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• Typical potential for ‘inflation + massive field’, where 
oscillatetions will be generated. (Borrowed from Chen, 
Namjoo & Wang 2015, see also Yi Wang’s talk)



• Chen, Namjoo & Wang 2015: 

⇠ (1� e��2/M2

)



⇠
⇣
1� e��/MPl

⌘2

• Our model: (see also Minxi He’s talk; Mori, Kohri & White 
2017)



Motivation

• A natural way to realize it is just R2 gravity plus inflaton.


• R2 gravity itself can generate inflation. (Starobinsky 1980)


• Also, it is the best-fit inflation model. (Planck 2015) 


• It is equivalent to study the scalar field(s) in Starobinsky 
model.
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Setup
• We propose the Lagrangian as the Starobinsky R2 gravity plus a scalar field χ, 

nonminimally coupled to gravity


• Recall Minxi He’s talk if χ is explained as Higgs boson.


• V(χ) is potential for χ, which we pick for the small-field form: V(χ)=V0-(1/2)m2χ2+…. 
(Recall Yipeng Wu’s talk for a similar potential from SSB) 


• ξ-term is the non-minimally coupled term to solve the initial condition problem. 
Another version of SSB in χ direction.
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Setup
• It has been proved that the action with R2 is equivalent to Einstein-Hilbert 

action plus one scalar field (scalaron). (Whitt 1984, Maeda 1988) 


• After transferred to Einstein frame, our model becomes Hilbert Einstein 
action with two scalar fields: scalaron φ + light field χ, with nontrivial 
metric in field space (Mizuno’s talk)
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EoM
• The equations of motion:


• with                             and 
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Slow-roll EoM
• The slow-roll version of equations of motion:


• We have defined an important mass parameter


• which is the mass M measured by H at φ=0.


• The relations in φ go back to Starobinsky model for 
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End of Starobinsky inflationEnd of the first stage of inflation, 
marked as φ*

• We have the ``later end of inflation’’, for V0 can become 
important at the end of the first stage of inflation.



Some Conditions
• Late end of first stage:                                      (Starobinsky model                )


• If μ is not too large, the transition between two stages does not violate the 
inflation. (see Polarski & Starobinsky 1992)


• We will focus on this range, for 2<μ<8.95.


• To solve the initial conditions, we require ξ to be positive and small: ξ<m2/
M2.


• If ξ is too small, the initial condition for the small field inflation for χ will again 
arise. So in our model we require ξ  is not too smaller than O(m2/M2).


• In the first stage, φ dominates inflation, and the curvature perturbation can 
be calculated by δΝ formalism. (Sasaki & Stewart 1995)
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Power Spectrum  
in the First Stage

• We use δΝ formalism to calculate the power spectrum in the first 
stage


• With the slow-roll parameters
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Transition to  
the Second Stage

• After φ stops slow-rolling, it becomes a ``heavy field’’, and we can use the EFT 
method to integrate it out. (Tolley & Wyman 2009, Achucarro, Gong, Hardeman, 
Palma & Patel 2010.)


• The φ field goes to a ``gelaton’’ solution


• And the effective action at this trajectory is
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Second Stage
• The inflation is now dominated by the scalar field χ, and 

the background evolution can be easily solved as
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Second Stage
• But we know that φ does not lie on φg from the beginning: it rolls 

down to it from the Starobinsky plateau.


• The evolution of φ is just a classical perturbation to the ``gelaton’’ 
trajectory φg: φ=φg+Δφ


• And the oscillation of φ can be solved as perturbations to the EFT 
solution.


• After that we can linearize it and find its solution.
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Second Stage
• The solution is


• There is oscillation only for


• There is also an upper bound for not violate inflation 
during the transition:

��

MPl
= e

3
2 (N�N⇤)

r
3

2

ln

F⇤(µ)

1 +

4
µ2

p
1 +⌥

2
cos

"✓
µ2

1 + 4/µ2
� 9

4

◆ 1
2

(N �N⇤) + arctan⌥

#
,

⌥ =

✓
µ2

1 + 4/µ2
� 9

4

◆� 1
2

"
3

2

� 4

3

F⇤ � 1� 4/µ2

F 2
⇤ � 2F⇤ + 1 + 4/µ2

✓
ln

F⇤
1 + 4/µ2

◆�1
#

µ & 2.08

µ . 8.95



Power Spectrum  
In the Second Stage

• Since φ is a heavy field, its perturbations are exponentially 
suppressed. 


• We can use δΝ formalism to calculate the power spectrum in 
the second stage, mainly contributed by the quantum 
fluctuations of χ. 


• The dependence of e-folding number can be calculated by its 
slow-roll EoM, which is dynamically coupled to Δφ.

3H

 
1� 1

3

r
2

3

�̇

HMPl

!
�̇+ e

�
p

2
3

�
MPl V 0(�) = 0.



Power Spectrum 
In the Second Stage
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Power Spectrum 
In the Second Stage
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Power Spectrum 
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Application at large scales:  
Large scale anomaly
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Application at small scales:  
PBH as dark matter

• If the peak of density spectrum has exceeded some critical value δc(~0.4), there will be 
PBH formation when the mode re-enters the horizon. (Carr, Kühnel, Sandstad 2016)


• Initial mass fraction:


• For a Gaussian probability distribution:


• MH is the horizon mass at re-entry, and σ(MH) is the variance of its PDF. 


• And β can be transferred to the mass spectrum today by
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• On CMB scales σ(MH) ≈10-5, and β is exponentially 
suppressed.


• At transition there is a huge enhancement of the power 
spectrum, where σ(MH)  may be around σ(MH)≈10-2. And a 
significant amount of PBHs may be produced at the re-
entry.

Application at small scales:  
PBH as dark matter



Carr, Kühnel &Sandstad 2016. Borrowed from Anne Green’s slides.



However, the wave effect may weaken the constraints at 1020~1024 g, 
Takada, talk@IPMU, see also Inomata et. al. 2017
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Summary

• R2+scalar field ≡ two-field with non-trivial field metric.


• Scalar field may provide a second stage inflation after the 
end of Starobinsky-stage.


• The transition of two stages may give enhanced features 
on the power spectrum.


• This enhanced ``feature’’ can be used to produce PBHs as 
dark matter.



Thank you!


