Dissipative curvatons and weak inflation

arXiv:1008.0164 and 1007.3636

Tomohiro Matsuda (SIT) / Cosmo10@Tokyo

Abstract

What we consider is a scenario in which curvaton field ϕ has significant interaction with heavy "catalyst "field χ , which leads to strong **dissipation** dubbed "SUSY 2-step model".

$\Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow$

This is the first attempt to realize **Dissipative curvatons**

Also, we propose new scenarios of generating curvature perturbations.

"What is the **Dissipation** considered in this scenario?" \rightarrow

——————————————————————————————————————	
$\ddot{\phi} + 3H(1+r_{\Upsilon})\dot{\phi}_N + V(\phi_N,T)_{\phi_N} = 0$	(1)

Here, the frictional force $\Upsilon \dot{\phi} \equiv [3Hr_{\Upsilon}]\dot{\phi}$ is caused by the dissipation.

This term reminds us of the conventional air resistance.

We will not touch upon historical issues; there had been many debates for the quantum (T = 0) and the thermal $(T \neq 0)$ dissipation. The main difficulties arise because the dissipation is basically caused by the non-local dynamics (time-integral) of the field. Also, conventional perturbative expansion may fail if the system is highly non-equilibrium.

SUSY two-step model is expected to alleviate these difficulties. \rightarrow More...

Two-step model

Dissipative Curvaton ϕ couples to catalyst field χ by the interaction given by (* we are implicitly considering "SUSY version")

$$\mathcal{L}_{int} \sim \frac{1}{2}g^2(\phi - v)^2\chi^2 + h\chi\overline{\psi}\psi.$$
 (2)

Radiation- ϕ interactions are suppressed when the intermediate field χ is heavy.

The origin of the dissipation term $\Upsilon \dot{\phi}$ in the field equation is $g < \chi \chi > \phi \rightarrow$ more...

It is not a trivial task to find $\Upsilon \dot{\phi}$ in $g < \chi \chi > \phi$.

A. Quantum dissipation (T = 0) -1. Quantum excitation $n_{\chi} \neq 0$ may appear when the background is changing Using Bogoliubov transformation, one will find $n_{\chi} \neq 0$ for the background $\dot{m}_{\chi} \neq 0$. 2. Energy loss and entropy production would be inevitable if χ -excitation decays Since the decay $\chi \to 2\psi$ is irreversible, entropy production and energy loss may occur. 3. Quantum Dissipation / Berrera and Ramos '04 Since the whole process is due to the field motion $\phi \neq 0$, it would be natural to expect that the energy loss and entropy production may cause friction proportional to ϕ . e.g., $\Upsilon_1 \simeq C_1 \phi, \qquad C_1 \sim 0.1 \times h^4 N_{\chi} N_{\psi}^2$ (3)

Despite the simplicity of the idea, calculation of the dissipation coefficient is neither simple nor straightforward. Conventional thermal field theory cannot be extended to highly non-equilibrium system with T = 0.

B. Low-temperature dissipation ($T \ll m_{\chi}$) -1. $n_{\chi}(T) \neq 0$ is obvious if χ interacts with radiation. $\dot{\phi}$ is not needed for $n_{\chi} \neq 0$. \Downarrow What happens if the catalyst field χ decays into light fermions? 2. Small shift from the equilibrium leads to a formidable non-equilibrium dynamics We need simplification to localize the non-equilibrium term: e.g, $n_{\chi}^{eq} - n_{\chi} \simeq \frac{dn_{\chi}^{eq}}{d\phi} \dot{\phi} \Gamma_{\chi}^{-1}$ \Downarrow non-equilibrium part of $g < \chi^2 > \phi$ contains dissipation term 3. Dissipation at low temperature / Moss & Xiong '06 SUSY two-step model can be localized to give $\Upsilon_2\phi$. $\Upsilon_2 \simeq C_2 \frac{T^3}{\phi^2}, \qquad C_2 \sim 0.1 \times N_\chi / \sqrt{N_\psi} g^3 / h$ (4)

In this talk, we will focus on strong dissipation $r_{\Upsilon} \gg 1$ (SD). $(r_{\Upsilon} \equiv \frac{\Upsilon}{3H})$ $r_{\Upsilon} \sim 1$ is not natural; strength of the dissipation is basically independent of H. Since the **friction** term $3H\dot{\phi}$ is enhanced $3H(1 + r_{\Upsilon})\dot{\phi}$, the effective slow-roll parameters are different from the conventional ones. Naively, they are given by

"Naive" slow-roll parameters for SD motion
$$\epsilon < (1 + r_{\Upsilon})^2 \qquad \eta < (1 + r_{\Upsilon})^2 \qquad (5)$$

These "Naive" conditions are not enough. We must consider conditions related to the evolution of the radiation. Before discussing the modified slow-roll conditions, let us remember two scenarios of inflation in which radiation is used:

