Special Relativity from Soft Gravitons

Mark Hertzberg, Tufts University

CosPA, December 14, 2017

with McCullen Sandora, PRD 96 084048 (1704.05071)

Can the laws of special relativity be violated in principle? Are they exact?

Special Relativity in QED

QED Spin 1 Photons Coupled to Spin 1/2 Electrons

Special Relativity in QED

QED
$$\mathcal{L} = -\frac{1}{4} F_{\mu\alpha} \eta^{\mu\nu} \eta^{\alpha\beta} F_{\nu\beta} + \bar{\psi} (i\gamma^{\mu} D_{\mu} - m) \psi$$

Special Relativity in QED

QED
$$\mathcal{L} = -\frac{1}{4} F_{\mu\alpha} \eta^{\mu\nu} \eta^{\alpha\beta} F_{\nu\beta} + \bar{\psi} (i\gamma^{\mu} D_{\mu} - m) \psi$$
$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2 \eta^{\mu\nu}$$

$$\eta^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -c^2 & 0 & 0 \\ 0 & 0 & -c^2 & 0 \\ 0 & 0 & 0 & -c^2 \end{pmatrix}$$

$$E_q^2 = c^2 |\mathbf{q}|^2$$

$$E^2 = c^2 |\mathbf{p}|^2 + m^2 c^4$$

Violate Special Relativity in QED

QED
$$\mathcal{L} = -\frac{1}{4} F_{\mu\alpha} \eta^{\mu\nu} \eta^{\alpha\beta} F_{\nu\beta} + \bar{\psi} (i \gamma_e^{\mu} D_{\mu} - m) \psi$$
$$\{ \gamma_e^{\mu}, \gamma_e^{\nu} \} = 2 \eta_e^{\mu\nu}$$

$$\eta^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -c^2 & 0 & 0 \\ 0 & 0 & -c^2 & 0 \\ 0 & 0 & 0 & -c^2 \end{pmatrix} \qquad \eta_e^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -c_e^2 & 0 & 0 \\ 0 & 0 & -c_e^2 & 0 \\ 0 & 0 & 0 & -c_e^2 \end{pmatrix}$$

$$E_q^2 = c^2 |\mathbf{q}|^2$$

$$E^2 = c_e^2 |\mathbf{p}|^2 + m^2 c_e^4$$

Violate Special Relativity in QED

$$c_e \neq c$$
 Cherenkov radiation in vacuum

(Related processes constrain faster than light neutrinos)
(Cohen, Glashow)

Violate Special Relativity in Standard Model

Colladay and Kostelecky 1998 Coleman and Glashow 1998

46 Lorentz violating couplings (CPT even)

Violate Special Relativity in Standard Model

- Local
- Causal
- Unitary
- Renormalizable (EFT)
- No vacuum instability
- No gauge anomalies
- Same # degrees of freedom
- Obeys laws of thermodynamics
- (Gauge invariant)

-

More Violations of Special Relativity

$$\mathcal{L} = -\frac{1}{4} F_{\mu\alpha} \eta^{\mu\nu} \eta^{\alpha\beta} F_{\nu\beta} + \sum_{n} \bar{\psi}_{n} (i\gamma_{n}^{\mu} D_{\mu} - m_{n}) \psi_{n}$$

$$\eta^{\mu\nu} \to \eta^{\mu\nu}(-\Delta)$$
 $\gamma_n^i D_i \to f_n(\gamma_n^i D_i)$

$$E_{q}^{2} = K_{1}(\mathbf{q})$$

$$\downarrow$$

$$K_{1}(\mathbf{q}) = c^{2}|\mathbf{q}|^{2} + d|\mathbf{q}|^{4} + \dots$$

$$\tilde{K}_{n}(\mathbf{p}) = c_{n}^{2}|\mathbf{p}|^{2} + m_{n}^{2}c_{n}^{4} + d_{n}|\mathbf{p}|^{4} + \dots$$

In this talk

Principles: Locality (and Rot. + Trans. Invariance)

In this talk

Principles: Locality (and Rot. + Trans. Invariance)

Apply to Spin 2

In this talk

Principles: Locality (and Rot. + Trans. Invariance)

