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Rindler Fluid 
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➢ A recursive relation between different orders?

➢ Gravity ⬄  A special Fluid	

➢ Gravity ⬄ Riemannian Geometry	

➢ Petrov type I condition!

➢ No more gravitational field equations
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➢ Give the 0th order	

➢ 1st order	

➢ 2nd order	

The Stress Tensor:
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Rindler-Fluid AdS Cutoff-Fluid AdS-CFT Fluid

Up to 2nd order 
How about Higher orders? 

Cai et al. 1401.7792 

Up to to 0th order
Modified Condition?
Y. Ling et al. 1306.5633

Up to to 0th order
AdS/Rindler correspondence?

Obtain a recurrence relation
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Navier-Stokes Equations:              [10’,11’]  
Fluid/Gravity Expansion:            [11’,12’]  
Entropy Current and Constraint:        [12’,13’] 
AdS/Rindler Correspondence:   [12’,13’] 
Comparison with AdS/Fluid:              [12’,13’] 
Recurrence Relation and Petrov type                    [13’,14’]

                         
Fluid dual to Rindler spacetime
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Ward identity, momentum relaxation rate and heat conductivity of Rindler fluid.
In order to conform our results, as well as building the relation between Rindler fluid and

the dual boundary fluid in AdS, we also study the momentum relaxation from fluid/gravity
duality on the Dirichlet cuto↵ surface in AdS. Notice that the forced fluid dynamics dual to
AdS gravity with massless scalar fields has already been studied on the cuto↵ surface in [28],
as well as the generalization in arbitrarily dimensions [19], which is helpful for us to compare
the results. For convenience, we will use the name “cuto↵ AdS fluid” to substitute the “fluid
dual to AdS spacetime on a finite cuto↵ surface”. Since the calculation of fluid/gravity duality
on cuto↵ surface is more complicated than that on the boundary, we have closed the Maxwell
field in the paper, which does not a↵ect our main purposes to extract the Ward identity and
momentum relaxation rate.

In all the calculation, we will imposed the Dirichlet boundary condition at the cuto↵
surface, and require the regular boundary condition at the horizon of the black brane. In the
following section 2, we firstly study the Rindler fluid with the weak momentum relaxation
in perturbation. In this section 3, we study the cuto↵ AdS fluid with momentum relaxation,
and analyze both of its the near horizon limit and near boundary limit, which build the flow
from RIndelr fluid to AdS fluid on the boundary. In section 4, we make the conclusion and
discussion of further topics.

2 Momentum Relaxation in Rindler Fluid

We start with the Einstein Hilbert action in p+2 dimensional flat spacetime, with p massless
scalar fields �
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and I = 1, 2, ..., p,
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Here 0 is a constant to indicate the surface gravity in the accelerating frame. We have choose
the condition that the horizon is located at r = r0 even with the metric corrections of k2.
And on the timelike hypersurface ⌃

c

with r = r
c

, the induced metric is intrinsic flat.
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“hydrodynamic of transports with momentum relaxation” Hartnoll, Kovtun, Muller, Sachdev[07’]
“Momentum relaxation from the fluid/gravity correspondence” Blake [15’]
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3 Momentum Relaxation in Cuto↵ AdS Fluid
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To study the hydrodynamics with momentum relaxation, we will use the set up in [63] and
consider the k as a small perturbations, as well as identify @
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`0 = � 2 � �`0 = � 1
,

(`0)T0

s0
= �1, (43)

and �`0 come from the contribution from � in (38).
Next we will extract the thermodynamic response coe�cient from the linearised hydrody-

namics. Assuming @
t

v
i

= � !v
i

, we have

v
i



k2
s
k

4⇡
� !

✓

k

+
k

� k2
◆�

= �s
k

@
i

T
k

+ · · · , (44)

7

The coe�cient correction on the right-hand side is

`0 = � 2 � �`0 = � 1
, ⇠0 ⌘ `0T0

s0

= �1, (2.43)

and �`0 comes from the contribution of � in (2.38).

Next, we will extract the thermodynamic response coe�cient from the linearised hydro-

dynamics. Assuming @
t

v
i

= � !v
i

, we have

v
i



k2
s̃0

4⇡
� !

✓

˜ + ˜ � k2
◆�

= �s̃0@iT̃0 + · · · , (2.44)

from which we obtain the solution of v
i

v
i

= � 1

1� !⌧0

4⇡

k2
@
i

T̃0 + · · · , (2.45)

as well as the momentum relaxation rate

⌧�1
0

= ⌧̃�1
0



1 +
`0k

2

(˜ + ˜)

��1

=
k2

4⇡T̃0



1� `0T0

s0

k2

T 2
0

�

+O(k6). (2.46)

The dimensionless number, `0T0/s0 = �1, was defined in (2.43). And from the definition of

the heat current, we can read o↵ the heat current

hQ
i

i ⌘ hT t

i

i = (˜ + ˜)v
i

= �̃
!

@
i

T̃0 , (2.47)

which leads to the heat conductivity with momentum relaxation

̃
!

=
1

1� !⌧0

4⇡s̃0 T̃0

k2
, ⌧�1

0
=

k2

4⇡T̃0



1� `0T0

s0

k2

T 2
0

�

+O(k6), (2.48)

where s̃0 T̃0 are given in (2.35) and (2.36). In the DC limit ! ! 0, ̃
!

reduces to the formulae

̃DC ⌘ lim
!!0

̃
!