- 1. <u>Warm inflation</u> : Radiation is sourced by the decay product and sustained. The temperature is nearly constant $\rightarrow \dot{\rho}_R \simeq 0$
- 2. Thermal inflation : The radiation redshifts as $ho_R \propto a^{-4}$

We call the phase with $\dot{\rho}_R \simeq 0 \rightarrow$ "warm phase", and $\rho_R \propto a^{-4} \rightarrow$ "thermal phase". Using these "phases", "slow-roll" conditions can be improved \rightarrow

— In the Warm phase —

1. $\dot{\rho}_R \simeq 0$ is equivalent to $4H\rho_R \simeq \Upsilon \dot{\phi}^2$ (Energy conservation)

2. Combined with slow-roll field equation, more stringent conditions will appear:

$$\epsilon < (1 + r_{\Upsilon}) \qquad \eta < (1 + r_{\Upsilon}) \tag{6}$$

— In the Thermal phase —

- 1. We consider $\dot{V} < 4HV$, which ensures that the potential energy decreases slower than the radiation.
- 2. Using slow-roll equation, the above condition is almost identical to

 $\epsilon < (1 + r_{\Upsilon})$

(7)

These two distinctive "phases" must be considered for the dissipative curvaton dynamics.

Next, we will see the typical evolution of the curvaton density after reheating \rightarrow

Standard curvaton scenario after reheating is... -

1. $H > m_{\phi}$: Hubble-friction slow-roll \rightarrow Ratio grows as $\frac{\rho_{\phi}}{\rho_{rad}} \propto \frac{a^0}{a^{-4}} \sim a^4$

2. $\Gamma_{\phi} < H < m_{\phi}$: Long-time oscillation \rightarrow Ratio grows as $\frac{\rho_{\phi}}{\rho_{rad}} \propto \frac{a^{-3}}{a^{-4}} \propto a^{1}$

3. $\Gamma_{\phi} \simeq H$: Curvaton decays to reheat the Universe again.

Evolution in the dissipative curvaton scenario is very **different** from the original, even if the potential is completely the same.

Dissipative curvaton scenario after reheating is...

1.
$$H > \frac{m_{\phi}}{(1+r_{\Upsilon})}$$
: The first slow-roll period is extended

2. When ρ_{ϕ} dominate \rightarrow Dissipative inflation starts (firstly "thermal" and then "warm")

3. Long-time oscillation is not realistic since strong interactions will cause fast decay.

We will explain the situation using pictures \rightarrow

- 1. Reheating : After primordial inflation, the temperature reaches $T = T_R$.
- 2. Thermal phase: At $T \simeq T_{dom}$ curvaton starts dominating, then Dissipative inflation starts $(T_{dom} > T > T_{end})$. Thermal phase may end either by breaking the slow-roll condition or by connecting to the warm phase $(T_{end} \equiv T_{eq})$. The number of e-foldings is given by $N_{th} \simeq \ln \left(\frac{T_{dom}}{T_{end}}\right)$
- 3. Warm phase of the dissipative inflation (warm inflation)

Thermal phase may be connected to warm inflation if slow-roll lasts until $T \simeq T_{eq}(\phi_w)$. The evolution is highly model-dependent.

1. There is no Long-time oscillation:

The slow-roll period is extended until late and the curvaton can start dominating the Universe during slow-roll.

2. Quadratic potential is not essential for the scenario:

This is possible because the matter-like evolution during long-time oscillation is not needed for the scenario.

 \rightarrow There would be some implications for the recently-posed non-gaussian spectrum due to $V(\phi) \propto \phi^n$ / Byrnes, Enqvist, Takahashi '10

Creation of curvature perturbation is possible if δN is created at the boundaries of these cosmological epochs. (e.g., $\delta T_{dom} \neq 0$, $\delta T_{end} \neq 0$ or $\delta \phi_w \neq 0...$)

We will show you some pictures for the δN sources \rightarrow

These pictures show how δN can be generated in the scenario of dissipative curvatons.

In the left picture, you can find two "chances" for the modulation, appearing at $T = T_{dom}$ and T_{end} .

In the right, you may find modulation at $T = T_{dom}, T_{end}$ and T_{end2} . They can introduce modulated/inhomogeneous boundaries that cause δN . \rightarrow more...

1. Modulation of Initial boundary at $T = T_{dom}$

Considering $\delta N \simeq \frac{\delta T_{dom}}{T_{dom}} \simeq \frac{1}{4} \frac{\delta V}{V}$ for the inhomogeneous/modulated boundary, we find $\delta N \simeq \frac{n}{4} \frac{\delta \phi}{\phi} + O(\delta \phi^2)$ for the potential $V \propto \phi^n$.