Apply to Spin 2

Special Relativity

$$E^2 = p^2 c^2 + m^2 c^4$$

Particle Spin

Rotation invariance organizes particles by spin

Spin
$$s = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \dots$$

Particle Spin

Rotation invariance organizes particles by spin

$$s = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \dots$$

$$s_z = -s, -s + 1, \dots, s - 1, s$$

$$h = \pm s$$

Particle Spin

Rotation invariance organizes particles by spin

$$s = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \dots$$

$$s_z = -s, -s + 1, \dots, s - 1, s$$

$$h = \pm s$$

"Massless" Spin 1 and Spin 2

State: $\langle \mathbf{x} | \psi \rangle = \epsilon(\mathbf{q}) e^{i\mathbf{q} \cdot \mathbf{x}}$

"Massless" Spin 1 and Spin 2

State:

$$\langle \mathbf{x} | \psi \rangle = \epsilon(\mathbf{q}) \, e^{i\mathbf{q} \cdot \mathbf{x}}$$

Spin 1

$$\epsilon_i, \quad \epsilon_i \, q_i = 0 \quad \text{(Transverse)}$$

"Massless" Spin 1 and Spin 2

State:
$$\langle \mathbf{x} | \psi \rangle = \epsilon(\mathbf{q}) e^{i\mathbf{q} \cdot \mathbf{x}}$$

Spin 1
$$\epsilon_i$$
, $\epsilon_i q_i = 0$ (Transverse)

Spin 2
$$\epsilon_{ij}$$
, $\epsilon_{ij} q_i = 0$, $\epsilon_{ii} = 0$ (TT)

Manifest rotation invariance

(no need for gauge invariance for manifest symmetry)

Propagator for Spin 1 and Spin 2

Spin 1

$$\epsilon_i$$
 \sim \sim \sim ϵ_j

$$G_{ij} = \frac{\delta_{ij} - \frac{q_i q_j}{|\mathbf{q}|^2}}{E^2 - K_1(\mathbf{q})}$$

Propagator for Spin 1 and Spin 2

Spin 1

$$\epsilon_i$$
 \sim \sim \sim ϵ_j

$$G_{ij} = \frac{\delta_{ij} - \frac{q_i q_j}{|\mathbf{q}|^2}}{E^2 - K_1(\mathbf{q})}$$

Spin 2

$$G_{ijkl} = \frac{\left(\delta_{ij} - \frac{q_i q_j}{|\mathbf{q}|^2}\right) \left(\delta_{kl} - \frac{q_k q_k}{|\mathbf{q}|^2}\right) - (j \leftrightarrow k, l)}{E^2 - K_2(\mathbf{q})}$$

Action from Tree-Exchange

Magnetic+Electric (Non-Local)

Electric [Coulombic] (Non-Local)

Principle: No instantaneous action at a distance

Principle: No instantaneous action at a distance

Turn on sources at t=0

$$\frac{d^p}{dt^p}\mathbf{x}_n(t=0) = 0 \quad (p \ge 2)$$

$$\Delta S = \int \frac{d^4q}{(2\pi)^4} \left[\tilde{J}^i(q) \frac{\delta_{ij} - \frac{q_i q_j}{|\mathbf{q}|^2}}{\omega^2 - K_1(\mathbf{q})} \tilde{J}^{j*}(q) + \frac{\tilde{\rho}(q)\tilde{\rho}^*(q)}{L_1(\mathbf{q})} \right]$$

Constitutive relation $q_i \tilde{J}^i(q) = M_1(\mathbf{q}) \, \omega \, \tilde{\rho}(q)$

$$\Delta S = \int \frac{d^4q}{(2\pi)^4} \left[\tilde{J}^i(q) \frac{\delta_{ij} - \frac{q_i q_j}{|\mathbf{q}|^2}}{\omega^2 - K_1(\mathbf{q})} \tilde{J}^{j*}(q) + \frac{\tilde{\rho}(q)\tilde{\rho}^*(q)}{L_1(\mathbf{q})} \right]$$