=
4⇡s̃0 T̃0

k2
. (2.49)

In next section, we will conform these results from the near horizon limit of the cuto↵ AdS

fluid.

3 Momentum Relaxation in Cuto↵ AdS Fluid

In order to relate our previous results on momentum relaxation in Rindler fluid, with the

momentum relaxation from fluid/gravity correspondence in AdS black brane [63], in this

section we start with Einstein-Hilbert action of (p+2)-dimensional AdS gravity with massless

scalar fields

S⇤ =
1

16⇡G
p+2

Z

dp+2x
p�g

"

R+ 2⇤� 1

2

p

X

I=1

(@�I)
2

#

� 1

8⇡G
p+2

Z

dp+1x
p��K. (3.1)
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as well as the momentum relaxation rate

⌧�1
c

=
s̃ck

2

4⇡(Ẽ + P̃)



1 +
`ck

2

Ẽ + P̃

��1

=
k2

4⇡T̃c



1� `cTc

sc

k2

T 2
c

�

+O(k6). (3.49)

Here the coe�cient `c is given by

`c = �c

"

Z

rc

r0

dr̃
r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

� 1

(p� 1)�2
c

r2
0

r2
c

✓

1� rp�1
0

rp�1
c

◆

#

rp�1
0

Lp�2
. (3.50)

Thus from the definition of the heat current hQ
i

i, we can read o↵

hQ
i

i ⌘ hT t

i

i = (Ẽ + P̃)v
i

= �̃
!

@
i

T̃c , (3.51)

which leads to the heat conductivity with momentum relaxation

̃
!

=
1

1� !⌧
c

4⇡s̃c T̃c

k2
, ⌧�1

c

=
k2

4⇡T̃c



1� `cTc

sc

k2

T 2
c

�

+O(k6). (3.52)

In the DC limit ! ! 0, this expression reduces to the formulae in terms of the local s̃c and

T̃c given in (3.37) and (3.38),

̃DC ⌘ lim
!!0

̃
!

=
4⇡s̃c T̃c

k2
. (3.53)

For simplification, we can rewrite `c in (3.50) as the dimensionless form

⇠
c

⌘ `cTc

sc

= (p+ 1)



⌧̃
p

(rc)�
rc ⌧̃

0
p

(rc)

(p� 1)

�

, ⌧̃
p

(r) ⌘
Z

r

r0

dr̃ r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

. (3.54)

3.3 Running of the Cuto↵ surface as Wilson RG flow

In the fluid/gravity correspondence with a cuto↵ surface, [22–25], the running of the cuto↵

surface is interprected as the wilson renormalison group in holography. A recent field theory

discussion can be found in [71]

Two figures will be added here, based on (3.54)

The breaking of translational invariance modifies the conservation equations of relativistic

hydrodynamics into @
a

T a

b

= @
b

�IhOIi, where the Ward identity for the stress tensor controls

how momentum relaxes to equilibrium through scattering of the scalars. Notice that beyond

the leading order that was studied in [52] with @
a

T a

i

= �⌧�1
c

T a

i

, the new holographic Ward

identity up to order k4 suggested in [63] is

@
t

T t

i

+ @
i

P = �⌧̄�1
c

Q
i

� `ck
2a

i

, ⌧̄�1
c

=
k2

4⇡T̃c

, (3.55)

with the acceleration a
i

= @
t

v
i

. It is in (2.42) for our Rindler fluid, and in (3.46) for our

cuto↵ AdS fluid. For the cuto↵ AdS fluid, the heat conductivity and momentum relaxation

rate up to order k4 are

̃
!

=
1

1� !⌧
c

4⇡s̃c T̃c

k2
, ⌧�1

c

=
k2

4⇡T̃c

✓

1� `ck
2

Tcsc

◆

, (3.56)
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We need to define the new energy density and pressure through

Ẽ ⌘ E + ⇣ 0
�

(pk2), P̃ ⌘ P + ⇣
�

(pk2) + �P, (3.39)

such that the Smarr relation is satisfied,

Ẽ + P̃ = T̃c s̃c ) �P =
rp�1
c

Lp�2

k2

(p� 1)



1

�c

✓

rp�1
0

rp�1
c

� 1

◆

+ c⇤

�

+O(k4). (3.40)

Interestingly, �⇣
c

does not appear in �P and

D?
a

(�P) =
rp�1
0

Lp�2

k2

�c



(D?
a

ln r0)�
D?

a

ln�c

p� 1

✓

1� rp�1
c

rp�1
0

◆�

= (�`c)k
2a

a

, (3.41)

where after using the constraint equation in (3.20), we can see that

�`c =
�2�c

(p+ 1)� (p� 1)�2
c



2� (p+ 1)

(p� 1)�2
c

✓

1� rp�1
0

rp�1
c

◆

r2
0

r2
c

�

rp�1
0

Lp�2
. (3.42)

Linearised Hydrodynamics. — For the linearised hydrodynamics, again we consider

the linearised velocity and the temperature field

ua ! (1, u
i

(t)), T̃c(t, xi) ! r0 + �r0(t, xi). (3.43)

