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Dark radiation

Ne� = 3.68+0.80
�0.70 (2�)Helium abundance 

Izotov, Thuan , 1001.4440

WMAP+ACT+BAO Ne� = 4.56±0.75 (68%)

WMAP+SPT+BAO Ne� = 3.86±0.42 (68%)

Ne� = 4.08+0.71
�0.68 (95%)WMAP+ACT+SPT+BAO

Archidiacono, Calabrese, Melchiorri, 1109.2767
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Ne� = 3.04 in the standard model

Dunkley et al., 1009.0866

Keiser et al., 1105.3182
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Dark radiation

�Ne� � 1 Dark radiation ?

Dark radiation (X) should satisfy :

X interaction is negligibly small

X is relativistic at the CMB epoch

Many models are proposed so far...

What is unique signature of dark radiation ?

Ichikawa, Kawasaki, KN, Senami, Takahashi (2007), KN, Takahashi, Yanagida (2010),
Fischler, Meyers (2011), Kawasaki, Kitajima, KN (2011), Hasenkamp (2011)

Menestrina, Scherrer (2011), Jeong, Takahashi (2012), K.Choi et al (2012) and many others

12年11月11日日曜日



Inflationary GWs
Inflation generates primordial GWs as quantum 

tensor fluctuations in de-Sitter spacetime

hij =
1

MP

�

�=+,�

�
d3k

(2�)3/2
h�

k(t)eikxe�
ij

�h�
kh��

k� � =
H2

inf

2k3
�3(k � k�)����

Quantization

�2
h(k) =

�
Hinf

2�MP

�2
Dimensionless power 

spectrum almost scale invariant

ds2 = a2(t)[�d�2 + (�ij + hij)dxidxj ]
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Evolution of GW
Eq.of.m of GW

ḧ� + 3Hḣ� + (k/a)2h� = 0

(without dark radiation)
h� � const for k � aH

h� � a(t)�1 for k � aH

GW energy density at horizon entry

�GW(k) �M2
P �2

h(k)(k/a)2 �M2
P Hin(k)2�2

h(k)

�tot �M2
P Hin(k)2

�GW(k) =
�GW(k)

�tot
� �2

h(k) � const at horizon entry

�0
GW(k) � �0

rad�2
h(k) at present for k � keq
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Figure 1: (Top) Spectra of the gravitational wave background for inflationary scale Hinf =
1014 GeV and 1013 GeV. Here we have taken TR = 107 GeV. Also shown are sensitivities
of planned space-based gravitational wave detectors, DECIGO with a correlation analysis
(blue dashed line), ultimate-DECIGO (purple dotted line), and correlation of analysis of
ultimate-DECIGO (red dot-dashed line). (Bottom) Same as the top panel for the dilution
factor F = 10 for Tσ=10 GeV and TR = 107 GeV.

5

horizon entry
at R.D. era

horizon entry
at M.D. era

horizon entry
at M.D. era

(inflaton oscillation)

GW spectrum traces thermal history of the Universe !

KN, J.Yokoyama (2010)

N.Seto, J.Yokoyama (2003), Boyle, Steinhardt (2005), KN, Saito, Suwa, Yokoyama (2008)
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Dark radiation and GW

ḧij + 3Hḣij + (k/a)2hij = 16�G�ij

Dark radiation affects GW spectrum in two ways

Modified expansion rate Anisotropic stress of X

S.Weinberg (2003), Y.Watanabe, E.Komatsu (2005)

cf ) For standard neutinos, see

Modified expansion rate by parent field of X 

Anisotropic stress is turned on after X production

Modification on GW spectrum at high frequency

Modification on GW spectrum at low frequency
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A model
A scalar field � decays into X at H � ��

with branching ratio BX

2

confirming the dark radiation produced thermally and
decoupled at some epoch in the early Universe.
This paper is organized as follows. In Sec. II we re-

view a model of dark radiation produced by decaying
particles. In Sec. III we calculate the evolution of grav-
itational waves in the presence of anisotropic stress in-
duced by dark radiation, and show that characteristic
signatures appear in the spectrum. Sec. IV is devoted to
conclusions and discussion.

II. DARK RADIATION PRODUCTION BY
DECAYING PARTICLES

A. Background evolution

We consider the case where the non-relativistic matter
φ decays into X particle which plays the role of dark
radiation. Thus X is assumed to be massless and has
no interaction with other fields. To be more precise, X
must be relativistic until the recombination epoch and its
interaction must be so weak that remains to be decoupled
from thermal bath after the production by φ decay. The
evolution equations of components are given by

ρ̇φ + 3Hρφ = −Γφρφ, (2)

ρ̇rad + 4Hρrad = Γφ(1−BX)ρφ, (3)

ρ̇X + 4HρX = ΓφBXρφ, (4)

where the dot represents time derivative, and the Fried-
mann equation,

H2 =
ρtot
3M2

P

=
ρφ + ρrad + ρX

3M2
P

, (5)

where ρφ, ρrad and ρX are energy densities of φ, visible
radiation and dark radiation, respectively, MP is the re-
duced Planck scale, Γφ is the decay rate of φ, and BX

denotes its branching fraction into X .
The extra effective number of neutrino species is given

by

∆Neff =
43

7

[

10.75

g∗s(Tφ)

]1/3 [ ρX
ρrad

]

H"Γφ

, (6)

where g∗s(Tφ) denotes the relativistic degrees of freedom
at T = Tφ where the φ decays, and ρX and ρrad are
evaluated well after the φ decay. In our numerical study,
we take the standard-model value of g∗s(Tφ) = 106.75.
In order to obtain ∆Neff " 1, the energy density of φ

should nearly dominate the Universe at the decay. There-
fore, the expansion rate of the Universe around the φ de-
cay epoch is modified. Fig. 1 shows the product tH as a
function of cosmic time t normalized by tdec, defined by

tdec ≡
1

Γφ
. (7)

Here we have fixed initial conditions of ρφ and ρrad so
that ∆Neff = 1 is realized. Solid (red), long-dashed
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FIG. 1: Evolution of the product tH as a function of cosmic
time (normalized by tdec) for BX = 0.26 (red solid), 0.5 (green
dashed), 0.7 (blue dotted) and 1.0 (magenta dot-dashed) for
explaining ∆Neff = 1.

