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* Typical potential for ‘inflation + massive field’, where

oscillatetions will be generated. (Borrowed from Chen,

Namjoo & Wang 2015, see also Yi Wang’s talk)



e Chen, Namjoo & Wang 2015:
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I, Kohri & White

* Our model: (see also Minxi He’s talk; Mori

2017)



Motivation

e A natural way to realize it is just Rz gravity plus inflaton.
e RZ2 gravity itself can generate inflation. (Starobinsky 1980)

e Also, it is the best-fit inflation model. (Planck 2015)
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Motivation

A natural way to realize it is just R? gravity plus inflaton.
R2 gravity itself can generate inflation. (Starobinsky 1980)
Also, it is the best-fit inflation model. (Planck 2015)

It is equivalent to study the scalar field(s) in Starobinsky
model.
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Setup

e We propose the Lagrangian as the Starobinsky R2 gravity plus a scalar field 1y,
nonminimally coupled to gravity

M3 R? 1 1
S; = /d4a:\/—g {Tm (R I 6M2> — 59“”8MX(9,,X —Vix) — §§RX2} .

* Recall Minxi He’s talk if y is explained as Higgs boson.

* V(y) is potential for y, which we pick for the small-field form: V(y)=Vo-(1/2)m2y%+....
(Recall Yipeng Wu'’s talk for a similar potential from SSB)

e C-term is the non-minimally coupled term to solve the initial condition problem.
Another version of SSB in y direction.



Setup

* |t has been proved that the action with R? is equivalent to Einstein-Hilbert
action plus one scalar field (scalaron). (Whitt 1984, Maeda 1988)

e After transferred to Einstein frame, our model becomes Hilbert Einstein
action with two scalar fields: scalaron ¢ + light field y, with nontrivial

metric in field space (Mizuno’s talk)

2

2 2 2 2 2
B %M2M1:2>1 (1_6—\/;1\4";1 _|_€_\/;MLP1§]\>§2 ) _ o2 3M&V(X)}.
Pl

1 1 _./2_ ¢
Sp = [ d*z PIR— —g"" 0,00, — € V'3 ¥ g0, x0,x
u T




EoM

e The equations of motion:

1. 1., 3 2\1°
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e With F =exp (\/é%) and V(X) :VO——m2X2—|—"'7



Slow-roll EoM

The slow-roll version of equations of motion:

: 3 _./2_9o /2 ¢ 4
3Hp = — 5¢ > Mp1 (1—6 > Mp (1+F>>M2MP1,

2 gb , o —/2_¢_ 2_¢ m?
<3H \/;M—Pl> X +3M~e \/;MPI [§ (e\/;MPl — 1> — 3M2] x = 0.

We have defined an important mass parameter

2 BMME
Vo
which is the mass M measured by H at ¢ =0.

The relations in ¢ go back to Starobinsky model for p — o©
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End of the first stage of inflation,
marked as ¢+

 We have the "later end of inflation”, for Vo can become
important at the end of the first stage of inflation.



Some Conditions

Late end of first stage:  _— 118+ L2 (Starobinsky model 54 )

ILL *
If uis not too large, the transition between two stages does not violate the
inflation. (see Polarski & Starobinsky 1992)

We will focus on this range, for 2<u<8.95.

To solve the initial conditions, we require € to be positive and small: E<m?/
M2,

If € is too small, the initial condition for the small field inflation for x will again
arise. So in our model we require & is not too smaller than O(m2/M2).

In the first stage, ¢ dominates inflation, and the curvature perturbation can
be calculated by 6N formalism. (Sasaki & Stewart 1995)



Power Spectrum
in the First Stage

* We use 6N formalism to calculate the power spectrum in the first
stage
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Transition to
the Second Stage

* After ¢ stops slow-rolling, it becomes a "heavy field”, and we can use the EFT

method to integrate it out. (Tolley & Wyman 2009, Achucarro, Gong, Hardeman,
Palma & Patel 2010.)

* The ¢ field goes to a "gelaton” solution
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* And the effective action at this trajectory is
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Second Stage

* The inflation is now dominated by the scalar field ¥, and
the background evolution can be easily solved as

2M2 (2)
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Second Stage

e But we know that ¢ does not lie on ¢, from the beginning: it rolls
down to it from the Starobinsky plateau.

 The evolution of ¢ is just a classical perturbation to the "gelaton”
trajectory ¢: o=+ Agp

e And the oscillation of ¢ can be solved as perturbations to the EFT
solution.
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e After that we can linearize it and find its solution.



Second Stage

e The solution is

Y

2 9 %
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= n
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e There is oscillation only for u 2 2.08

e There is also an upper bound for not violate inflation
during the transition: © < 8.95



Power Spectrum
In the Second Stage

Since ¢ is a heavy field, its perturbations are exponentially
suppressed.

We can use 6N formalism to calculate the power spectrum in
the second stage, mainly contributed by the quantum
fluctuations of .

The dependence of e-folding number can be calculated by its
slow-roll EoM, which is dynamically coupled to Ag.
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Power Spectrum
In the Second Stage
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Power Spectrum
In the Second Stage
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Power Spectrum
In the Second Stage
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Power Spectrum
In the Second Stage
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Power Spectrum
In the Second Stage
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Application at large scales:
Large scale anomaly
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Application at small scales:
PBH as dark matter

If the peak of density spectrum has exceeded some critical value J.(~0.4), there will be
PBH formation when the mode re-enters the horizon. (Carr, Kiihnel, Sandstad 2016)

Initial mass fraction:

s ~ | " P(O(M))dS(My)

C

For a Gaussian probability distribution:

pLM) = erte (ﬂaiiWH))

My is the horizon mass at re-entry, and o(Mp) is the variance of its PDF.

And [3 can be transferred to the mass spectrum today by

1/2
f~10° (%) B(M)



Application at small scales:
PBH as dark matter

* On CMB scales o(My) =105, and [3 is exponentially
suppressed.

e At transition there is a huge enhancement of the power
spectrum, where o(My) may be around o(Mu)=10-2. And a

significant amount of PBHs may be produced at the re-
entry.
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Carr, Kiithnel &Sandstad 2016. Borrowed from Anne Green’s slides.



However, the wave effect may weaken the constraints at 1020~1024 g,
Takada, talk @IPMU, see also Inomata et. al. 2017
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However, the wave effect may weaken the constraints at 1020~1024 g,
Takada, talk@IPMU, see also Inomata et. al. 2017



Count the e-
foldingsfor
PBH production
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Count the e-
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PBH production |
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Count the e-
foldingsfor
PBH production
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Count the e-
foldingsfor
PBH production
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PBH mass.: MPBH ~ MH ~ %62(N2+N081/4) — %62(60—]\[1)

Inverse relation: N1 =44.4-ln (1016 g) .
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Summary

R2+scalar field = two-field with non-trivial field metric.

Scalar field may provide a second stage inflation after the
end of Starobinsky-stage.

The transition of two stages may give enhanced features
on the power spectrum.

This enhanced feature” can be used to produce PBHs as
dark matter.