The Ward identity yields the following momentum non-conservation equation (3.31)

(E
⇣

+ P
⇣

)@
t

u
i

+ @
i

P
⇣

= �k2s̃c

4⇡
u
i

� (`c + �`c)k
2@

t

u
i

+ · · · . (3.44)

After redefining the velocity v
i

,

hT t

i

i = (E
⇣

+ P
⇣

)u
i

= (Ẽ + P̃)v
i

, v
i

⌘ (E
⇣

+ P
⇣

)

(Ẽ + P̃)
u
i

, (3.45)

the Ward identity for momentum non-conservation equation then up to order O(k4) becomes

@
t

hT t

i

i+ @
i

P̃ = �⌧̄�1
c

hT t

i

i � `ck
2@

t

v
i

+ · · · , ⌧̄�1
c

=
k2s̃c

4⇡(Ẽ + P̃)
. (3.46)

Assuming @
t

v
i

= � !v
i

and considering @
i

P̃ = s̃c@iT̃c , we have

v
i



k2
s̃c

4⇡
� !

⇣

Ẽ + P̃ + `ck
2
⌘

�

= �s̃c@iT̃c + · · · . (3.47)

From which we obtain the solution of v
i

v
i

= � 1

1� !⌧
c

4⇡

k2
@
i

T̃c + · · · , (3.48)
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From which we obtain the solution of v
i

v
i

= � 1

1� !⌧
c

4⇡

k2
@
i

T̃c + · · · , (3.50)

as well as the momentum relaxation rate

⌧�1
c

=
s̃ck

2

4⇡(Ẽ + P̃)



1 +
`ck

2

Ẽ + P̃

��1

=
k2

4⇡T̃c



1� ⇠
c

k2

T 2
c

�

+O(k6). (3.51)

Here the coe�cient `c is given by

`c = �c

"

Z

rc

r0

dr̃
r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

� 1

(p� 1)�2
c

r2
0

r2
c

✓

1� rp�1
0

rp�1
c

◆

#

rp�1
0

Lp�2
. (3.52)

Thus from the definition of the heat current hQ
i

i, we can read o↵

hQ
i

i ⌘ hT t

i

i = (Ẽ + P̃)v
i

= �̃
!

@
i

T̃c , (3.53)

which leads to the heat conductivity with momentum relaxation

̃
!

=
1

1� !⌧
c

4⇡s̃c T̃c

k2
, (3.54)

⌧�1
c

=
k2

4⇡T̃c



1� `cTc

sc

k2

T 2
c

�

+O(k6). (3.55)

In the DC limit ! ! 0, this expression reduces to the formulae in terms of the local s̃c and T̃c given
in (3.37) and (3.38),

̃DC ⌘ lim
!!0

̃
!

=
4⇡s̃c T̃c

k2
. (3.56)

For simplification, we can rewrite `c in (3.52) as the dimensionless form

⇠
c

⌘`cTc

sc

= (p+ 1)

"

⇠̃
p

(rc)�
rc ⇠̃

0
p

(rc)

(p� 1)

#

, (3.57)

⇠̃
p

(r) ⌘
Z

r

r0

dr̃ r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

. (3.58)

4 Rindler Fluid and Holographic Wilson RG Flow

In the fluid/gravity duality with a finite cuto↵ surface, the running of the cuto↵ surface is interpreted
as the Wilson renormalization group flow [22–25], a recent discussion of the dual field theory can be
found in [71]. However, it has been the first order transport coe�cients, such as the ratio of shear
viscosity and entropy density ⌘/s = 1/4⇡, does not run with the cuto↵ surface. In the following, we
will show that the dimensionless sub-leading correction ⇠

c

, which is defined in (3.57), will run along
with the cuto↵ surface.

The breaking of translational invariance modifies the conservation equations of relativistic hy-
drodynamics into @

a

T a

b

= @
b

�IhOIi, where the Ward identity for the stress tensor controls how
momentum relaxes to equilibrium through scattering of the scalars. Notice that beyond the leading
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Figure 1. The momentum relaxation rate ⌧�1
c in terms of the position of the cuto↵ surface rc. We have set

r0 = 1, k = 0.03. The holographic fluids live in the p + 1 dimensional spacetime, and p = 0, 1, ..., 4 from top

to down. The solid lines indicate the leading order contribution of ⌧�1
c in (4.2), up to k2. The dashed lines

include the sub-leading terms in ⌧�1
c , up to k4.

Figure 2. The dimensionless coe�cient ⇠c in terms of the position of the cuto↵ surface rc. The holographic

fluids live in the p + 1 dimensional spacetime, and p = 0, 1, ..., 4 from the bottom up. The solid lines are the

direct plots of ⇠c in (3.57) , and the dashed lines are taken from ⇠1 in (4.9).

For example, ⇠̃2(1) = (9 ln 3�p
3⇡)/18 and ⇠̃3(1) = ln 2/2 match with the values in [63, 64].