(green), short-dashed (blue) and dotted (magenta) lines
correspond to BX = 0.26, 0.5, 0.7 and 1.0, respectively.
It is seen that φ has significant energy fraction around
its decay and the expansion rate is modified from the
radiation-dominated one (tH = 1/2). In the limit of φ
domination, we need BX " 0.26 for ∆Neff = 1. Thus
BX ! 0.26 is required in order to realize ∆Neff = 1.
Since the background expansion rate is imprinted in the
GW spectrum [35–50], a particular shape in the GW
spectrum is expected if dark radiation is produced by
decaying matter, as we sill see.

B. Model

As one of the motivated models of φ and X , we con-
sider the saxion and axion in a supersymmetric axion
model [51]. This possibility was studied in Refs. [12, 16,
19, 23, 26] in the context of dark radiation.

The axion is a pseudo Nambu-Goldstone boson as-
sociated with the spontaneous breakdown of the global
U(1)PQ symmetry [52]. It solves the strong CP problem
in the quantum chromodynamics. The axion has interac-
tions suppressed by the U(1)PQ breaking scale, fa. The
value of fa is phenomenologically constrained as 109GeV
" fa " 1012GeV, and the axion mass is ∼ 10−2–10−5 eV
for this range of fa [53]. Thus the axion is a good candi-
date of dark radiation.

In a supersymmetric extension of the axion model,
there appears a scalar partner of the axion, called saxion,
which is massless in supersymmetric limit but obtains a
mass from supersymmetry breaking effects. Writing the
saxion mass as mφ, the saxion decay rate into the axion

Background evolution :

Example) � : saxion
X : axion

� nearly dominate at
decay for �Ne� � 1

ttdec

�rad

�

��

�X

BX = 1
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A model
A scalar field � decays into X at H � ��

with branching ratio BX

2

confirming the dark radiation produced thermally and
decoupled at some epoch in the early Universe.
This paper is organized as follows. In Sec. II we re-

view a model of dark radiation produced by decaying
particles. In Sec. III we calculate the evolution of grav-
itational waves in the presence of anisotropic stress in-
duced by dark radiation, and show that characteristic
signatures appear in the spectrum. Sec. IV is devoted to
conclusions and discussion.
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radiation. Thus X is assumed to be massless and has
no interaction with other fields. To be more precise, X
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In order to obtain ∆Neff " 1, the energy density of φ
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fore, the expansion rate of the Universe around the φ de-
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function of cosmic time t normalized by tdec, defined by
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Γφ
. (7)
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FIG. 1: Evolution of the product tH as a function of cosmic
time (normalized by tdec) for BX = 0.26 (red solid), 0.5 (green
dashed), 0.7 (blue dotted) and 1.0 (magenta dot-dashed) for
explaining ∆Neff = 1.

(green), short-dashed (blue) and dotted (magenta) lines
correspond to BX = 0.26, 0.5, 0.7 and 1.0, respectively.
It is seen that φ has significant energy fraction around
its decay and the expansion rate is modified from the
radiation-dominated one (tH = 1/2). In the limit of φ
domination, we need BX " 0.26 for ∆Neff = 1. Thus
BX ! 0.26 is required in order to realize ∆Neff = 1.
Since the background expansion rate is imprinted in the
GW spectrum [35–50], a particular shape in the GW
spectrum is expected if dark radiation is produced by
decaying matter, as we sill see.

B. Model

As one of the motivated models of φ and X , we con-
sider the saxion and axion in a supersymmetric axion
model [51]. This possibility was studied in Refs. [12, 16,
19, 23, 26] in the context of dark radiation.

The axion is a pseudo Nambu-Goldstone boson as-
sociated with the spontaneous breakdown of the global
U(1)PQ symmetry [52]. It solves the strong CP problem
in the quantum chromodynamics. The axion has interac-
tions suppressed by the U(1)PQ breaking scale, fa. The
value of fa is phenomenologically constrained as 109GeV
" fa " 1012GeV, and the axion mass is ∼ 10−2–10−5 eV
for this range of fa [53]. Thus the axion is a good candi-
date of dark radiation.

In a supersymmetric extension of the axion model,
there appears a scalar partner of the axion, called saxion,
which is massless in supersymmetric limit but obtains a
mass from supersymmetry breaking effects. Writing the
saxion mass as mφ, the saxion decay rate into the axion

Background evolution :

Example) � : saxion
X : axion

� nearly dominate at
decay for �Ne� � 1

ttdec

�rad

�
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A scalar field � decays into X at H � ��

with branching ratio BX

2

confirming the dark radiation produced thermally and
decoupled at some epoch in the early Universe.
This paper is organized as follows. In Sec. II we re-

view a model of dark radiation produced by decaying
particles. In Sec. III we calculate the evolution of grav-
itational waves in the presence of anisotropic stress in-
duced by dark radiation, and show that characteristic
signatures appear in the spectrum. Sec. IV is devoted to
conclusions and discussion.
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at T = Tφ where the φ decays, and ρX and ρrad are
evaluated well after the φ decay. In our numerical study,
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In order to obtain ∆Neff " 1, the energy density of φ

should nearly dominate the Universe at the decay. There-
fore, the expansion rate of the Universe around the φ de-
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function of cosmic time t normalized by tdec, defined by
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FIG. 1: Evolution of the product tH as a function of cosmic
time (normalized by tdec) for BX = 0.26 (red solid), 0.5 (green
dashed), 0.7 (blue dotted) and 1.0 (magenta dot-dashed) for
explaining ∆Neff = 1.

(green), short-dashed (blue) and dotted (magenta) lines
correspond to BX = 0.26, 0.5, 0.7 and 1.0, respectively.
It is seen that φ has significant energy fraction around
its decay and the expansion rate is modified from the
radiation-dominated one (tH = 1/2). In the limit of φ
domination, we need BX " 0.26 for ∆Neff = 1. Thus
BX ! 0.26 is required in order to realize ∆Neff = 1.
Since the background expansion rate is imprinted in the
GW spectrum [35–50], a particular shape in the GW
spectrum is expected if dark radiation is produced by
decaying matter, as we sill see.

