screening Mechanisms of ¢ in Local Region

* Kinetic type: Vainshtein mechanism [Vainshtein ‘72]

Large kinetic term<> Galileon-type

* Potential type: Chameleon mechanism, Symmetron
[Khoury & Weltman ‘o4, Hinterbichler & Khoury ‘10]
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Observational Test of Modified Gravity

* Whether the screening mechanism works
completely or not around high-density regions ?

* Gravitational lensing of galaxy clusters may
be useful to test modified gravity

» Key: lensing potential A®, = A(® + U)/2
TN, Yamamoto, ‘12]

» Large amount of data of cluster lensing will
be provided by Hyper Suprime-Camera (HSC)
[Takada-san’s talk]




Stacked Cluster Lensing Analysis
The average distortion profile [Ttoh-san’s talk]

* is less sensitive to individual substructures/asphericity
* helps to improve the S/N
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* may be also useful to test modified gravity



Galileon-type Modified Gravity

* Motivation: decoupling limit of DGP model
»Cint ~ X gb : higher-derivative term

where ¢ : scalar field, X = —%(%)2

enjoy Galileon shift symmetry: au¢ N aﬂ¢ + ¢,
— [« Cosmic acceleration

* ond order EOM
» Vainshtein mechanism |

[DLofDGPI Luty, Porrati & Rattazzi ‘03, Nicolis & Rattazzi '04



Vainshtein Mechanism in Simple Model

Lo = 30000 — 150606 + 56T
HGEOM 1 ‘ |
306+ 55 (00)° — (0,0,9)°) = 3

At r<<r,: Large kinetic term<>Weak coupling to matter

M AS 1/2
@' (1) ~ (ZMPI . ) K 0, PN <screened!

where Vainshtein radius: 7'y = (M/Mpl)A_l

|[Luty, Porrati & Rattazzi ‘03, Nicolis & Rattazzi ‘04]



The Most General Second-Order
Scalar-Tensor Theory [Horndesky '74]

_ 4. . assume matter do not
B /d x g[[, T ﬁm] directly couple to ¢

S

£ =K (6. X) ~Gs(0. )00
R + G4x X (field derivatives)
HGs (6, X)Gu V'V

1
- Gsx x (field derivatives)

where GiX = an/aX 4 arbitrary functions of @, X

1s equivalent to the generalized galileon
[Deffayet et al. ‘11, Kobayashi, Yamaguchi , Yokoyama ‘11]



Background solution
ds® = n,,dat dz”
® = ¢g = const, X =0
Inorder to admit this solution, we require that

K(¢070) — 07 K¢(¢070) =0

Spherical symmetric perturbations produced by a
nonrelativistic matter

ds® = —[1+ 28 (r)}dt* 4+ [1 — 2V (r)}é;;da’ da’
¢ = ¢o +(r)

All the coefficients are evaluated at the background.
We will ignore the mass term K.



Static-Spherically Symmetric Configurations

Metric EOM:
Mg, (r*v’)" Y €(7“290’)' B MPIQ[T(SO')Q]’ B 3Mp15[(90’)3]’ 1y
2 r2 PIS™ 92 A3 272 A6 672 47
Mpy (¢')?
Mg, (V' — @) — 2Mpi&yp’ — 3% - =0
HEOM
(r¢’)’ u [r(e")?) 22T — @)  Mp [re/ (U — @)
a2 = 2A3 2 + 2Mp1§ 2 +4 As @ 2 +
v [(¢')°]  6Mpy ,[(¢)?®)
2A6 72 A6 p 2 =0

where six dimensionless parameters:
& M, 1 a, v, Bare functions of Ky, G345, Gax, Gux, Gg e

(cf. Vainshtein mechanism under considering background
evolution [Kimura, Kobayashi, Yamamoto ‘12])



Quintic Scalar-Field Equation

We arrive at

Pz, A) = £A(r) + (g +362) & + [+ 6ag — 3BA(r)] &7

+ (v +2a* +48¢) 2° — 38%2° = 0

where we define

| 1 Ml(r




Scalar-Field Equation[cf. Shisa, Niz, Koyama, Tasinato ‘12]

1 1 M(r)
We solve YTAS Ty e AT = A8 B
P(z, A) == EA(r) + (g +362) @+ [+ 6ok — 3BA(r)] 2

+ (v + 20° + 48¢) 2° — 38°2° =
for the inner region (A>>1) and the outer region (A<<1).

We then derive the conditions under which the two solutions
are matched smoothly in an intermediate region.

X(r) A

Matching smoothly > r

r=ry




Outer Solution: Asymptotically Flat

- In the outer region (A<<z1), there is always a
decaying solution,

26 A(r)
1+ 6£7

L~ Tf =

which is obtained by neglecting the nonlinear
terms in P(x,A)=o0.

The other solutions do not correspond to an
asymptotically flat spacetime.



Inner Solution: Vainshtein

* Inthe inner region (A>>1), P=o reduces to
Pz, A) ~ €A — 3BAz* — 38%2° = 0
We have a solution (§3>0):

TR T4 1= ::\/i = const
30

(P(x-,A) does not depend on A.)

For this solution, we have Newtonian behavior:

U /r~® /rcA

This is therefore the Vainshtein solution.
For simplicity we focus on the case of &>0.



Matching of Two Solutions

In this case, P(x)=0 has
a single real root in
(x-,0) for any A>o.




Decoupling Limit of Massive Gravity
|[de Rham, Heisenberg ‘11]

Decoupling limit: M=o, m =0, A3=M_;m 2 =fixed.

The corresponds to

M? Mpy M
K =0=Gs, G4=TPI+MPI¢+ A3 THaX, Gy = —3—“5)(

One finds




The condition of smooth matching of the two solutions:

\/5+\ﬁ

a<00r—> 0.6

Explore the observationally
allowed region with cluster
lensing.

Likely region




Cluster Lensing

Mass map (shear) Surface mass density Zg(r

)

perp

M, . =1.5x10!M /h
cvir=’7.'7

sun

[Bartelmann’s talk] [Umetsu et al. ’11,
cf. Oguri et al. ‘12]



Gravitational Lensing in Massive Gravity

* Geodesic equation

» Surface mass density Xg(r ) <x(r . )
T dZACD)
2D
ESO(/O dZ /\ r:\/ri+Z2

where lensing potential in massive gravity:
A3 [(ax? +282° + 24) 1]

AP, =
* Mp1 27“2

Ps
Assume 6p(r) as NFW profile: ,0(7“) — (7“/7“ )(1 1 7“/7“ )2




Surface Mass Density in Massive Gravity

Preliminary il Parameters:{o,,/A;p,rd
Mu=1.5x10%(h7M,,,) (A=0.01/H,, p,, 1. fixed)

Co,=7.7

—— «=1, =0.36

—— a=-1, B=1

E Umetsu et al. (2011)

Origin of dip: x'(<=>¢")
Dip appears at r~r,:=(r.M/A3)*3

—allows us to put constraint



Summary

» Static-spherically symmetric solutions of
$EOM in the context of Horndeski’'s theory.

- We explore the possibility of testing modified
gravity exhibiting the Vainshtein mechanism
against observation of cluster lensing.

- Key effects on cluster lensing Z. is that
X'(<=>@") can substantially be large at the
transition from screened to unscreened regions.

—This allows us to put observational constraints
on modified gravity.



Thank you for your attention
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