In Figure 1, we plot the momentum relaxation rate ⌧�1
c

in terms of the position of the cuto↵
surface r

c

. We have set r0 = 1, k = 0.03 and use r0 to normalize the units. The holographic fluids
live in the p+ 1 dimensional spacetime. The solid lines indicate the leading order contribution of ⌧�1

c

in (4.2) up to k2. The dashed lines include the sub-leading terms in ⌧�1
c

up to k4. Near the horizon
limit the local temperature Tc will divergent due to the Tolman relation, which lead to the vanishing
of the momentum relaxation rate ⌧�1

c

. While near the boundary limit, ⌧�1
c

approach a finite value.
It is interesting to compare this behavior with the the hydrodynamic description of electrons in the
materials. That at small scale the scattering of atom lattice is obvious, which corresponding to the
near boundary limit in holography. While at large scale the e↵ects of the lattice can be neglect, which
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order that was studied in [52] with @
a

T a

i

= �⌧�1
c

T a

i

, the new holographic Ward identity up to order
k4 suggested in [63] is

@
t

T t

i

+ @
i

P = �⌧̄�1
c

Q
i

� `ck
2a

i

, ⌧̄�1
c

=
k2

4⇡T̃c

, (4.1)

with the acceleration a
i

= @
t

v
i

. It is in (2.44) for our Rindler fluid, and in (3.48) for our cuto↵ AdS
fluid. For the cuto↵ AdS fluid, the momentum relaxation rate up to order k4 are

⌧�1
c

=
k2

4⇡T̃c

 

1� ⇠
c

k2

T̃ 2
c

!

, ⇠
c

=
`cTc

sc

. (4.2)

The value of ⇠
c

is given in (3.57), which is one of our main conclusions. In the following we will
take both of the near horizon limit and near boundary limit, and plot the running of relaxation rate
⌧�1
c

(Figure 1) and sub-leading coe�cient ⇠
c

(Figure 2) along with the cuto↵ surface rc .
Near horizon limit. — In order to take the near horizon limit rc ! r0 , and match with the

gauge choose in the Rindler fluid, we can choose the gauge g
(1)
uu

(r0) = 0 in (3.15) and fix �⇣
c

through

g(1)
uu

(r0) = 0 =) �⇣
c

=
L2�c

r0(p+ 1)

✓

1� p

2

rc � r0

r0

+ ...

◆

. (4.3)

We need to make the coordinate transformation

xa ! rc

L
xa,

rc

L
�c ! r0

L

p

f 0(r0)(rc � r0) = �0 . (4.4)

The near horizon limit indicates

f(r)

f(rc)
! f 0(r0)(r � r0)

f 0(r0)(rc � r0)
+O(�2

c
). (4.5)

After identifying

2c =
r2
0

L2
f 0(r0) = 20 , (4.6)

such that Tc ! T0 , we can recover the Rindler fluid with momentum relaxation. In particular, the
following dimensionless quantity in (2.46) is re-obtained from the near horizon limit,

lim
rc!r0

⇠
c

= ⇠0 = �1. (4.7)

Then from ⌧�1
c

in (4.2), we can also recover the formula of ⌧�1
0

in (2.52).
Near boundary limit. — The near boundary limit rc ! 1 of the cuto↵ surface in AdS is easier

to reach, since we kept the conformal factor in the metric (3.12). Refer to the procedure in [34], we
can simply set

c
�

! 1, c⇤ ! 1, �c ! 1, (4.8)

to recover all results at the AdS boundary. In particular, the dimensionless number

lim
rc!1

⇠
c

= ⇠1 ⌘ (p+ 1)⇠̃
p

(1), (4.9)

⇠̃
p

(1) ⌘
Z 1

r0

dr̃ r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

. (4.10)
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From which we obtain the solution of v
i

v
i

= � 1

1� !⌧
c

4⇡

k2
@
i

T̃c + · · · , (3.50)

as well as the momentum relaxation rate

⌧�1
c

=
s̃ck

2

4⇡(Ẽ + P̃)



1 +
`ck

2

Ẽ + P̃

��1

=
k2

4⇡T̃c



1� ⇠
c

k2

T 2
c

�

+O(k6). (3.51)

Here the coe�cient `c is given by

`c = �c

"

Z

rc

r0

dr̃
r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

� 1

(p� 1)�2
c

r2
0

r2
c

✓

1� rp�1
0

rp�1
c

◆

#

rp�1
0

Lp�2
. (3.52)

Thus from the definition of the heat current hQ
i

i, we can read o↵

hQ
i

i ⌘ hT t

i

i = (Ẽ + P̃)v
i

= �̃
!

@
i

T̃c , (3.53)

which leads to the heat conductivity with momentum relaxation

̃
!

=
1

1� !⌧
c

4⇡s̃c T̃c

k2
, (3.54)

⌧�1
c

=
k2

4⇡T̃c



1� `cTc

sc

k2

T 2
c

�

+O(k6). (3.55)

In the DC limit ! ! 0, this expression reduces to the formulae in terms of the local s̃c and T̃c given
in (3.37) and (3.38),

̃DC ⌘ lim
!!0

̃
!

