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@ First and Second Order Perturbations
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Figure: Cosmic history. Picture is taken from wfirst.gsfc.nasa.gov.




@ Cosmic acceleration = Equation of state — w =

1
Pressure/Density < -3

@ Observationally = wins = —1 and also currently wpg,o ~ —1.
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@ Cosmic acceleration = Equation of state — w =

1
Pressure/Density < -3

@ Observationally = wins = —1 and also currently wpg,o ~ —1.

Inflation:

L =0,00"¢ + V(). ¢ is a scalar
field.

V($)

Slow Roll

Dark Energy:
Simplest candidate can be A.

Fine tuning problem
N,obs _
PA,obs - 10 120

PA theo

Cosmic Coincidence
= |PN = Pmo]| -

Alternatives —> Make DE
dynamical = Modification of
gravity.

e
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Horndeski Lagrangian

Most general scalar-tensor Lagrangian
5
L= cL;
i=1

£2 - K(¢/X)~
L3 = —G3(¢, X)0o,

Ly = Gy(9. X)R + Gax(6, X) | (00)* = (V,V,0)?]
‘65 - G5(¢7 X)G,,,,,V“V"(/b - %G5X(¢7 X) |:(|:|(f))3 — 3D¢(V;J,VV¢)2

+2(V,.V,0)

o with K and G; (i = 3,4,5) are arbitrary functions of ¢ and
1
X = —5 H(b@“gb and G,'X = 86;/8)(.

@ Second order equation of motion. Q
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Light Mass Galileon

o K(¢,X)=X—=V(¢), Gs(¢,X)=2X and G4 =Gs=0.
o

1
£2 - _5(8;1,(7))2 - V((f))/
L3 =—(0,0)°00,
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Light Mass Galileon

o K(¢,X)=X—=V(¢), Gs(¢,X)=2X and G4 =Gs=0.
o

1
£2 - _5(8;1,(7))2 - V((f))/

L3 = —(9,9)°00¢,

@ if V(&) ~ ¢ then ¢-field preserves galilean shift symmetry in the flat
space time
$»— o+ bxt+c
O — O+ by

— Galileon field.

@ There are five Lagrangians which preserve the shift symmetry and
give second order equation of motion.
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Galileon Lagrangian

5
L= cL;
i=1

Ly =M,
1.,
[,2 - E(d/z¢)2s
[:3 - W(8H¢))2D¢)*

1 : ' = '
Ls= 27500 6" [2000)° = 26,u6™ — SROu0" |,

1 . ) - -
‘65 = W(Zb;li(ﬁ“ |:(D¢)3 - 3(‘3(7))(75;/1,1/(7)”“[/ + 2(75/11/(#'}1/)(/)'[;//) - 6(#;/,(]5'/“/(]5") G,,/) .

@ Second order equation of motion.
@ Can explain late time acceleration of the Universe.

@ Local physics is restored through the Vainshtein mechanism. o4
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The Model

A. Ali, R. Gannouji, MWH and M. Sami, Phys. Lett. B 718, 5 (2012)
MWH, Phys. Rev. D 96, no. 2, 023506 (2017)

S = /d“x\/—_g[MTSIR - %(w))?(l + %Ekb) ~ V(9)]

+Sm {wnﬁ e/ M’J’gﬂ”}

@ EH action is modified with Galileon Lagrangian £ and £® and
with a potential = Only £?) and £ can't give late time
accelaration.

@ Potential is added phenomenologically to get accelaration.
9 Potential = breaks shift symmetry even in the flat background.

@ Non-linear self interaction term of the galileon field plays the main
role to preserve the local physics through Vinshtein mechanism.
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V. Sahni and L. M. Wang, PRD 62, 103517 (2000).