B. Model

As one of the motivated models of φ and X , we con-
sider the saxion and axion in a supersymmetric axion
model [51]. This possibility was studied in Refs. [12, 16,
19, 23, 26] in the context of dark radiation.

The axion is a pseudo Nambu-Goldstone boson as-
sociated with the spontaneous breakdown of the global
U(1)PQ symmetry [52]. It solves the strong CP problem
in the quantum chromodynamics. The axion has interac-
tions suppressed by the U(1)PQ breaking scale, fa. The
value of fa is phenomenologically constrained as 109GeV
" fa " 1012GeV, and the axion mass is ∼ 10−2–10−5 eV
for this range of fa [53]. Thus the axion is a good candi-
date of dark radiation.

In a supersymmetric extension of the axion model,
there appears a scalar partner of the axion, called saxion,
which is massless in supersymmetric limit but obtains a
mass from supersymmetry breaking effects. Writing the
saxion mass as mφ, the saxion decay rate into the axion

Background evolution :

Example) � : saxion
X : axion

� nearly dominate at
decay for �Ne� � 1

ttdec

�rad

�
BX � 1

��

�rad

�X

12年11月11日日曜日



A model 2

confirming the dark radiation produced thermally and
decoupled at some epoch in the early Universe.
This paper is organized as follows. In Sec. II we re-

view a model of dark radiation produced by decaying
particles. In Sec. III we calculate the evolution of grav-
itational waves in the presence of anisotropic stress in-
duced by dark radiation, and show that characteristic
signatures appear in the spectrum. Sec. IV is devoted to
conclusions and discussion.
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We consider the case where the non-relativistic matter
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ρ̇rad + 4Hρrad = Γφ(1−BX)ρφ, (3)

ρ̇X + 4HρX = ΓφBXρφ, (4)

where the dot represents time derivative, and the Fried-
mann equation,

H2 =
ρtot
3M2

P

=
ρφ + ρrad + ρX

3M2
P

, (5)

where ρφ, ρrad and ρX are energy densities of φ, visible
radiation and dark radiation, respectively, MP is the re-
duced Planck scale, Γφ is the decay rate of φ, and BX

denotes its branching fraction into X .
The extra effective number of neutrino species is given

by

∆Neff =
43

7

[

10.75

g∗s(Tφ)

]1/3 [ ρX
ρrad

]

H"Γφ

, (6)

where g∗s(Tφ) denotes the relativistic degrees of freedom
at T = Tφ where the φ decays, and ρX and ρrad are
evaluated well after the φ decay. In our numerical study,
we take the standard-model value of g∗s(Tφ) = 106.75.
In order to obtain ∆Neff " 1, the energy density of φ

should nearly dominate the Universe at the decay. There-
fore, the expansion rate of the Universe around the φ de-
cay epoch is modified. Fig. 1 shows the product tH as a
function of cosmic time t normalized by tdec, defined by

tdec ≡
1

Γφ
. (7)

Here we have fixed initial conditions of ρφ and ρrad so
that ∆Neff = 1 is realized. Solid (red), long-dashed
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FIG. 1: Evolution of the product tH as a function of cosmic
time (normalized by tdec) for BX = 0.26 (red solid), 0.5 (green
dashed), 0.7 (blue dotted) and 1.0 (magenta dot-dashed) for
explaining ∆Neff = 1.

(green), short-dashed (blue) and dotted (magenta) lines
correspond to BX = 0.26, 0.5, 0.7 and 1.0, respectively.
It is seen that φ has significant energy fraction around
its decay and the expansion rate is modified from the
radiation-dominated one (tH = 1/2). In the limit of φ
domination, we need BX " 0.26 for ∆Neff = 1. Thus
BX ! 0.26 is required in order to realize ∆Neff = 1.
Since the background expansion rate is imprinted in the
GW spectrum [35–50], a particular shape in the GW
spectrum is expected if dark radiation is produced by
decaying matter, as we sill see.

B. Model

As one of the motivated models of φ and X , we con-
sider the saxion and axion in a supersymmetric axion
model [51]. This possibility was studied in Refs. [12, 16,
19, 23, 26] in the context of dark radiation.

The axion is a pseudo Nambu-Goldstone boson as-
sociated with the spontaneous breakdown of the global
U(1)PQ symmetry [52]. It solves the strong CP problem
in the quantum chromodynamics. The axion has interac-
tions suppressed by the U(1)PQ breaking scale, fa. The
value of fa is phenomenologically constrained as 109GeV
" fa " 1012GeV, and the axion mass is ∼ 10−2–10−5 eV
for this range of fa [53]. Thus the axion is a good candi-
date of dark radiation.

In a supersymmetric extension of the axion model,
there appears a scalar partner of the axion, called saxion,
which is massless in supersymmetric limit but obtains a
mass from supersymmetry breaking effects. Writing the
saxion mass as mφ, the saxion decay rate into the axion

Deviation from R.D., tH=0.5, around Φdecay
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FIG. 6: Same as Fig. 3 but for BX = 1.0.

diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.

Acknowledgments

This work is supported by Grant-in-Aid for Scientific
research from the Ministry of Education, Science, Sports,
and Culture (MEXT), Japan, No. 22540263 (T.M.), No.
22244021 (T.M.), No. 23104001 (T.M.), No. 21111006
(K.N.), and No. 22244030 (K.N.).

Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2
Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T (tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T i(tot)

i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1

Numerical result
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2
Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T (tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T i(tot)

i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2
Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T (tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T i(tot)

i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2
Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T (tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T i(tot)

i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2
Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T (tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T i(tot)

i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1

Numerical result
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2
Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T (tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T i(tot)

i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1

Numerical result
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is
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ij + hij = 16πG
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)2
Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T (tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T i(tot)

i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2
Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T (tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T i(tot)

i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)
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Numerical result
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FIG. 3: ΩGW(k)/Ω(SM)
GW (k) as a function of k (normalized by

kdec) for BX = 0.26. The green (dotted) line is the full result,
taking account of the effect of anisotropic stress. For compar-
ison, in the solid line (red), we also plot ΩGW(k)/Ω(SM)

GW (k)
without the effect of anisotropic stress.