=
4⇡s̃c T̃c

k2
. (3.56)

For simplification, we can rewrite `c in (3.52) as the dimensionless form

⇠
c

⌘`cTc

sc

= (p+ 1)

"

⇠̃
p

(rc)�
rc ⇠̃

0
p

(rc)

(p� 1)

#

, (3.57)

⇠̃
p

(r) ⌘
Z

r

r0

dr̃ r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

. (3.58)

4 Rindler Fluid and Holographic Wilson RG Flow

In the fluid/gravity duality with a finite cuto↵ surface, the running of the cuto↵ surface is interpreted
as the Wilson renormalization group flow [22–25], a recent discussion of the dual field theory can be
found in [71]. However, it has been the first order transport coe�cients, such as the ratio of shear
viscosity and entropy density ⌘/s = 1/4⇡, does not run with the cuto↵ surface. In the following, we
will show that the dimensionless sub-leading correction ⇠

c

, which is defined in (3.57), will run along
with the cuto↵ surface.

The breaking of translational invariance modifies the conservation equations of relativistic hy-
drodynamics into @

a

T a

b

= @
b

�IhOIi, where the Ward identity for the stress tensor controls how
momentum relaxes to equilibrium through scattering of the scalars. Notice that beyond the leading
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would be related to the near horizon limit.
In Figure 2, we plot the dimensionless coe�cient ⇠

c

in terms of the position of the cuto↵ surface
r
c

. The solid lines are the direct plots of ⇠
c

in (3.57), and the dashed lines are taken from ⇠1 in (4.9).
In summary, the dimensionless constant in (3.57) has two limits,

lim
rc! r0

⇠
c

= ⇠0 = �1, (4.11)

lim
rc!1

⇠
c

= ⇠1 = (p+ 1)⇠̃
p

(1). (4.12)

Near the horizon it recovers the correction in Rindler fluid (2.46), and near the infinity boundary it
recover the correction in AdS fluid [63, 64]. Where ⇠̃

p

(1) is given in (4.9), which also appears in
the second order transport coe�cients of the dual conformal fluid [16]. In order to keep the correct
physical dimensions, we have restored the surface gravity 0 in Rindler fluid instead of setting 20 = 1
in the literature [36], and we keep the AdS radius L in the AdS cuto↵ fluid. After changing into the
notations of the conformal coordinates with (4.4), we can also recover the conversion and results in
[34].

Thus, we have shown that even with the weak momentum relaxation, the Rindler fluid can be still
considered as the IR fixed point of Wilson RG Flow in fluid/gravity duality, and the conformal fluid
at the boundary would play the role as the UV fixed point. On the other hand, although the Rindler
fluid and conformal fluid share the same ⌘/s = 1/4⇡, but the pre-factors ⇠0 in (2.46) and ⇠1 in (4.9)
are di↵erent. To show the running more clearly, In Figure 2, we plot dimensionless coe�cient ⇠

c

in
terms of the position of the cuto↵ surface r

c

/r0. Notice that the holographic fluids live in the p + 1
dimensional spacetime, in the plot p running from 0 to 6. The solid lines are the direct plots of ⇠

c

in
(3.57), and the dashed lines are taken from ⇠1 in (4.9).

5 Conclusion

In this paper, we first introduced the weak momentum relaxation into Rindler fluid, which lives on
the timelike cuto↵ surface in Rindler frame. The translational invariance is broken by massless scalar
fields with weak strength k. And the order of derivative expansion in the relativistic fluid is assumed
to be @

a

⇠ k2. We then solved the gravitational field and scalar field equations up to order k3, and
obtained the heat conductivity of Rindler fluid. From the Ward identity up to order k4, we obtained
the momentum relaxation rate up to order k4 in (2.49). Through introducing a finite cuto↵ in AdS
spacetime and considering both of the near horizon limit and near boundary limit, we also showed
that how the momentum relaxation in Rindler fluid flows to the dual fluid living on the boundary of
AdS. In particular, we obtain the dimensionless coe�cient ⇠

c

in (3.57). In the IR limit that rc ! r0 ,
we have ⇠

c

! ⇠0 in (2.46). And in the UV limit that rc ! 1, we have ⇠
c

! ⇠1 in (4.9).
In summary, for the fluid living on the finite cuto↵ surface in AdS spacetime with momentum

relaxation, we have checked that we can recover the Rindler fluid in the near horizon limit, and we
can also recover the boundary fluid dual to AdS in the asymptotic infinity limit. It would be more
interesting to consider the charged fluid, which will appear in our further work. As it is well known that
DC response coe�cient becomes infinite when the system is translational invariance. In the holographic
condensed matters, in order to mimic the properties of lattice structure in real materials, there are
extensive studies incorporating the impurity into the system by means of momentum relaxation. And
the holographic transport coe�cients should be well defined at small frequency limit. We can categorize
the models into two types of studies depending on the conditions at AdS boundary as below. One is
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From which we obtain the solution of v
i

v
i

= � 1

1� !⌧
c

4⇡

k2
@
i

T̃c + · · · , (3.50)

as well as the momentum relaxation rate

⌧�1
c

=
s̃ck

2

4⇡(Ẽ + P̃)



1 +
`ck

2

Ẽ + P̃

��1

=
k2

4⇡T̃c



1� ⇠
c

k2

T 2
c

�

+O(k6). (3.51)

Here the coe�cient `c is given by

`c = �c

"

Z
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dr̃
r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

� 1

(p� 1)�2
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r2
0

r2
c

✓

1� rp�1
0

rp�1
c

◆

#

rp�1
0

Lp�2
. (3.52)

Thus from the definition of the heat current hQ
i

i, we can read o↵

hQ
i

i ⌘ hT t

i

i = (Ẽ + P̃)v
i

= �̃
!