- 2. Modulation of End boundary at $T = T_{end}$ or T_{end2} (at the end of slow-roll) Inhomogeneous boundary would be induced by the modulation of the couplings ($\delta g \neq 0$ or $\delta h \neq 0$) that causes $\delta \Upsilon \neq 0$. The situation reminds us of the modulation in hybrid inflation (δN at the end of inflation). However, modulation here is far easier. The flatness of the moduli potential is not ruined by the large inflaton expectation value because moduli- ϕ interaction is not essential for $\delta h (\leftarrow h\chi \overline{\psi} \psi)$.
- 3. Modulation of Intermediate boundary at $T = T_{eq}$ (if connected to warm inflation) Considering conventional formula $\delta N \simeq H \frac{\delta \phi_w}{\dot{\phi}}$, we find $\delta N \simeq \frac{H \Upsilon}{V_{\phi}} \delta \phi_w$. Although the formula looks similar to the conventional inflation, the mechanism should be discriminated. Here the isocurvature perturbation creates curvature perturbation at later cosmological event at $T = T_{eq}$. $\delta \phi$ Horizon exit is displaced from δN creation They can be discriminated using the spectral index. \rightarrow See next slide

<u>Spectral index</u> : We use $\{\epsilon_i, \eta_i\}$ for inflaton, $\{\epsilon_{\phi}, \eta_{\phi}\}$ for curvatons and assume the same curvaton action except for the interaction with the catalyst field.

In the standard curvatons $2\eta_{\phi}$ appears because the perturbation evolves as $\delta\phi \propto \exp\left[-\eta_{\phi}Ht\right]$. Considering $2\epsilon_i$ from \dot{H} , the spectral index is $n_s - 1 = 2\eta_{\phi} - 2\epsilon_i$.

Dissipative curvatons -

We have at least two options for the model.

- 1. If the curvaton is dissipating already at the horizon exit, the equation for the perturbation $\delta\phi$ gives $\ddot{\delta\phi} + 3H(1+r_{\phi})\dot{\delta\phi} + V'' = 0$, which leads to $2\eta_{\phi}/(1+r_{\phi})$ in the spectral index.
- 2. If the primary inflation is warm, $\delta\phi$ may be enhanced by the thermal effect and the amplitude is $\delta\phi|_{T\neq0} \simeq \left[\left(\frac{\pi r_i}{4}\right)^{1/4}\sqrt{TH}\right]$. In this case, variation of T is important for the spectral index.

Basic equations for r > 1 (SD) motion

$$\frac{1}{H}\frac{d\ln H}{dt} = -\frac{1}{r}\epsilon \tag{8}$$

$$\frac{1}{H}\frac{d\ln T}{dt} = -\frac{1}{4r}\left(2\eta - \beta - \epsilon\right) \tag{9}$$

$$\frac{\overline{H}}{H} \frac{dt}{dt} = -\frac{1}{4r} (2\eta - \beta - \epsilon)$$

$$\frac{1}{H} \frac{d\ln \dot{\phi}}{dt} = -\frac{1}{r} (\eta - \beta)$$
(10)

$$\frac{1}{H}\frac{d\ln\Upsilon}{dt} = -\frac{1}{r}\beta,\tag{11}$$

where $\beta \equiv \frac{1}{M_p^2} \frac{\Upsilon' V'}{\Gamma V}$. \dot{T} is calculated in the warm phase. For the simplest case $\delta N \propto \frac{\delta \phi}{\phi}$

	Cold primary inflation ($\delta \phi _{T=0}$)	Warm primary inflation $(\delta \phi _{T \neq 0})$
r < 1 (Always)	$2\eta_{\phi} - 2\epsilon_i$	$2\eta_{\phi} - \frac{1}{r_i} \left(\frac{\epsilon_i}{4} + \frac{\eta_i}{2} + \frac{\beta_i}{4} \right)$
Non-dissipative	Standard Curvatons	New scenario 1
r > 1 (Always)	$rac{2\eta_\phi}{r_\phi}-2\epsilon_i$	$\frac{2\eta_{\phi}}{r_{\phi}} - \frac{1}{r_i} \left(\frac{\epsilon_i}{4} + \frac{\eta_i}{2} + \frac{\beta_i}{4} \right)$
Dissipative	New scenario 2	New scenario 3

Conclusions and discussions

We presented a scenario of curvatons when the dissipative effect is significant.

Previous arguments for the dissipation has been mostly for primary inflation (warm inflation). However, we must remember that any field that couples to catalyst field may dissipate, and then it may cause creation of curvature perturbations at later cosmological event, such as inhomogeneous/modulated reheating, phase transitions or preheating.

On the other hand, we must also remember that for the dissipative motion, there would be some debates on the procedure for dealing with the non-local and non-equilibrium term in the field equation.

In conclusion, we would like to declare that Dissipation would be there, but we must work harder to reveal its efficiency in particle cosmology.

I am preparing very interesting application of the dissipation, which will appear soon.

Thank you!