Constitutive relation

$$q_i \, \tilde{J}^i(q) = M_1(\mathbf{q}) \, \omega \, \tilde{\rho}(q)$$

$$\frac{d^p}{dt^p}\mathbf{x}_n(t=0) = 0 \quad (p \ge 2) \qquad \Longrightarrow \qquad$$

$$\Delta S = \int \frac{d^4q}{(2\pi)^4} \left[\sum_{p} \frac{\text{Poly}_p(|\mathbf{q}|^2)}{\omega^p} \right]$$

$$\Delta S = \int \frac{d^4q}{(2\pi)^4} \left[\tilde{J}^i(q) \frac{\delta_{ij} - \frac{q_i q_j}{|\mathbf{q}|^2}}{\omega^2 - K_1(\mathbf{q})} \tilde{J}^{j*}(q) + \frac{\tilde{\rho}(q)\tilde{\rho}^*(q)}{L_1(\mathbf{q})} \right]$$

Constitutive relation
$$q_i \tilde{J}^i(q) = M_1(\mathbf{q}) \omega \tilde{\rho}(q)$$

$$K_{1}(\mathbf{q}) = c^{2}|\mathbf{q}|^{2} + |\mathbf{q}|^{4}P_{a}(|\mathbf{q}|^{2})$$

$$L_{1}(\mathbf{q})^{-1} = \frac{1}{|\mathbf{q}|^{2}} + P_{b}(|\mathbf{q}|^{2})$$

$$M_{1}(\mathbf{q})^{2} = 1 + |\mathbf{q}|^{2}P_{c}(|\mathbf{q}|^{2})$$
(locality)

Local Lagrangian for Photon Fields

Field:
$$(\epsilon_i(\mathbf{q}) \, \hat{a}_{\mathbf{q}} + \epsilon_i^*(\mathbf{q}) \, \hat{a}_{-\mathbf{q}}^{\dagger}) / \sqrt{2E_q} \rightarrow A_i(\mathbf{x})$$

$$\mathcal{L} = \frac{1}{2} |\dot{\mathbf{A}}|^2 - \frac{1}{2} \nabla \times \mathbf{A} \cdot \frac{K_1(-\Delta)}{-\Delta} \nabla \times \mathbf{A} + \mathbf{A} \cdot \mathbf{J} - \phi \rho$$
$$+ \frac{1}{2} \phi L_1(-\Delta) \phi + \dot{\mathbf{A}} \cdot \mathcal{M}_1(-\Delta) \nabla \phi + \lambda (\nabla \cdot \mathbf{A})^2$$

Not gauge invariant

Local Lagrangian for Photon Fields

Field:
$$(\epsilon_i(\mathbf{q}) \, \hat{a}_{\mathbf{q}} + \epsilon_i^*(\mathbf{q}) \, \hat{a}_{-\mathbf{q}}^{\dagger}) / \sqrt{2E_q} \rightarrow A_i(\mathbf{x})$$

$$\mathcal{L} = \frac{1}{2} |\dot{\mathbf{A}}|^2 - \frac{1}{2} \nabla \times \mathbf{A} \cdot \frac{K_1(-\Delta)}{-\Delta} \nabla \times \mathbf{A} + \mathbf{A} \cdot \mathbf{J} - \phi \rho$$
$$+ \frac{1}{2} \phi L_1(-\Delta) \phi + \dot{\mathbf{A}} \cdot \mathcal{M}_1(-\Delta) \nabla \phi + \lambda (\nabla \cdot \mathbf{A})^2$$

Not gauge invariant

$$K_1 = -c^2 \Delta + \mathcal{O}(\Delta^2), \quad L_1 = -\Delta + \mathcal{O}(\Delta^2), \quad \mathcal{M}_1 = 1 + \mathcal{O}(\Delta)$$

$$f E \ \downarrow \ \downarrow$$

$$\mathcal{L} = \frac{1}{2}|\dot{\mathbf{A}} + \nabla\phi|^2 - \frac{c^2}{2}|\nabla \times \mathbf{A}|^2 + \mathbf{A} \cdot \mathbf{J} - \phi\rho + \mathcal{O}(\Delta^2)$$

4-component vector: $A_{\mu} \equiv (-\phi, \mathbf{A})$

$$A_{\mu} \equiv (-\phi, \mathbf{A})$$

Locality
$$\implies A_{\mu} \equiv A_{\mu} + \partial_{\mu} \alpha$$
 (slowly varying α)

$$\epsilon_{\mu}(q) \to \epsilon_{\mu}(q) + q_{\mu} \tilde{\alpha} \pmod{\tilde{\alpha}}$$