@
i

T̃c , (3.53)

which leads to the heat conductivity with momentum relaxation

̃
!

=
1

1� !⌧
c

4⇡s̃c T̃c

k2
, (3.54)

⌧�1
c

=
k2

4⇡T̃c



1� `cTc

sc

k2

T 2
c

�

+O(k6). (3.55)

In the DC limit ! ! 0, this expression reduces to the formulae in terms of the local s̃c and T̃c given
in (3.37) and (3.38),

̃DC ⌘ lim
!!0

̃
!

=
4⇡s̃c T̃c

k2
. (3.56)

For simplification, we can rewrite `c in (3.52) as the dimensionless form

⇠
c

⌘`cTc

sc

= (p+ 1)

"

⇠̃
p

(rc)�
rc ⇠̃

0
p

(rc)

(p� 1)

#

, (3.57)
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✓

1� rp�1
0

r̃p�1

◆
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4 Rindler Fluid and Holographic Wilson RG Flow
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Abstract

We propose the induced gravity from higher dimensional flat spacetime, instead of the emergent
gravity from lower dimension. We assume that the induced stress tensor could be back reacted
on the hypersurface, and the equation of state are constrained by the Gauss equation. Then the
Lambda-CDM model can be considered as the perturbation of the de-Sitter hypersurface in higher
dimension, where the dark energy and dark matter can be induced from the holographic stress tensor,
which is relevant to extrinsic curvature of the higher dimensional embedding. We can recover and
give a new viewpoint on Verlinde’s emergent gravity and the MOND limit.

I. INTROCUSION

Verlinde has proposed the emergent gravity from the area law of entropy [1], and emergent dark matters from vol-
ume contribution of entanglement entropy [2]. In Verslinde’s entropy force or emergent gravity in (3+1) dimension,
the holographic scree is (2+1) dimensional, either surrounding the horizon of black hole or the de sitter universe. In
this paper, we give a new viewpoint on Verslinde’s emergent gravity, which can be considered as a (3+1) dimensional
holographic screen embedded in the (4+1) dimensional flat spacetime. We obtain new constrants from the hypersur-
face. On the cosmogical side, it leads to a new relation between the dark matter density, which matches well with the
⇤CDM(Lambda Could Dark Matter) parameters. On the spherical side, it reproduce the Verslinde’s emergent dark
matter, or the MOND limit, which matches well with the rotation curves of galaxies, and the gravitational lensings.

Induced Gravity at large scale— Instead of the emergent gravity from lower dimensional flat spacetime, we
propose the induced gravity from higher dimensional spacetime. We proposed that at the cosmological scale, the
Einstein field equation in 3+1 dimensional spacetime can be modified as

Rµ⌫ � 1

2
Rgµ⌫ +

H
0

c
(Kgµ⌫ �Kµ⌫) =

8⇡G

c4
Tµ⌫ . (1)

Where H
0

is the Hubble constant, G is the newton gravitational constant, and c is the velocity of light. We can also
put the extra terms on the right hand side, which induce the extra contribution to the stress tensor Tµ⌫

Tµ⌫ ⌘ �H
0

c3

8⇡G
(Kgµ⌫ �Kµ⌫) . (2)

It is just the Brown-York stress tensor induced from higher dimensional space time. We will show that this holographic
stress tensor Tµ⌫ can provide dark energy and dark matter.

⇤CDM Universe — n which the universe contains a positive cosmological constant ⇤ contribute to the dark
energy with component ⌦

⇤

, cold dark matter density parameter ⌦D, and Baryon density parameter ⌦B . which
satisfy ⌦D + ⌦B + ⌦

⇤

' 1, and dominating the universe. Based on these properties and the induced formala in (1),
we obtain a new formula of the uniform dark matter density. Compare with Verlinde’s emergent gravity,

Verlinde: ⌦2

D =
4

3
⌦B , (3)

CSZ: ⌦2

D =
1

2
⌦

⇤

(⌦D � ⌦B). (4)
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2

Let’s using some parameters from ⇤CDM [3], with a bit priori choice as following

⌦
⇤

= 0.685, ⌦D = 0.265, ⌦B = 0.050. (5)

Compare our formula with Verlinde’s, we have

�V ⌘ ⌦2

D � 4

3
⌦B ' 0.36% , (6)

�CSZ ⌘ ⌦2

D � 1

2
⌦

⇤

(⌦D � ⌦B) ' �0.34% . (7)

Although our relation hold as well as Verlinde’s, they are still some subtile derivation in approximation.

MOND limit

on-going...

