The power spectrum of the magnetic fields generated by the second-order perturbations during the pre-recombination era

Kyoto University

Department of Physics

Satoshi Maeda

Collaborator : K.Takahashi(Nagoya Univ.), T.Kobayashi(Tokyo Univ.), T.Shiromizu(Kyoto Univ.)

Contents

- 1. Introduction
- 2. Previous Work
- 3. Power spectrum
- 4. Simple estimation of the power law
- 5. Summary

1. Introduction

Evolution of the magnetic field

[A.C.Davis, PRD 60, 021301 (1999)]

Generation of the magnetic field at pre-recombination era

•At pre-recombination era

A plasma state of photons, protons and electrons

•Thomson scattering is very important.

The mass of proton and electron is different \rightarrow The "deviation" (the electric field) is generated.

The magnetic fields are generated.

2. Previous work

Previous results

[Maeda et al. ,CQG,26135014,2009]

Evolution equation of the magnetic fields

$$(a^{3}B^{i})' = \frac{1 - \beta^{3}}{1 + \beta} \frac{\sigma_{T}}{e} a^{2} \rho_{\gamma}^{(0)} \left[2 \frac{H}{\alpha^{(0)}} d^{2} \omega^{(2)i} + \varepsilon^{ijk} \frac{R^{(0)}}{1 + R^{(0)}} \partial_{j} \Delta_{b}^{(I,1)} \delta_{\gamma}^{(I,1)} \right] - (1)$$
Vorticity term

Evolution equation of the vorticities

$$(a^{2}\omega^{(2)i})' + \frac{HR^{(0)}}{1+R^{(0)}}a^{2}\omega^{(2)i} = \frac{R^{(0)}}{(1+R^{(0)})^{2}}\alpha^{(0)}\varepsilon^{ijk}\partial_{j}\Delta_{b}^{(I,1)}\delta v^{(I,1)}_{(jb)k} - (2)$$

$$\delta v_{(\gamma b)i}^{(2)i} = \frac{1+\beta^2}{1+\beta} (1+R^{(0)}) \frac{a\sigma_T \rho_{\gamma}^{(0)}}{m_p}, R^{(0)} \equiv 3\rho_b^{(0)}/4\rho_{\gamma}^{(0)}, \beta = m_e/m_p$$

$$\delta v_{(\gamma b)i}^{(I,1)} = \frac{1}{\alpha^{(0)}} \left[Hv_i^{(1)} - \frac{1}{4} \frac{\partial_i \delta \rho_{\gamma}^{(1)}}{\rho_{\gamma}^{(0)}} \right], \quad \Delta_b^{(I,1)} = \int d\eta \partial_k \delta v_{(\gamma b)}^{(I,1)k}$$

Derivation of the power spectrum of the magnetic fields

Procedure of the calculation

 \rightarrow Solve the linear Einstein equation

→Substitute into the equation of the magnetic field

 \rightarrow Calculation $\langle B_i B^i \rangle$

The equation of the power spectrum

$$\frac{2\pi^{2}}{k^{3}}P_{B}(k) = \left(\frac{1-\beta^{3}}{1+\beta}\frac{\sigma_{T}\rho_{\gamma0}}{ea^{3}}\right)^{2}(2\pi^{2})^{2}\int d^{3}p|\vec{k}\times\vec{p}|^{2}\frac{P_{\psi}(p)}{p^{3}}\frac{P_{\psi}(|\vec{k}-\vec{p}|)}{|\vec{k}-\vec{p}|^{3}}\times \\ \times \int_{0}^{\eta}d\eta_{1}\int_{0}^{\eta}d\eta_{2}a^{-2}(\eta_{1})a^{-2}(\eta_{2})\left(g(\vec{k},\vec{p},\eta_{1})+f(\vec{k},\vec{p},\eta_{1})\right)\times \\ \times \left\{g(\vec{k},\vec{p},\eta_{2})-g(\vec{k},\vec{k}-\vec{p},\eta_{2})+f(\vec{k},\vec{p},\eta_{2})-f(\vec{k},\vec{k}-\vec{p},\eta_{2})\right\}$$
from Vorticity
From the gradient of density perturbation

We evaluate the term from the gradient of density perturbation.

$$\begin{split} f(\vec{k},\vec{p},\eta) &= \frac{1}{(2\pi)^{3/2}} \frac{\bar{R}^{(0)}}{1+\bar{R}^{(0)}} \frac{1}{\bar{\alpha}^{(0)}} \frac{\eta^2}{4} p^4 |\vec{k}-\vec{p}|^2 \frac{j_1(y_2)}{y_2} \int_0^{\eta} d\eta' \left(\frac{(\eta')^2}{\bar{\alpha}^{(0)}} \frac{j_1(y_1')}{y_1'}\right), \\ g(\vec{k},\vec{p},\eta) &= \frac{1}{4\eta\bar{\alpha}^{(0)}} \frac{1}{(2\pi)^{3/2}} e^{-\int_0^{\eta} P(\eta')d\eta'} p^4 |\vec{k}-\vec{p}|^2 \times \\ & \times \int_0^{\eta} d\eta' \frac{\bar{R}^{(0)}}{(1+\bar{R}^{(0)})^2} (\eta')^2 \frac{j_1(y_2')}{y_2'} \int_0^{\eta'} d\eta'' \left(\frac{(\eta'')^2}{\bar{\alpha}^{(0)}} \frac{j_1(y_1'')}{y_1''}\right) e^{\int_0^{\eta'} P(\eta'')d\eta''} \\ & \left(y_1 = p\eta/\sqrt{3}, \ y_2 = |\vec{k}-\vec{p}|\eta/\sqrt{3}\right) \end{split}$$

3. Estimation of the power spectrum

A range of integral

As we do not consider the Silk damping, The integral diverges at small scale.