Appendix:— Here we extend the locality analysis to the spin 2 case. The most general interaction from tree-level graviton exchange is

$$\Delta S = \int \frac{d^4q}{(2\pi)^4} \left[\tilde{\tau}_{ij} \frac{r_{ik}r_{jl} - \frac{1}{2}r_{ij}r_{kl}}{\omega^2 - K_2(\mathbf{q})} \tilde{\tau}_{kl}^* + \frac{2\,\tilde{\pi}_i\,\tilde{\pi}_i^*}{N_2(\mathbf{q})} - \frac{\tilde{\sigma}\,\tilde{\tau}_{ii}^*}{R_2(\mathbf{q})} - \frac{1}{2}\frac{\tilde{\sigma}\,\tilde{\sigma}^*}{L_2(\mathbf{q})} - \frac{1}{2}\frac{\omega^2\tilde{\sigma}\,\tilde{\sigma}^*}{|\mathbf{q}|^2 L_2'(\mathbf{q})} \right], (34)$$

where $r_{ij} \equiv \delta_{ij} - \frac{q_i q_j}{|\mathbf{q}|^2}$. For non-localities to cancel, we need the constitutive relations: $q_i \, \tilde{\tau}_{ij} = M_2(\mathbf{q}) \, \omega \, \tilde{\pi}_i$ and $q_i \, \tilde{\pi}_i = M_2'(\mathbf{q}) \, \omega \, \tilde{\sigma}$. Imposing locality we find that these functions must be related to polynomials as:

$$K_2(\mathbf{q}) = m_2^2 \, \delta_{P_2 P_2', 0} + c_g^2 |\mathbf{q}|^2 + |\mathbf{q}|^4 P_d(|\mathbf{q}|^2), \quad (35)$$

$$N_2(\mathbf{q})^{-1} = \frac{P_2}{|\mathbf{q}|^2} + P_e(|\mathbf{q}|^2),$$
 (36)

$$R_2(\mathbf{q})^{-1} = \frac{\sqrt{P_2 P_2'}}{|\mathbf{q}|^2} + P_f(|\mathbf{q}|^2),$$
 (37)

$$L_2(\mathbf{q})^{-1} = \frac{c_g^2 P_2 P_2'}{|\mathbf{q}|^2} + P_g(|\mathbf{q}|^2), \tag{38}$$

$$L_2'(\mathbf{q})^{-1} = \frac{P_2 P_2'}{|\mathbf{q}|^2} + P_h(|\mathbf{q}|^2), \tag{39}$$

$$M_2(\mathbf{q})^2 = P_2 + |\mathbf{q}|^2 P_i(|\mathbf{q}|^2),$$
 (40)

$$M_2'(\mathbf{q})^2 = P_2' + |\mathbf{q}|^2 P_j(|\mathbf{q}|^2).$$
 (41)

So a long range force requires $c_g^2 P_2 P_2' \neq 0$. Hence the graviton must be massless, and we can set $P_2 = P_2' = 1$,

and we need $c_g \neq 0$. By Fourier transforming to the local field representation $(\epsilon_{ij}(\mathbf{q}) \, \hat{a}_{\mathbf{q}} + \epsilon_{ij}^*(\mathbf{q}) \, \hat{a}_{-\mathbf{q}}^{\dagger})/\sqrt{2E_q} \rightarrow h_{ij}(\mathbf{x})$, we can construct the following Lagrangian:

$$\mathcal{L} = \frac{1}{2}|\dot{\mathbf{h}}|^2 - \frac{1}{2}\nabla \times \mathbf{h} \cdot \mathcal{K}_2(-\Delta)\nabla \times \mathbf{h} + h_{ij}\,\tau^{ij} + 2\,\psi_i\,\pi_i$$
$$+ \phi\,\sigma + \frac{1}{2}\nabla\psi\cdot\mathcal{N}_2(-\Delta)\nabla\psi + \nabla\psi\cdot\mathcal{M}_2(-\Delta)\dot{\mathbf{h}}$$
$$+ \phi\,\mathcal{R}_2(-\Delta)\nabla\nabla\cdot\mathbf{h} + \lambda(\nabla\cdot\mathbf{h})^2. \tag{42}$$