II. INDUCED ⇤CDM UNIVERSE

Similar to the formula in (1), let’s write down the Einstein equation in d dimension as

Rµ⌫ � 1

2
Rgµ⌫ = d(Tµ⌫ + Tµ⌫), (8)

with µ, ⌫ = 0, 1, ..., (d�1), and d = 8⇡Gd/c4. The Tµ⌫ is the stress tensor of normal matters, and Tµ⌫ is the e↵ective
dark sectors of our universe, which can include the dark energy and dark matters. The trace lead to the Ricci scalar

R = � 2d

d� 2
(T + T ) . (9)

Now consider one higher dimension embedding of a hyper-surface into the d dimensional spacetime. with the normal
vector NM= 1

L (X0

, Xi) which is defined towards the direction of coordinates. From which we can define the induce
metric on the hypersurface gMN = ⌘MN �NMNN as well as the extrinsic curvature

Kµ⌫ ⌘ g M
µ g N

⌫ r
(MNN)

, (10)

with µ, ⌫ the index on the hypersurface, which depends on the coordinate choices.

The Hamiltonian constraint equation

K2 �Kµ⌫Kµ⌫ = R+ 2G(d+1)

MN NMNN , (11)

with M,N = 0, 1, ..., d. If we define the following Brown-York stress tensor,

Tµ⌫ = � 1

d+1

(Kgµ⌫ �Kµ⌫) , (12)

with d+1

the Einstein’s constant in d + 1 dimension. Notice that in the above defination, there is a minuse sign
compare with the usual brown-York formula, which means the opsite side of the normal vector N Then (11) gives

T 2

d� 1
� Tµ⌫T µ⌫ =

R+ 2G(d+1)

MN NMNN

(d+1

)2
. (13)

De Sitter Spacetime.— Without the normal matters Tµ⌫=0, and Tµ⌫ = T̄µ⌫ ⌘ � ⇤

d
gµ⌫ . The cosmological

constant ⇤ = (d�1)(d�2)

2L2 as the dark energy. It can be embedded into d+ 1 dimensional flat spacetime

ds2d+1

= ⌘MNdXMdXN = �dX2

0

+ dX2

i , (14)

with i = 1, 2, ..., d. It is a hyperbolid spacetime with radius L and the normal vector are

L2 = �T 2 +X2

i , NM =
1

L
(X

0

, Xi). (15)

6

There’re two points of view, or say in duality:

1) In higher dimensional viewpoint, there’s only baryonic matters on the brane, and the dark energy and dark
matter are only relevant to the extrinsic curvature.

Except the constrans equations, we also have the dynamical equation

R(d)
µ⌫ = (Kgµ� �Kµ�)K�

⌫ +Mµ⌫ , (53)

Mµ⌫ ⌘ g M
µ g N

⌫ R(d+1)

MN � g M
µ NP g N

⌫ NQR(d+1)

MPNQ.

R(d) = (K2 �Kµ⌫Kµ⌫) +R� 2R(d+1)

MN NMNN , (54)

R = � 2d

d� 2
(T + T ) . (55)

Although R(d+1)

MN = 0 in flat spacetime, it is not necessary for R(d+1)

MPNQ, which depends on the coordinate choices. In
prinpicle we can also define the induced stress tensor from

Rµ⌫ � 1

2
Rgµ⌫ = T M

µ⌫ + TB
µ⌫ , (56)

T M
µ⌫ ⌘ (Kgµ� �Kµ�)K�

⌫ +Mµ⌫ � 1

2

�
K2 �K⇢�K⇢�

�
gµ⌫ ,

Mµ⌫ ⌘ g M
µ g N

⌫ R(d+1)

MN � g M
µ NP g N

⌫ NQR(d+1)

MPNQ.

which is more nature to describe the evolution of the hyper surface, and indeed in the De-sitter spacetime, Kµ� = 1

Lgµ⌫
lead to T M

µ⌫ = �⇤gµ⌫ . However, if we consider the perturbations, it is not easy to guarantee the conservation of this

stress tensor @µT M
µ⌫

?

= 0. While instead the Brown-York one ha That’s why we didn’t use this formula in this work.
We have tried the perturbation based on this formula, we didn’t obtained expected constraint of the dark matters.
But it still a candidate for further interesting of study.

2) On the induced metric of the brane, there’re e↵ective contribution from the holographic stress tensor, which
can be identified as the stress tensor of dark energy and dark matter. Let’s start with the Einstein-Hilbert action in
(d+1) dimension,

Sd+1

=
1

2d+1

Z
dd+1x

p
�g̃(Rd+1

) +

Z
ddx

p
�gKd (57)

With g̃MN the metric in d+ 1 dimension. After the variation, we have

�Sd+1

=
h
R(d+1)

MN � 1

2
R(d+1)g̃MN

i
�g̃MN

+ (Kµ⌫ �Kgµ⌫) �g
µ⌫ (58)

In modified entropic gravity, gravitational field equation is

f

✓
Rµ⌫ � 1

2
gµ⌫R

◆
�

✓
rµr⌫f � 1

2
gµ⌫r2f

◆
= 8⇡GTµ⌫ , (59)

(rµf)Gµ⌫ =rµTµ⌫ , (60)

0 =rµTµ⌫ +rµT D
µ⌫ , (61)

To study the gravitational waves in this modified theory, let us first look at the freely propagating degrees of freedom
of the gravitational field. We first set all the matter source to zero Tµ⌫ = 0. We will tend to the production of the
waves later.

fRµ⌫ �rµr⌫f = 8⇡G

✓
Tµ⌫ � 1

2
gµ⌫T

◆
, (62)
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Now consider one higher dimension embedding of a hyper-surface into the d dimensional spacetime. with the normal
vector NM= 1

L (X0

, Xi) which is defined towards the direction of coordinates. From which we can define the induce
metric on the hypersurface gMN = ⌘MN �NMNN as well as the extrinsic curvature

Kµ⌫ ⌘ g M
µ g N

⌫ r
(MNN)

, (10)

with µ, ⌫ the index on the hypersurface, which depends on the coordinate choices.