C. Results

In Figs. 3 – 6, we plot the GW spectrum normalized

by Ω(SM)
GW (k) predicted in the present scenario, varying

BX from 0.26 to 1.0. The horizontal axis is normalized
by kdec. For comparison, we have also plotted the GW
spectrum without the effect of anisotropic stress. As one
can see, the spectrum of the GWs has a characteristic
change at k ∼ kdec if the dark radiation (with ∆Neff ∼
1) is produced by the decay of massive particle. Thus,
once the GW spectrum is precisely measured, we have a
chance to extract the information on the mechanism of
dark-radiation production.
There are several effects on the GW spectrum in the

presence of dark radiation. First, since φ (nearly) dom-
inates the Universe at the decay in order to realize
∆Neff ∼ 1, ΩGW decreases at k ! kdec. This is due to the
change of equation of state of the Universe. As a result,
as one can see, ΩGW is suppressed for high frequency
modes which enter the horizon before the φ-domination.
In addition, most importantly, the effect of anisotropic

stress caused by dark radiation dissipates the GW en-
ergy density of the mode with k " kdec. Consequently,
together with the effect of the change of equation of state,
a dip in the spectrum may appear at k ∼ kdec. In partic-
ular, the dip becomes more apparent when BX is close
to 1. Such a dip provides a smoking-gun signature of the
dark-radiation production by the decay of massive par-
ticles. If φ and X are completely sequestered from the
standard-model sector, for example, BX = 1 may be re-
alized. Then, such a model provides a striking signature
in the GW spectrum.
Note that, in the low frequency limit k " kdec, we have
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numerically confirmed the suppression factor C2 caused

by dark radiation. As a result, ΩGW/Ω(SM)
GW at k " kdec

is close to one as shown in Fig. 2.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have studied the spectrum of infla-
tionary GW background in the presence of dark radia-
tion, motivated by recent observational preferences for
∆Neff ∼ 1. We have assumed that the dark radiation is
non-thermally produced by decay of massive particles φ.
There are several effects on the GW spectrum. First, the
equation of state of the Universe is modified due to the φ
energy density and it changes the shape of the GW spec-
trum. Second, the anisotropic stress carried by dark ra-
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is close to one as shown in Fig. 2.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have studied the spectrum of infla-
tionary GW background in the presence of dark radia-
tion, motivated by recent observational preferences for
∆Neff ∼ 1. We have assumed that the dark radiation is
non-thermally produced by decay of massive particles φ.
There are several effects on the GW spectrum. First, the
equation of state of the Universe is modified due to the φ
energy density and it changes the shape of the GW spec-
trum. Second, the anisotropic stress carried by dark ra-
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2
Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T (tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T i(tot)

i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 0.26 BX = 0.5

BX = 0.7 BX = 1
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Summary

• Recent observation suggest extra light 
species : dark radiation

• Dark radiation leaves characteristic 
signature in primordial GW spectrum

• It also contains information on the 
production mechanism of dark radiation.
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GW normalization
4

where r denotes the tensor-to-scalar ratio, nt is the tensor
spectral index, k0 = 0.002Mpc−1 is the pivot scale and

∆2
h(k) ≡

8

M2
P

(

Hinf

2π

)2 ( k

k0

)nt

, (19)

with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
rad = 4.2× 10−5h−2 with h parameterizing the

present Hubble parameter as H0 = 100hkm/s/Mpc and

γ(SM) =

[

g∗(Tin(k))

g(SM)
∗0

][

g(SM)
∗s0

g∗s(Tin(k))

]4/3

, (21)

where g(SM)
∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by

Ω(SM)
GW (k) # 3.3× 10−16

×
( r

0.1

)

(

k

k0

)nt
[

106.75

g∗(Tin(k))

]1/3

. (22)

In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g

(SM)
∗0 ) with

g∗0 = 2

[

1 +Neff
7

8

(

4

11

)4/3
]

. (24)

We find g∗0 # 3.82 for Neff = 4. The factor γ is given by

γ =
1 + 7

43

(

g∗s(Tφ)
10.75

)1/3
∆Neff

1/γ(SM) + 7
43

(

g∗s(Tφ)
10.75

)1/3
∆Neff

, (25)

where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ

γ(SM)

g∗0

g(SM)
∗0

, (26)
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by
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∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find
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where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by
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the enhancement factor due to the modified background evo-
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anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.

GW spectrum at horizon entry

Standard model

3

pair is typically [54]
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a

. (8)

Assuming that the saxion decays in the radiation dom-
inated era, the temperature at the saxion decay is esti-
mated to be

Tφ ∼ 3× 106GeV
( mφ

103TeV

)3/2
(

1010GeV

fa

)

. (9)

The saxion with mass of O(103)TeV is plausible by tak-
ing account of the preference for high-supersymmetry
breaking scale [55] in light of the recent discovery of the
Higgs boson mass of 125GeV [56]. The saxion often dom-
inantly decays into the axion pair (BX # 1). The pro-
duced axions are never thermalized below the tempera-
ture ∼ 107GeV for fa ! 1010GeV [57]. The abundance
of relativistic axion after the φ decay is then estimated
to be
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]
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∼ BX

[
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]
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#
BX

6

TR
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,

(10)
where TR is the reheating temperature after inflation and
φi is the saxion initial amplitude. Therefore, for appro-
priate choices of TR and φi, the axion abundance pro-
duced by the saxion decay can account for the dark ra-
diation : ∆Neff # 1.

III. SPECTRUM OF GRAVITATIONAL WAVE
BACKGROUND WITH DARK RADIATION

A. Evolution equations

Now let us study the evolution of primordial GWs un-
der the presence of dark radiation. The GW corresponds
to the tensor perturbation of the metric. We define the
line element as

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj , (11)

where hij is the transverse and traceless part of the met-
ric perturbation, and the Fourier amplitude of hij as
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ikx

=
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(12)

where ε(λ)ij denotes the polarization tensor. As shown in

Appendix, h(λ)(t,k) satisfies the following equation

ḧ(λ) + 3Hḣ(λ) +
k2

a2
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=− 24H2 1
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)

ḣ(λ)(t′,k)dt′,

(13)

where

K(u) ≡
j2(u)

u2
= −

sin(u)

u3
−

3 cos(u)

u4
+

3 sin(u)

u5
, (14)

with j2 being the second-order spherical Bessel function.
Contrary to the case of neutrinos studied in Refs. [28, 30],
ρX(t′) is inside the time integral since ρX does not scale
as a−4 while X is produced by the φ decay. In terms of
u and u′ defined as

u = k

∫ t

0

dt′

a(t′)
, (15)

u′ = k

∫ t′

0

dt′′

a(t′′)
, (16)

Eq. (13) becomes

h′′(λ) + 2Huh
′(λ) + h(λ)

=− 24H2
u

1

a4(u)ρtot(u)

×
∫ u

0
a4(u′)ρX(u′)K(u− u′)h′(λ)(u′,k)du′,

(17)

where the prime denotes the derivative with respect to u
and Hu ≡ a′/a. We have solved Eq. (17) together with
the background evolution (2) – (4) to derive the present
GW spectrum.