_ ad ?
V=V (cosh <M—Pl) — 1)
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%¢52—V(¢)>_ p—1
12+ V() P+l @
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a=20and p=1.
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a=20and p=1.
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T. Barreiro, E. J. Copeland and N. J. Nunes, PRD 61, 127301 (2000)

V=V (e—mqb/MPl + e—/t2¢/MP1) )
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Figure: p11 = 20 and po = —0.1. (&)
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T. Barreiro, E. J. Copeland and N. J. Nunes, PRD 61, 127301 (2000)

V=V (e—mqb/MPl + e—/t2¢/MP1) )
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Figure: p11 = 20 and po = —0.1. Figure: 11 = 20 and po = 1. (&)
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Cosmological Evolution
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Figure: u3 =20, g2 = 0.1 and 8 = 0.01. 12/28



Cosmological Perturbation

We consider the following metric in the Newtonian gauge
ds? = a(r)?[ = (1 +20)dr? + (1 - 20)d=?]

where 7 is the conformal time, ® and W are the scalar perturbations of
the metric.

We expand the perturbations in series,

1 1
q) = ¢1+§¢2+§¢3+,
v = Vv l\U 1\IJ
BERGRETRCRE TR

13/28



Linear Perturbation

A. Ali, R. Gannouji, MWH and M. Sami, Phys. Lett. B 718, 5 (2012)
MWH, Phys. Rev. D 96, no. 2, 023506 (2017)

Equation for the linear density contrast in subhorizon (k* > H?) and
quasistatic (|¢| < H|¢| < k?|4|) approximations,

§1 4+ (M + D—3)6, — 4n G Pty = 0 J
Mp

(s d? +26)

G =G |1+
2 — <¢+H¢) W¢4
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Evolution of

Gti/G
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Figure: Evolution of Geg/G with 1 =20, u2 = 0.5 and 3 = 0.5.
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Growing and decaying modes: Integral solutions

MWH, Phys. Rev. D 96, no. 2, 023506 (2017)

Using the transformation

53— 4 Cﬁ@/Mm

Evolution equation of the density contrast can be written as

51 + /7{[51 — 47Téeff§2,5m51 =0

where
~ 1da o] dina
o= 3dr et Mpld) dlna
Geﬂ — G off e 23/1\/[131)
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Growing and decaying modes: Integral solutions

Growing Mode
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Growing and decaying modes: Integral solutions

Where,

And

Where g(3') satisfies

With

~ ~ 2 ~
. . 1 dH 1 (dH 1 d®>H
’(Q)A("’”ﬁa‘rm(ﬁ) toh G
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Figure: up =20, ugo = 0.1 and =0, 0.1, 0.2.
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Density Contrast: Comparison
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Figure: pg =20, po = 0.1 and 8 =0.1.
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Power spectrum and
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Figure: 1 =20, o = 0.1 and Qp, = 0.04, Q,,, = 0.3 and ns = 0.968.
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Second Order Perturbation

Equation for the second order density contrast,

b2 + <7—l + i¢> 02 — 41 Gepa® pda =S5 J
Mpy

Fourier transform of S5 can be written as

Ss(a, ) = / By ko8O (K — Ky — ko)K(3, K1, ko)1 (a, k)31 (3, ko)
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Second Order Perturbation

Second Order Density Contrast
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Second Order Perturbation

2
X F(3, ki, k2)61(3, k1)01(3, k2)

- -1 - - f -~ -
6(3,k) = 01(3,k) 4+ =62(3, k) = D, (3)61(k) +/d3k1d3k25(3)(k —k; — ko)

i - [



B(r, k, k")
~ P(r, k)P(7, k') + P(7, K')YP(7, k") + . ..
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Figure: up =20, uo = 0.1 and k = k' =0.01 hMpC71 and
5k = k' = 0.05 hMpc ™! for 3 =0, 0.5 and ACDM.
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@ We have discussed the effect of the conformal coupling at the
perturbation level in a tracker scalar field model with a cubic
Galileon correction term.

@ Integral solution of the growing and decaying modes are calculated
in the subhorizon approximation.

@ Effect of the conformal coupling constant on matter power spectrum
and bispectrum has been observed.

@ The power spectrum changes for different conformal constant but
there is no significant change in the reduced bispectrum.

@ Comparison with fog data shows that higher values of the conformal
constant can be ruled out.
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