The Hamiltonian constraint equation

K2 �Kµ⌫Kµ⌫ = R+ 2G(d+1)

MN NMNN , (11)

with M,N = 0, 1, ..., d. If we define the following Brown-York stress tensor,

Tµ⌫ = � 1

d+1

(Kgµ⌫ �Kµ⌫) , (12)

with d+1

the Einstein’s constant in d + 1 dimension. Notice that in the above defination, there is a minuse sign
compare with the usual brown-York formula, which means the opsite side of the normal vector N Then (11) gives

T 2

d� 1
� Tµ⌫T µ⌫ =

R+ 2G(d+1)

MN NMNN

(d+1

)2
. (13)

De Sitter Spacetime.— Without the normal matters Tµ⌫=0, and Tµ⌫ = T̄µ⌫ ⌘ � ⇤

d
gµ⌫ . The cosmological

constant ⇤ = (d�1)(d�2)

2L2 as the dark energy. It can be embedded into d+ 1 dimensional flat spacetime

ds2d+1

= ⌘MNdXMdXN = �dX2

0

+ dX2

i , (14)

with i = 1, 2, ..., d. It is a hyperbolid spacetime with radius L and the normal vector are

L2 = �T 2 +X2

i , NM =
1

L
(X

0

, Xi). (15)
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Interestingly, for the pure de-Sitter spacetime (15), after considering (10) with extrinsic curvature Kµ⌫ = 1
Lgµ⌫ ,

the Brown-York stress tensor (12) turns out to be Tµ⌫ = T̄µ⌫ = � 1
d+1

d�1
L gµ⌫ . Then we arrive at the stress tensor of

apparent dark energy,

T̄µ⌫ = �⇤d

d
gµ⌫ , when

d+1

d
=

2L

d� 2
. (18)

From (18) we read out the dark energy density formula

⇢⇤ = T̄µ⌫
uµu⌫

c4
=

⇤d

dc2
. (19)

After considering (14) with T = 0, we have the identity

T̄ 2

d� 1
� T̄ µ

⌫ T̄ ⌫
µ = � ⇢⇤c

2

d� 1
T̄ . (20)

Thus, assuming Tµ⌫ = T̄µ⌫ ⌘ � ⇤
d

gµ⌫ in the constraint equation (13), the pure de-Sitter spacetime satisfies the above
identity automatically. Notice here the Brown-York stress tensor plays the role of dark energy and there is no matter
or dark matter yet in the set-up.

Uniform Matter Perturbations. — Next we consider to add small amount of normal matters in with uniform
distribution, such that we treat the de-Sitter metric as background. It describes dark energy dominated universe like
today.

We consider that our university is uniform at large scale, and take the FLRM metric in d dimension,

ds2 =� c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦d�2

�
. (21)

In the ⇤CDM model, k = 0, and

H(a)2 = H2
0

⇥
⌦⇤ + (⌦D + ⌦B)a

�3 + ⌦Ra
�4

⇤
(22)

with H(a) ⌘ ȧ
a , and H0 is the Hubble constant today. Considering (18)(19), our assumption for the constraint relation

(14) becomes

T 2

d� 1
� Tµ⌫T µ⌫ = � ⇢⇤c

2

d� 1
(T + T ). (23)

This is the main constraint relation in this paper. Since in Einstein equation (8), Tµ⌫ is the Brown-York stress tensor
playing the role of dark matter and dark energy, and Tµ⌫ is the baryonic visible matter with mass density ⇢B ⌧ ⇢⇤.
The baryonic matter and radiation are with energy density,

TB
µ⌫ = ⇢Buµu⌫ , TR

µ⌫ = ⇢Ruµu⌫ + pRhµ⌫ . (24)

Now assume that the dark matter is induced with mass density ⇢D ⌧ ⇢⇤. The dark energy and cold dark matters
are all assumed to be related to the extrinsic curvature.

Tµ⌫ = T ⇤
µ⌫ + T D

µ⌫ , Tµ⌫ = TB
µ⌫ + TR

µ⌫ , (25)

where T ⇤
µ⌫ = �(⇢⇤c2)gµ⌫ and T D

µ⌫ = ⇢Duµu⌫ . Putting them back into the constraint equation (23), and subtracting
equation (20),

�d� 2

d� 1
⇢2D +

2

d� 1
⇢⇤⇢D +

d

d� 1
⇢2⇤ =

1

d� 1
⇢̃⇤(d⇢⇤ + ⇢D + ⇢B). (26)

If setting ⇢̃⇤ = ⇢⇤, we arrive at,

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
. (27)

When d = 4, the stress tensor of radiation is traceless �⇢Rc
2 + 3pR = 0. If setting ⇢D ' 5⇢B , ⇢⇤ ' ⇢c � ⇢D � ⇢B ,

we can recover Verlinde’s constraint relation (4) approximately. Considering that the critical mass density of the
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