For ease of notation, we have defined the dot product between two matrices as $A \cdot B \equiv A_{ij}B_{ij} - A_{ii}B_{jj}$. The functions here are related to the above as $\mathcal{K}_2(-\Delta) \equiv K_2(-\Delta)/(-\Delta)$, $\mathcal{N}_2(-\Delta) \equiv N_2(-\Delta)/(-\Delta)$, $\mathcal{M}_2(-\Delta) \equiv M_2'(-\Delta)R_2(-\Delta)/(-\Delta)$, and $\mathcal{R}_2(-\Delta) \equiv R_2(-\Delta)/(-\Delta)$. Demanding that the spin 2 exchange arises from an action places further consistency conditions on the functions $L_2^{-1} = K_2/R_2^2$, $L_2'^{-1} = 4M_2'^2/N_2 - 3|\mathbf{q}|^2/R_2^2$, and $M_2 = M_2'R_2/N_2$. Note that in our convention, the gravitational couplings are included in the sources τ^{ij} , π^i , σ .

We then find that to leading order in a derivative expansion, the first, second, sixth and seventh terms in (42) assemble into $\mathcal{L}_2 = \frac{1}{2}|\dot{\mathbf{h}} + \nabla \psi|^2 - \frac{c_g^2}{2}|\nabla \times \mathbf{h}|^2$, which is invariant under the gauge transformation $h_{ij} \rightarrow h_{ij} + \nabla_{(i}\alpha_{j)}, \ \psi_i \rightarrow \psi_i - \dot{\alpha}_i$. Likewise, the seventh and eighth terms in (42) are invariant under the gauge transformation $\psi_i \rightarrow \psi_i - \nabla_i \alpha_0, \ \phi \rightarrow \phi + \dot{\alpha}_0$ (up to a total derivative). A 4×4 matrix $h_{\mu\nu}$ can then be assembled as $h_{0i} = -\psi_i, h_{00} = \phi$, and we obtain soft gauge invariance, as reported in Eq. (12).

$$G_{ijkl} = \frac{\left(\delta_{ij} - \frac{q_i q_j}{|\mathbf{q}|^2}\right) \left(\delta_{kl} - \frac{q_k q_k}{|\mathbf{q}|^2}\right) - (j \leftrightarrow k, l)}{E^2 - K_2(\mathbf{q})}$$

2 types of non-localities

Add non-dynamical h_{00} (Newton)

 h_{0i}

$$G_{ijkl} = \frac{\left(\delta_{ij} - \frac{q_i q_j}{|\mathbf{q}|^2}\right) \left(\delta_{kl} - \frac{q_k q_k}{|\mathbf{q}|^2}\right) - (j \leftrightarrow k, l)}{E^2 - K_2(\mathbf{q})}$$

2 types of non-localities

Add non-dynamical h_{00} (Newton)

$$h_{00}$$
 (Newton)

 h_{0i}

$$V(r) \sim \frac{1}{r} + \dots$$

Find
$$V(r) \sim \frac{1}{r} + \dots$$
 $K_2(\mathbf{q}) = c_g^2 |\mathbf{q}|^2 + \dots$

Locality
$$\implies h_{\mu\nu} \equiv h_{\mu\nu} + \partial_{\mu}\alpha_{\nu} + \partial_{\nu}\alpha_{\mu}$$
 (slowly varying α_{μ})

$$\epsilon_{\mu\nu}(q) \to \epsilon_{\mu\nu}(q) + q_{\mu}\,\tilde{\alpha}_{\nu} + q_{\nu}\,\tilde{\alpha}_{\mu} \quad (\text{soft } \tilde{\alpha}_{\mu})$$

Soft gauge invariance is required to ensure that the non-dynamical fields are mixed with the propagating degrees of freedom, such that long range forces inherit the finite speed of propagation of the spin 1 or spin 2 particles

(Soft) Gauge Invariant Spin 2 Theories

Difficult. Simple attempts fail... Leading to many questions:

- What restrictions are placed on $E_n^2 = \tilde{K}_n(\mathbf{p}_n)$?
- What if we include fermions and gauge/vector bosons?
- What constraints apply to $E_q^2 = \tilde{K}_q(\mathbf{q})$?
- Is the equivalence principle still required for consistency?
- What objects can we couple to?