B. Overall normalization

Before showing the detailed results, we here comment
on the normalization of the present GW energy den-
sity. During inflation, quantum fluctuations of the tensor
perturbation is continuously generated which turn into
stochastic GW background in the present Universe af-
ter the horizon-in [58]. It predicts nearly scale invariant
GW spectrum for the GW modes entering in the horizon
in the radiation-dominated era [59–66]. The GW energy
density per log frequency at the horizon crossing k = aH ,
normalized by the critical energy density, is given by [67]

ΩGW(k = aH) =
∆2

h(k)

24
#
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24
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)nt

, (18)
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
rad = 4.2× 10−5h−2 with h parameterizing the

present Hubble parameter as H0 = 100hkm/s/Mpc and
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, (21)

where g(SM)
∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by
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GW (k) # 3.3× 10−16

×
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g
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∗0 ) with

g∗0 = 2
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We find g∗0 # 3.82 for Neff = 4. The factor γ is given by

γ =
1 + 7
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)1/3
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1/γ(SM) + 7
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where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ

γ(SM)

g∗0

g(SM)
∗0

, (26)
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
rad = 4.2× 10−5h−2 with h parameterizing the

present Hubble parameter as H0 = 100hkm/s/Mpc and
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where g(SM)
∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g
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∗0 ) with

g∗0 = 2
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We find g∗0 # 3.82 for Neff = 4. The factor γ is given by
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all enhancement factor for the GW spectrum is given by
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)
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the temperature at which the mode k enters the hori-
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find
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kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by
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the temperature at which the mode k enters the hori-
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g

(SM)
∗0 ) with

g∗0 = 2

[

1 +Neff
7

8

(

4

11

)4/3
]

. (24)

We find g∗0 # 3.82 for Neff = 4. The factor γ is given by

γ =
1 + 7

43

(

g∗s(Tφ)
10.75

)1/3
∆Neff

1/γ(SM) + 7
43

(

g∗s(Tφ)
10.75

)1/3
∆Neff

, (25)

where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ

γ(SM)

g∗0

g(SM)
∗0

, (26)
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.

Radiation
density :

Overall normalization is affected

Standard model plus dark radiation
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GW normalization
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where r denotes the tensor-to-scalar ratio, nt is the tensor
spectral index, k0 = 0.002Mpc−1 is the pivot scale and

∆2
h(k) ≡
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M2
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Hinf
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)2 ( k

k0

)nt

, (19)

with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
rad = 4.2× 10−5h−2 with h parameterizing the

present Hubble parameter as H0 = 100hkm/s/Mpc and

γ(SM) =
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g(SM)
∗0

][

g(SM)
∗s0

g∗s(Tin(k))

]4/3

, (21)

where g(SM)
∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by

Ω(SM)
GW (k) # 3.3× 10−16

×
( r

0.1
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k

k0

)nt
[

106.75

g∗(Tin(k))

]1/3

. (22)

In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g

(SM)
∗0 ) with

g∗0 = 2

[

1 +Neff
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8
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]

. (24)

We find g∗0 # 3.82 for Neff = 4. The factor γ is given by

γ =
1 + 7
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)1/3
∆Neff

1/γ(SM) + 7
43

(

g∗s(Tφ)
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)1/3
∆Neff

, (25)

where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ

γ(SM)

g∗0

g(SM)
∗0

, (26)
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
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∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g
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∗0 ) with

g∗0 = 2
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We find g∗0 # 3.82 for Neff = 4. The factor γ is given by
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where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.

Parameterize normalization 4
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)
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where g(SM)
∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g

(SM)
∗0 ) with
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We find g∗0 # 3.82 for Neff = 4. The factor γ is given by
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where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by
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, (26)
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.

Modified BG by X :

Anisotropic stress X :

C2
analytically 
derived in

Dicus, Repko (2004)
C1xC2 accidentally close to unity
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F : distribution function of X

7

where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:

dF

dt
=

BX

4π(p0)3
Γφρφδ

(

p0 −
mφ

2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνpµpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
of Eq. (A5) is

dF

dt
=

∂F

∂t
+

dxi

dt

∂F

∂xi
+

dpi
dt

∂F

∂pi

=
∂F

∂t
+

pi

p0
∂F

∂xi
+

1

2
gij,k

pipj

p0
∂F

∂pk
,

(A6)

where we used

dxi

dt
=

pi

p0
, (A7)

dpi
dt

=
1

2
gjk,i

pjpk

p0
. (A8)

Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation

∂F̄

∂t
=

BX

4π(p̄0)3
Γφρφδ

(

p̄0 −
mφ

2

)

, (A11)

and the first-order one

∂(δF1 + δF2)

∂t
+

p̄i

p̄0
∂(δF1 + δF2)

∂xi

+
1

2
(δgjk),i

p̄j p̄k

p̄0
∂F̄

∂pi
= a

∂2F̄

∂p∂t
δp0. (A12)

In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction

 1

 10

 100

 0.1  1

4π
p3 F-  

 (a
rb

itr
ar

y 
sc

al
e)

p/pdec

t>>tdec
t=tdec

t=10-2tdec
t=10-4tdec

FIG. 7: 4πp3F̄ as functions of p (normalized by pdec ≡

a(tdec)mφ/2). Each line corresponds to t " tdec (red solid),
t = 10−4tdec (green long-dashed), 10−2tdec (blue short-
dotted) and tdec(magenta dotted).

