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Can the laws of special relativity
be violated 1n principle? Are they exact?



Special Relativity in QED

QED  Spin 1 Photons Coupled to Spin 1/2 Electrons
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Violate Special Relativity in QED
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Violate Special Relativity in QED

Ce 7 C Cherenkov radiation in vacuum

(Related processes constrain faster than light neutrinos)
(Cohen, Glashow)



Violate Special Relativity in Standard Model

Colladay and Kostelecky 1998
Coleman and Glashow 1998

46 Lorentz violating couplings (CPT even)



Violate Special Relativity in Standard Model

- Local

- Causal

- Unitary

- Renormalizable (EFT)

- No vacuum 1nstability

- No gauge anomalies

- Same # degrees of freedom

- Obeys laws of thermodynamics
- (Gauge 1nvariant)



More Violations of Special Relativity
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In this talk

Principles: Locality (and Rot. + Trans. Invariance)
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|

Special Relativity

E?2 = p?c® + m2c!



Particle Spin

Rotation invariance organizes particles by spin
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Particle Spin

Rotation invariance organizes particles by spin

1 3
' =0,=-,1,=-,2,...
Spin s=U5: 5554

“Massive” S, =—8,—s+1,...,s—1,s

“Massless” h = -+s




“Massless” Spin 1 and Spin 2

State: (x[y) = e(q) eI
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“Massless” Spin 1 and Spin 2

State: (x[Y) = e(q) "9

Spin 1 €, €¢q;, =0 (Transverse)

Spin 2 €ij, €;¢ =0, € =0 (TT)



Propagator for Spin 1 and Spin 2
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Propagator for Spin 1 and Spin 2
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Action from Tree-Exchange
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Locality

Principle: No instantaneous action at a distance



Locality

Principle: No instantaneous action at a distance
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Constitutive relation

Locality
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Locality
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Constitutive relation  ¢; J*(¢) = Mi(q) w p(q)

Ki(q) = ’la]® + |a|*P.(la]?)




Local Lagrangian for Photon Fields

Field: (ei(@) dq + € (@) alq)//2E; = Ai(x)
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Local Lagrangian for Photon Fields

Field: (ei(@) dq + € (@) alq)//2E; = Ai(x)

Ki(—A)
—A

+%¢L1<—A>¢+ A My (~A)Vé + A(V-A)?

1, . 1
£:§|A\2—§V><A- VXA+A-J—0¢p

Ki=—-cA+0(A%), L =-A+0(A%), M =1+0(A)



Soft Gauge Invariance for Spin |
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4-component vector: A,

(_gba A)

Locality — A,=A,+0J,a (slowly varying «)

€u(q) = €u(q) + qua (soft &)




Soft Gauge Invariance for Spin 2



Soft Gauge Invariance for Spin 2

Appendiz:-— Here we extend the locality analysis to the
spin 2 case. The most general interaction from tree-level
graviton exchange is

d'g [ Tikrs TR ., | 27}
AS = / [7"' 2 T+ ——
(2m) N2(q)

— K2(q)
oT;; 1 oo* 1 w?o*
ST | (34)
Ra(q)  2Lx(q) 2[a2Ly(q)
where r3; = 0;; — 14. For non-localities to cancel, we

need the constitutive relations: ¢; 7;; = M>(q)w 7; and
gi 7i = Mj(q)wé. Imposing locality we find that these
functions must be related to polynomials as:

K3(q) = mjdp,py 0 + cglal” +|a|* Pa(lal®), (35)
P
Na(q)™' = = 4P + Pe(laf?), (36)

VPP

Ry(q)™' = TqF T Py(lal?), (37)
La(q)~" = |le 2 4 Py(lq) (38)
()t = fgﬁé + Pu(lal?), (30)
M>(q)? = P2 + |a|*Pi(|q)?), (40)
Mj(q)® = P + |a|*P;(|a]?). (41)

So a long range force requires c§P2P2’ # 0. Hence the
graviton must be massless, and we can set P, = P) =1,

and we need ¢y # 0. By Fourier transforming to the lo-

cal field representation (€;;(q) aq + €;;(q) @ al @)/
hij(x), we can construct the following Lagranglan

L= §|1'1|2 — §v xh-Ky(—A)V x h+ hi; 79 +2¢; m;

+ o+ %w Na(—A)Vi + Vi - Ma(—A)R
+ ¢ R2(—A)VV-h + A\(V-h)2. (42)

For ease of notation, we have defined the dot product
between two matrices as A-B = A;;B;; — A;;B;;. The
functlons here are related to the above as IC2( A) =

Ky(-A)/(-A), N2(—A) = No(-A)/(-4A), Ma(-A) =
Mj(~A)Ry(=A)/(=A), and Ray(=A) = Ry(=A)/(=A).
Demanding that the spin 2 exchange arises from an ac-
tion places further consistency conditions on the func-
tions Ly' = Ky/R%, L' = 4M}? /N, — 3|q|?/R2, and
My = M3R3/Ns. Note that in our convention, the grav—
itational couplings are included in the sources 77, 7, o.

We then find that to leading order in a derlvatlve
expansion, the first, second, sixth and seveznth terms
in (42) assemble into Lo = i|h + Vy|? — 2|V x h|%,
which is invariant under the gauge transformation h;; —
hij + Viajy, ¥i = ¥i — &;. Likewise, the seventh and
eighth terms in (42) are invariant under the gauge trans-
formation v; — ¥; — Viap, @ = ¢ + &o (up to a total
derivative). A 4 x 4 matrix h,, can then be assembled as
hoi = —i, hoo = ¢, and we obtain soft gauge invariance,
as reported in Eq. (12).



Soft Gauge Invariance for Spin 2
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Soft Gauge Invariance for Spin 2
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Soft Gauge Invariance for Spin 1 and 2

Soft gauge invariance 1s required to ensure that the non-
dynamical fields are mixed with the propagating degrees
of freedom, such that long range forces inherit the finite
speed of propagation of the spin 1 or spin 2 particles




(Soft) Gauge Invariant Spin 2 Theories

Simple attempts fail... Leading to many questions:

~S

— What restrictions are placed on F- = K,,(p,,) ?
— What 1f we include fermions and gauge/vector bosons?
— What constraints apply to £ = K,(q)?

— Is the equivalence principle still required for consistency?

— What objects can we couple to?

Need systematic analysis



Soft Graviton Scattering

Evzz = Kn (pn)
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Soft Graviton Scattering




Soft Graviton Scattering

Denominator:
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Soft Graviton Scattering
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Unitarity and Locality Constraint
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Unitarity and Locality Constraint

€u(q) = € (q) + qudw + qu &y (soft )

Cancel graviton momenta
T (Pn) = gn(En) Gy (Pn) G (Pn)

Z g9i(Ei) ¢ (pi) = Z gr(Ey) Cr(pr)
2 /




Conservation Laws
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(Grav. Coupling) gn(Ep) = K
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Conservation LLaws
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(Grav. Coupling)

Conservation LLaws
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Dispersion Relation

KE,?L +20Q, F, = /{03|pn\2 + b,

Complete the square: by, — By, an
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Dispersion Relation
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Some Consequences

- Lorentz violating Standard Model
- Lorentz violating approaches to quantum gravity

- Doubly/deformed special relativity

- Lorentz violating alternatives to inflation

Brings into doubt the viability of these models



Conclusions

Locality requires soft gauge invariance

For spin < 1, special relativity 1s easily violated in principle
For spin 2, special relativity 1s difficult to violate:

— The relativistic energy-momentum relation must be exact
— The leading interactions must be Lorentz invariant

It remains to be proven if all higher order interactions are too