Need systematic analysis

$$(E_n \mp E_q)^2 - \tilde{K}_n(\mathbf{p}_n \mp \mathbf{q}) = \mp 2 q_\alpha \zeta_n^\alpha(\mathbf{p}_n)$$

$$q_{\alpha} \equiv (E_q, -\mathbf{q})$$
 $\zeta_n^{\alpha}(p_n) \equiv \left(E_n, \frac{1}{2} \frac{\partial \tilde{K}_n}{\partial \mathbf{p}} \Big|_{\mathbf{p}_n} \right)$

$$(E_n \mp E_q)^2 - \tilde{K}_n(\mathbf{p}_n \mp \mathbf{q}) = \mp 2 q_\alpha \zeta_n^\alpha(\mathbf{p}_n)$$

$$q_{\alpha} \equiv (E_q, -\mathbf{q})$$
 $\zeta_n^{\alpha}(p_n) \equiv \left(E_n, \frac{1}{2} \frac{\partial \tilde{K}_n}{\partial \mathbf{p}} \Big|_{\mathbf{p}_n} \right)$

$$\epsilon_{\mu\nu}(q) \to \epsilon_{\mu\nu}(q) + q_{\mu}\,\tilde{\alpha}_{\nu} + q_{\nu}\,\tilde{\alpha}_{\mu} \quad (\text{soft } \tilde{\alpha}_{\mu})$$

$$\epsilon_{\mu\nu}(q) \to \epsilon_{\mu\nu}(q) + q_{\mu}\,\tilde{\alpha}_{\nu} + q_{\nu}\,\tilde{\alpha}_{\mu} \quad (\text{soft } \tilde{\alpha}_{\mu})$$

$$\sum_{i} \frac{q_{\mu} \mathcal{T}_{i}^{\mu\nu}(p_{i})}{q_{\alpha} \zeta_{i}^{\alpha}(p_{i})} = \sum_{f} \frac{q_{\mu} \mathcal{T}_{f}^{\mu\nu}(p_{f})}{q_{\alpha} \zeta_{f}^{\alpha}(p_{f})}$$

$$\epsilon_{\mu\nu}(q) \to \epsilon_{\mu\nu}(q) + q_{\mu}\,\tilde{\alpha}_{\nu} + q_{\nu}\,\tilde{\alpha}_{\mu} \quad (\text{soft } \tilde{\alpha}_{\mu})$$

$$\sum_{i} \frac{q_{\mu} \mathcal{T}_{i}^{\mu\nu}(p_{i})}{q_{\alpha} \zeta_{i}^{\alpha}(p_{i})} = \sum_{f} \frac{q_{\mu} \mathcal{T}_{f}^{\mu\nu}(p_{f})}{q_{\alpha} \zeta_{f}^{\alpha}(p_{f})}$$

Cancel graviton momenta

$$\mathcal{T}_n^{\mu\nu}(p_n) \propto \zeta_n^{\mu}(p_n)$$

$$\epsilon_{\mu\nu}(q) \to \epsilon_{\mu\nu}(q) + q_{\mu}\,\tilde{\alpha}_{\nu} + q_{\nu}\,\tilde{\alpha}_{\mu} \quad (\text{soft } \tilde{\alpha}_{\mu})$$

$$\sum_{i} \frac{q_{\mu} \mathcal{T}_{i}^{\mu\nu}(p_{i})}{q_{\alpha} \zeta_{i}^{\alpha}(p_{i})} = \sum_{f} \frac{q_{\mu} \mathcal{T}_{f}^{\mu\nu}(p_{f})}{q_{\alpha} \zeta_{f}^{\alpha}(p_{f})}$$

Cancel graviton momenta

$$\mathcal{T}_n^{\mu\nu}(p_n) = g_n(E_n) \, \zeta_n^{\mu}(p_n) \, \zeta_n^{\nu}(p_n)$$

$$\epsilon_{\mu\nu}(q) \to \epsilon_{\mu\nu}(q) + q_{\mu}\,\tilde{\alpha}_{\nu} + q_{\nu}\,\tilde{\alpha}_{\mu} \quad (\text{soft } \tilde{\alpha}_{\mu})$$

$$\sum_{i} \frac{q_{\mu} \mathcal{T}_{i}^{\mu\nu}(p_{i})}{q_{\alpha} \zeta_{i}^{\alpha}(p_{i})} = \sum_{f} \frac{q_{\mu} \mathcal{T}_{f}^{\mu\nu}(p_{f})}{q_{\alpha} \zeta_{f}^{\alpha}(p_{f})}$$