4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj
p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj
p

, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i
a

∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0
dτ ′

1

2

∂hij

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)

cf) Geodesic eq.
GW effect here
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4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj
p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj
p

, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i
a

∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0
dτ ′

1

2

∂hij

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)

Boltzmann eq. for X

7

where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:

dF

dt
=

BX

4π(p0)3
Γφρφδ

(

p0 −
mφ

2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνpµpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
of Eq. (A5) is

dF

dt
=

∂F

∂t
+

dxi

dt

∂F

∂xi
+

dpi
dt

∂F

∂pi

=
∂F

∂t
+

pi

p0
∂F

∂xi
+

1

2
gij,k

pipj

p0
∂F

∂pk
,

(A6)

where we used

dxi

dt
=

pi

p0
, (A7)

dpi
dt

=
1

2
gjk,i

pjpk

p0
. (A8)

Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation

∂F̄

∂t
=

BX

4π(p̄0)3
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p̄0 −
mφ

2

)

, (A11)

and the first-order one

∂(δF1 + δF2)

∂t
+

p̄i

p̄0
∂(δF1 + δF2)

∂xi

+
1

2
(δgjk),i

p̄j p̄k

p̄0
∂F̄

∂pi
= a

∂2F̄

∂p∂t
δp0. (A12)

In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj
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∂F̄

∂p
, (A13)

δp0 = −
1
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hijpipj
p

, (A14)

δpi = −
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Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get
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In terms of conformal time τ =
∫
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expressed as
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where
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, (A19)
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∫
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µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):
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where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:

dF

dt
=

BX

4π(p0)3
Γφρφδ

(

p0 −
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2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνpµpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
of Eq. (A5) is
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where we used
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=
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=
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Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation

∂F̄

∂t
=

BX

4π(p̄0)3
Γφρφδ

(

p̄0 −
mφ

2

)

, (A11)

and the first-order one
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+
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+
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p̄j p̄k

p̄0
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∂pi
= a

∂2F̄
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In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj
p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj
p

, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i
a

∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0
dτ ′

1

2

∂hij

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)

Perturbed :

Anisotropic stress
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where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:

dF

dt
=

BX

4π(p0)3
Γφρφδ

(

p0 −
mφ

2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνpµpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
of Eq. (A5) is

dF

dt
=

∂F

∂t
+

dxi

dt

∂F

∂xi
+

dpi
dt

∂F

∂pi

=
∂F

∂t
+

pi

p0
∂F

∂xi
+

1

2
gij,k

pipj

p0
∂F

∂pk
,

(A6)

where we used

dxi

dt
=

pi

p0
, (A7)

dpi
dt

=
1

2
gjk,i

pjpk

p0
. (A8)

Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation

∂F̄

∂t
=

BX

4π(p̄0)3
Γφρφδ

(

p̄0 −
mφ

2

)

, (A11)

and the first-order one

∂(δF1 + δF2)

∂t
+

p̄i

p̄0
∂(δF1 + δF2)

∂xi

+
1

2
(δgjk),i

p̄j p̄k

p̄0
∂F̄

∂pi
= a

∂2F̄

∂p∂t
δp0. (A12)

In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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a(tdec)mφ/2). Each line corresponds to t " tdec (red solid),
t = 10−4tdec (green long-dashed), 10−2tdec (blue short-
dotted) and tdec(magenta dotted).

4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj
p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj
p

, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i
a

∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫
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(2π)3
δF2(τ, ki, pi)e
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, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0
dτ ′

1

2

∂hij

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)
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where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
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dt
=
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4π(p0)3
Γφρφδ

(
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2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνpµpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
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=
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=
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Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation
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=
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and the first-order one
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In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
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, (A13)

δp0 = −
1
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, (A14)

δpi = −
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into Eq. (A12), we get
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expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i
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where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:
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=
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4π(p0)3
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(
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)
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where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνpµpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
of Eq. (A5) is
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Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),
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δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)
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In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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4πp3F̄ is mostly carried by X produced at t $ tdec. Then
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X for the distribution function of X for notational sim-
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anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
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pair is typically [54]

Γφ =
1

64π

m3
φ

f2
a

. (8)

Assuming that the saxion decays in the radiation dom-
inated era, the temperature at the saxion decay is esti-
mated to be

Tφ ∼ 3× 106GeV
( mφ

103TeV

)3/2
(

1010GeV

fa

)

. (9)

The saxion with mass of O(103)TeV is plausible by tak-
ing account of the preference for high-supersymmetry
breaking scale [55] in light of the recent discovery of the
Higgs boson mass of 125GeV [56]. The saxion often dom-
inantly decays into the axion pair (BX # 1). The pro-
duced axions are never thermalized below the tempera-
ture ∼ 107GeV for fa ! 1010GeV [57]. The abundance
of relativistic axion after the φ decay is then estimated
to be

[

ρX
ρrad

]

H!Γφ

∼ BX

[

ρφ
ρtot

]

H=Γφ

#
BX

6

TR

Tφ

(

φi

MP

)2

,

(10)
where TR is the reheating temperature after inflation and
φi is the saxion initial amplitude. Therefore, for appro-
priate choices of TR and φi, the axion abundance pro-
duced by the saxion decay can account for the dark ra-
diation : ∆Neff # 1.

III. SPECTRUM OF GRAVITATIONAL WAVE
BACKGROUND WITH DARK RADIATION

A. Evolution equations

Now let us study the evolution of primordial GWs un-
der the presence of dark radiation. The GW corresponds
to the tensor perturbation of the metric. We define the
line element as

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj , (11)

where hij is the transverse and traceless part of the met-
ric perturbation, and the Fourier amplitude of hij as

hij(t,x) =

∫

d3k

(2π)3
hij(t,k)e

ikx

=
∑

λ=+,×

∫

d3k

(2π)3
h(λ)(t,k)ε(λ)ij eikx,

(12)

where ε(λ)ij denotes the polarization tensor. As shown in

Appendix, h(λ)(t,k) satisfies the following equation

ḧ(λ) + 3Hḣ(λ) +
k2

a2
h(λ)

=− 24H2 1

a4(t)ρtot(t)

×
∫ t

0
a4(t′)ρX(t′)K

(

k

∫ t

t′

dt′′

a(t′′)

)

ḣ(λ)(t′,k)dt′,

(13)

where

K(u) ≡
j2(u)

u2
= −

sin(u)

u3
−

3 cos(u)

u4
+

3 sin(u)

u5
, (14)

with j2 being the second-order spherical Bessel function.
Contrary to the case of neutrinos studied in Refs. [28, 30],
ρX(t′) is inside the time integral since ρX does not scale
as a−4 while X is produced by the φ decay. In terms of
u and u′ defined as

u = k

∫ t

0

dt′

a(t′)
, (15)

u′ = k

∫ t′

0

dt′′

a(t′′)
, (16)

Eq. (13) becomes

h′′(λ) + 2Huh
′(λ) + h(λ)

=− 24H2
u

1

a4(u)ρtot(u)

×
∫ u

0
a4(u′)ρX(u′)K(u− u′)h′(λ)(u′,k)du′,

(17)

where the prime denotes the derivative with respect to u
and Hu ≡ a′/a. We have solved Eq. (17) together with
the background evolution (2) – (4) to derive the present
GW spectrum.