We take the Silk scale as the cutoff scale.

$$k_{cutoff} pprox k_{Silk} \propto \eta^{-2/3}$$

And we suppose that the magnetic field is generated when the perturbations enter into the horizon.

A range of integration

4. Simple estimation of the power law

Simple estimation of the power(1/3)

$$P_B \simeq k^3 \int d^3p |\vec{k} \times \vec{p}|^2 \frac{1}{p^3} \frac{1}{|\vec{k} - \vec{p}|^3} \int_0^{\eta} d\eta_1 a^{-2}(\eta_1) f(\vec{k}, \vec{p}, \eta_1) \int_0^{\eta} d\eta_2 a^{-2}(\eta_2) \left\{ f(\vec{k}, \vec{p}, \eta_2) - f(\vec{k}, \vec{k} - \vec{p}, \eta_2) \right\}$$

$$f(\vec{k}, \vec{p}, \eta) \simeq \frac{\bar{R}^{(0)}}{1 + \bar{R}^{(0)}} \frac{1}{\bar{\alpha}^{(0)}} \frac{\eta^2}{4} p^4 |\vec{k} - \vec{p}|^2 \frac{j_1(y_2)}{y_2} \int_0^{\eta} d\eta' \left(\frac{(\eta')^2}{\bar{\alpha}^{(0)}} \frac{j_1(y_1')}{y_1'}\right) d\eta' |\eta'| \frac{\eta'}{y_1'} d\eta' |\eta'| \frac{\eta'}{y_1'} d\eta' |\eta'| \frac{\eta'}{y_1'} |\eta'| \eta'| \frac{\eta'}{y_1'} |\eta'| \frac{\eta'}{y_1'} |\eta'|$$

Simple estimation of the power(2/3)

And

$$\int d\eta_1 \frac{1}{(\eta_1)^2} f(\vec{k}, \vec{p}, \eta_1) \simeq p \int d\eta_1 \eta_1^5 \Big(\sin(p\eta_1 + pz\eta_1) + \sin(p\eta_1 - pz\eta_1) \Big) \\ \simeq \eta^5 \left[\frac{1}{1+z} \cos(p\eta + pz\eta) + \frac{1}{1-z} \cos(p\eta - pz\eta) \right]$$

Another term is

$$\int d\eta_2 \frac{1}{(\eta_2)^2} \left[f(\vec{k}, \vec{p}, \eta_2) - f(\vec{k}, \vec{k} - \vec{p}, \eta_2) \right] \simeq \eta^5 \left[\frac{1-z}{1+z} \cos(p\eta + pz\eta) - \frac{1+z}{1-z} \cos(p\eta - pz\eta) \right]$$

Finally

$$P_B \simeq \frac{k^5 \eta^{10}}{pz^3} \left[\frac{1-z}{(1+z)^2} \cos^2(p\eta + pz\eta) - \frac{2z}{(1+z)(1-z)} \cos(p\eta + pz\eta) \cos(p\eta - pz\eta) - \frac{1+z}{(1-z)^2} \cos^2(p\eta - pz\eta) \right]$$

 $P_B \propto k^5 p^{-1} \times \eta^{10} (p^2 k^{-2}) \sim k^3 p \eta^{10}$

Take leading term

Simple estimation of the power(3/3) $P_B \propto k^3 p \eta^{10}$ The power of the magnetic fields

$$B \sim \sqrt{P_B} \sim k^{3/2} p^{1/2} \eta^5$$

(i)
$$k < k_{silk} \longrightarrow p \sim k, \ \eta \sim Const.$$

 $B \sim k^2$
(ii) $k > k_{silk} \longrightarrow p \sim k, \ \eta \sim k^{-2/3}$

 $B \sim k^{-1.3}$

5. Summary

Summary

- We calculate the power spectrum of the magnetic fields from the gradient of the density perturbation.
- The power is k^2 at the large scale and $k^{-1.3}$ at small scale.
- The amplitude of the magnetic fields is about 10⁻²⁰ Gauss.

The residual terms

We evaluate also the residual terms from vorticity in the following.

$$\begin{aligned} \frac{2\pi^2}{k^3} P_B(k) &= \left(\frac{1-\beta^3}{1+\beta} \frac{\sigma_T \rho_{\gamma 0}}{ea^3}\right)^2 (2\pi^2)^2 \int d^3p |\vec{k} \times \vec{p}|^2 \frac{P_{\psi}(p)}{p^3} \frac{P_{\psi}(|\vec{k}-\vec{p}|)}{|\vec{k}-\vec{p}|^3} \times \\ &\times \int_0^{\eta} d\eta_1 \int_0^{\eta} d\eta_2 a^{-2}(\eta_1) a^{-2}(\eta_2) \{g(\vec{k},\vec{p},\eta_1) + f(\vec{k},\vec{p},\eta_1)\} \times \\ &\times \{g(\vec{k},\vec{p},\eta_2) - g(\vec{k},\vec{k}-\vec{p},\eta_2) \rightarrow f(\vec{k},\vec{p},\eta_2) - f(\vec{k},\vec{k}-\vec{p},\eta_2)\} \} \end{aligned}$$