Cancel graviton momenta

$$\mathcal{T}_n^{\mu\nu}(p_n) = g_n(E_n) \, \zeta_n^{\mu}(p_n) \, \zeta_n^{\nu}(p_n)$$

$$\sum_{i} g_i(E_i) \zeta_i^{\nu}(p_i) = \sum_{f} g_f(E_f) \zeta_f^{\nu}(p_f)$$

$$\sum_{i} g_i(E_i) E_i = \sum_{f} g_f(E_f) E_f$$

(Grav. Coupling) $g_n(E_n) = \kappa$

$$\sum_{i} g_i(E_i) E_i = \sum_{f} g_f(E_f) E_f$$

(Grav. Coupling)

$$g_n(E_n) = \kappa + \frac{Q_n}{E_n}$$

$$\sum_{i} g_i(E_i) E_i = \sum_{f} g_f(E_f) E_f$$

(Grav. Coupling)

$$g_n(E_n) = \kappa + \frac{Q_n}{E_n}$$

$$\frac{\nu = i}{\sum_{i} g_{i}(E_{i}) \frac{\partial \tilde{K}_{i}}{\partial \mathbf{p}} \Big|_{\mathbf{p}_{i}} = \sum_{f} g_{f}(E_{f}) \frac{\partial \tilde{K}_{f}}{\partial \mathbf{p}} \Big|_{\mathbf{p}_{f}}$$

$$\left[g_{n}(E_{n}) \frac{\partial \tilde{K}_{n}}{\partial \mathbf{p}} \Big|_{\mathbf{p}_{n}} = a \mathbf{p}_{n} \right]$$

$$\frac{\nu=0}{}$$

$$\sum_{i} g_i(E_i) E_i = \sum_{f} g_f(E_f) E_f$$

(Grav. Coupling)
$$g_n(E_n) = \kappa + \frac{Q_n}{E_n}$$

$$\underline{\nu = i} \qquad \sum_{i} g_{i}(E_{i}) \frac{\partial \tilde{K}_{i}}{\partial \mathbf{p}} \Big|_{\mathbf{p}_{i}} = \sum_{f} g_{f}(E_{f}) \frac{\partial \tilde{K}_{f}}{\partial \mathbf{p}} \Big|_{\mathbf{p}_{f}}$$

$$\left| g_n(E_n) \frac{\partial \tilde{K}_n}{\partial \mathbf{p}} \right|_{\mathbf{p}_n} = a \, \mathbf{p}_n$$

(Disp. Relation)
$$\kappa E_n^2 + 2Q_n E_n = \frac{a}{2}|\mathbf{p}_n|^2 + b_n$$

Dispersion Relation

$$\kappa E_n^2 + 2 Q_n E_n = \kappa c_g^2 |\mathbf{p}_n|^2 + b_n$$

Complete the square:
$$E_n \to E_n - \frac{Q_n}{\kappa}$$
,

Dispersion Relation

$$\kappa E_n^2 + 2 Q_n E_n = \kappa c_g^2 |\mathbf{p}_n|^2 + b_n$$

Complete the square:
$$E_n \to E_n - \frac{Q_n}{\kappa}$$
,

$$E_n^2 = |\mathbf{p}_n|^2 c_g^2 + m_n^2 c_g^4$$

Special Relativistic Dispersion Relation

Some Consequences

- Lorentz violating Standard Model
- Lorentz violating approaches to quantum gravity
- Doubly/deformed special relativity
- Lorentz violating alternatives to inflation

Brings into doubt the viability of these models

Conclusions

- Locality requires soft gauge invariance
- For spin \leq 1, special relativity is easily violated in principle
- For spin 2, special relativity is difficult to violate:
- The relativistic energy-momentum relation must be exact
- The leading interactions must be Lorentz invariant
- It remains to be proven if all higher order interactions are too