B. Overall normalization

Before showing the detailed results, we here comment
on the normalization of the present GW energy den-
sity. During inflation, quantum fluctuations of the tensor
perturbation is continuously generated which turn into
stochastic GW background in the present Universe af-
ter the horizon-in [58]. It predicts nearly scale invariant
GW spectrum for the GW modes entering in the horizon
in the radiation-dominated era [59–66]. The GW energy
density per log frequency at the horizon crossing k = aH ,
normalized by the critical energy density, is given by [67]

ΩGW(k = aH) =
∆2

h(k)

24
#

2.43× 10−9r

24
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k0

)nt

, (18)
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hij(t,x) =

∫

d3k

(2π)3
hij(t,k)e

ikx

=
∑

λ=+,×

∫

d3k

(2π)3
h(λ)(t,k)ε(λ)ij eikx,

(12)

where ε(λ)ij denotes the polarization tensor. As shown in

Appendix, h(λ)(t,k) satisfies the following equation

ḧ(λ) + 3Hḣ(λ) +
k2

a2
h(λ)

=− 24H2 1

a4(t)ρtot(t)

×
∫ t

0
a4(t′)ρX(t′)K

(

k

∫ t

t′

dt′′

a(t′′)

)

ḣ(λ)(t′,k)dt′,

(13)

where

K(u) ≡
j2(u)

u2
= −

sin(u)

u3
−

3 cos(u)

u4
+

3 sin(u)

u5
, (14)

with j2 being the second-order spherical Bessel function.
Contrary to the case of neutrinos studied in Refs. [28, 30],
ρX(t′) is inside the time integral since ρX does not scale
as a−4 while X is produced by the φ decay. In terms of
u and u′ defined as

u = k

∫ t

0

dt′

a(t′)
, (15)

u′ = k

∫ t′

0

dt′′

a(t′′)
, (16)

Eq. (13) becomes

h′′(λ) + 2Huh
′(λ) + h(λ)

=− 24H2
u

1

a4(u)ρtot(u)

×
∫ u

0
a4(u′)ρX(u′)K(u− u′)h′(λ)(u′,k)du′,

(17)

where the prime denotes the derivative with respect to u
and Hu ≡ a′/a. We have solved Eq. (17) together with
the background evolution (2) – (4) to derive the present
GW spectrum.

B. Overall normalization

Before showing the detailed results, we here comment
on the normalization of the present GW energy den-
sity. During inflation, quantum fluctuations of the tensor
perturbation is continuously generated which turn into
stochastic GW background in the present Universe af-
ter the horizon-in [58]. It predicts nearly scale invariant
GW spectrum for the GW modes entering in the horizon
in the radiation-dominated era [59–66]. The GW energy
density per log frequency at the horizon crossing k = aH ,
normalized by the critical energy density, is given by [67]

ΩGW(k = aH) =
∆2

h(k)

24
#

2.43× 10−9r

24

(

k

k0

)nt

, (18)
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where we have used δF2(τ = 0) = 0 because there is no
X in the beginning.
We take the first-order perturbation of the energy-

momentum tensor of X :

T (X)
µν =

1
√

−detgµν

∫

d3pF
pµpν
p0

, (A23)

δT (X)
ij =

1

a3

∫

d3p

[

(δF1 + δF2)
pipj
p̄0

+ F̄ pipjδ

(

1

p0

)]

.

(A24)

Note that energy momentum tensor defined above trans-
forms as a tensor under general coordinate transforma-
tions since

∫

d3p/p0 ∝ d4pδ(gµνpµpν). Using Eq. (A13)
– Eq. (A15), we get

δT (X)
ij =

1

a3

∫

d3p
[

δF2app̂ip̂j

−
1

2
ahklp

2p̂ip̂j p̂kp̂l
∂F̄

∂p
+

1

2
ahklpp̂ip̂j p̂kp̂lF̄

]

=
1

a3

∫

d3pδF2app̂ip̂j

+
1

a3

∫

dpp2
[

−
1

2
ahklp

2 ∂F̄

∂p
+

1

2
ahklpF̄

]

×
4π

15
(δijδkl + δikδjl + δilδjk)

=
1

a2

∫

d3pδF2pp̂ip̂j +
1

3
a2hijρX . (A25)

Here, we used
∫

dΩpp̂ip̂j p̂kp̂le
−ip̂ik̂iu

= 4π

[

j4(u)k̂ik̂j k̂k k̂l −
j3(u)

u
(k̂ik̂jδkl + 5 perms)

+
j2(u)

u2
(δijδkl + 2 perms)

]

(A26)

and
∫

dp4πp3F̄ = a4ρX , (A27)

where ρX is the energy density of X and jn is the n-th
spherical Bessel function.
Next, we consider the effect of F (rad), for which

δF (rad)
2 = 0 because the free-streaming length is very

short. Then, we obtain

δT (rad)
ij =

1

3
a2hijρrad. (A28)

We also note that perturbation in the energy momentum
tensor of φ vanishes since it behaves as non-relativistic
matter :

δT (φ)
ij = 0. (A29)

Taking the first-order perturbation of Eq. (A3), we ob-
tain

δT (tot)
ij = δP · ḡij + P̄ · δgij + a2Πij

=
1

3
a2hij(ρX + ρrad) + a2Πij , (A30)

where we used Eq. (A13) – Eq. (A15), Eq. (A22),
Eq. (A26), hii = 0 and δP = 0. The last condi-
tion comes from the fact that tensor perturbations can-
not produce perturbations in scalar variables. Using
Eq. (A25), Eq. (A28), Eq. (A29), and Eq. (A30), we ob-
tain

a2Πij =
1

a2

∫

d3pδF2pp̂ip̂j . (A31)

Substituting Eq. (A31) into the RHS of Eq. (A1), we
obtain

h
′′

ij + 2Huh
′

ij + hij

= 16πG
(a

k

)2 1

a4

∫

d3ppp̂ip̂j

×
∫ τ

0
dτ ′

1

2

∂hkl

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂kp̂le

−ikµ(τ−τ ′)

= −8πG
1

k2a2

∫ τ

0
dτ ′

∂hkl

∂τ
∫

dΩp
1

π
a4ρX p̂ip̂j p̂kp̂le

−ikµ(τ−τ ′)

= −24H2
u

1

a4ρtot(u)

∫ u

0
du′a4ρX

∂hij

∂u
(u′)

j2(u − u′)

(u− u′)2
,

(A32)

where we used partial integration, Eq. (A26) and Fried-
mann equationH2

u = 8πGρtota2/3k2. After decomposing
hij using Eq. (12), we finally obtain Eq. (17).
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where we have used δF2(τ = 0) = 0 because there is no
X in the beginning.
We take the first-order perturbation of the energy-

momentum tensor of X :

T (X)
µν =

1
√

−detgµν

∫

d3pF
pµpν
p0

, (A23)

δT (X)
ij =

1

a3

∫

d3p

[

(δF1 + δF2)
pipj
p̄0

+ F̄ pipjδ

(

1

p0

)]

.

(A24)

Note that energy momentum tensor defined above trans-
forms as a tensor under general coordinate transforma-
tions since

∫

d3p/p0 ∝ d4pδ(gµνpµpν). Using Eq. (A13)
– Eq. (A15), we get

δT (X)
ij =

1

a3

∫

d3p
[

δF2app̂ip̂j

−
1

2
ahklp

2p̂ip̂j p̂kp̂l
∂F̄

∂p
+

1

2
ahklpp̂ip̂j p̂kp̂lF̄

]

=
1

a3

∫

d3pδF2app̂ip̂j

+
1

a3

∫

dpp2
[

−
1

2
ahklp

2 ∂F̄

∂p
+

1

2
ahklpF̄

]

×
4π

15
(δijδkl + δikδjl + δilδjk)

=
1

a2

∫

d3pδF2pp̂ip̂j +
1

3
a2hijρX . (A25)

Here, we used
∫

dΩpp̂ip̂j p̂kp̂le
−ip̂ik̂iu

= 4π

[

j4(u)k̂ik̂j k̂k k̂l −
j3(u)

u
(k̂ik̂jδkl + 5 perms)

+
j2(u)

u2
(δijδkl + 2 perms)

]

(A26)

and
∫

dp4πp3F̄ = a4ρX , (A27)

where ρX is the energy density of X and jn is the n-th
spherical Bessel function.
Next, we consider the effect of F (rad), for which

δF (rad)
2 = 0 because the free-streaming length is very

short. Then, we obtain

δT (rad)
ij =

1

3
a2hijρrad. (A28)

We also note that perturbation in the energy momentum
tensor of φ vanishes since it behaves as non-relativistic
matter :

δT (φ)
ij = 0. (A29)

Taking the first-order perturbation of Eq. (A3), we ob-
tain

δT (tot)
ij = δP · ḡij + P̄ · δgij + a2Πij

=
1

3
a2hij(ρX + ρrad) + a2Πij , (A30)

where we used Eq. (A13) – Eq. (A15), Eq. (A22),
Eq. (A26), hii = 0 and δP = 0. The last condi-
tion comes from the fact that tensor perturbations can-
not produce perturbations in scalar variables. Using
Eq. (A25), Eq. (A28), Eq. (A29), and Eq. (A30), we ob-
tain

a2Πij =
1

a2

∫

d3pδF2pp̂ip̂j . (A31)

Substituting Eq. (A31) into the RHS of Eq. (A1), we
obtain

h
′′

ij + 2Huh
′

ij + hij

= 16πG
(a

k

)2 1

a4

∫

d3ppp̂ip̂j

×
∫ τ

0
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1

2

∂hkl

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂kp̂le

−ikµ(τ−τ ′)

= −8πG
1
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∫ τ
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∂hkl

∂τ
∫

dΩp
1

π
a4ρX p̂ip̂j p̂kp̂le

−ikµ(τ−τ ′)

= −24H2
u

1

a4ρtot(u)

∫ u

0
du′a4ρX

∂hij
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(u′)

j2(u − u′)
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,
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where we used partial integration, Eq. (A26) and Fried-
mann equationH2

u = 8πGρtota2/3k2. After decomposing
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where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:

dF

dt
=

BX

4π(p0)3
Γφρφδ

(

p0 −
mφ

2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνpµpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
of Eq. (A5) is

dF

dt
=

∂F

∂t
+

dxi

dt

∂F

∂xi
+

dpi
dt

∂F

∂pi

=
∂F

∂t
+

pi

p0
∂F

∂xi
+

1

2
gij,k

pipj

p0
∂F

∂pk
,

(A6)

where we used

dxi

dt
=

pi

p0
, (A7)

dpi
dt

=
1

2
gjk,i

pjpk

p0
. (A8)

Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation

∂F̄

∂t
=

BX

4π(p̄0)3
Γφρφδ

(

p̄0 −
mφ

2

)

, (A11)

and the first-order one

∂(δF1 + δF2)

∂t
+

p̄i

p̄0
∂(δF1 + δF2)

∂xi

+
1

2
(δgjk),i

p̄j p̄k

p̄0
∂F̄

∂pi
= a

∂2F̄

∂p∂t
δp0. (A12)

In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction

 1
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FIG. 7: 4πp3F̄ as functions of p (normalized by pdec ≡

a(tdec)mφ/2). Each line corresponds to t " tdec (red solid),
t = 10−4tdec (green long-dashed), 10−2tdec (blue short-
dotted) and tdec(magenta dotted).

4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj
p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj
p

, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i
a

∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0
dτ ′

1

2

∂hij

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)From Boltzmann eq :
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