Constraints on primordial non-Gaussianity from galaxy-CMB lensing cross correlation

Yoshitaka Takeuchi (Nagova U.) in collaborate with K. Ichiki (Nagoya U.) & T. Matsubara (KMI, Nagoya U.)

@ Horiba International Conference COSMO/CosPA 2010, Sep. 27 - Oct. 1 Ref :Takeuchi, Ichiki & Matsubara, Phys.Rev.D 82, 023517 (2010) / E-mail : yositaka@a.phys.nagoya-u.ac.jp

1. Introduction

• The primordial non-Gaussianity (NG) affects the clustering of dark matter halo through the scale-dependent bias.

• Recent results : Observations & Forecasts (1σ error) Observations : (Xia et al. 2010) $f_{\rm NL} = 53 \pm 25$ & $f_{\rm NL} = 47 \pm 21$: from NVSS & SDSS DR6 QSOs data Forecasts : (Cunha et al. 2010)

 $\Delta f_{\rm NL} \sim 1-5$: cluster counts for DES-like survey

· On the next generation CMB experiments, CMB lensing will be a powerful tool to explore the large scale structure, which can get matter distribution without uncertainty of bias.

• Cross correlation between galaxy & CMB lensing can be break some degeneracy between NG and bias.

We estimate the effect of galaxy-CMB lensing crosscorrelation for the constraint of NG. We also estimate the effect of comic shear (weak lensing) survey for the constraints.

2. Cross-correlation angular power spectrum

• The cross correlations between the CMB and the galaxy (e.g. ISW-galaxy) are well known as providing additional information other than their respective autocorrelation.

• We introduce the cross correlation between CMB lensing, galaxy angular distribution and cosmic shear to estimate errors in constraining cosmological parameters.

3.Fisher Information Matrix (Tegmark et al. 1997) • We estimate the parameters error by Fisher matrix analysis.

 $F_{ij} = \sum_{l=2}^{l_{\text{max}}} \sum_{XX',YY'} \frac{\partial \overline{C_l^{XX'}}}{\partial \theta_i} (\text{Cov}_l^{-1})_{XX'YY'} \frac{\partial C_l^{YY'}}{\partial \theta_j} \quad \text{Cov}_l : \text{Covariance matrix}$ $(XX',YY' \in TT, EE, TE, \psi\psi, gg, \gamma\gamma, T\psi, Tg, T\gamma, \psi g, \psi\gamma, g\gamma)$ • Marginalized 1σ error : $\sigma(\theta i) = \sqrt{(F^{-1})_{ii}}$

4. Result 1: Parameter forecast (CMB + Galaxy)

To see the contribution of ψ g for construing NG, compare the 3 cases. without cosmic shear

• Case I : $C_1^{TT}, C_1^{EE}, C_1^{TE}, C_1^{\psi\psi}, C_1^{T\psi}, C_1^{gg}, \mathcal{O}^{gg}, \mathcal{O}^{gg}$ (without $C_1^{Tg}, C_1^{\psi g}$) • Case II : C_1^{TT} , C_1^{EE} , C_1^{TE} , $C_1^{\psi\psi}$, C_1^{ψ} , C_1^{gg} , $C_1^{\psi g}$ (without C_1^{Tg} , $C_1^{T\psi}$) • Case III: $C_l^{TT}, C_l^{EE}, C_l^{TE}, C_l^{\psi\psi}, C_l^{T\psi}, C_l^{gg}, C_l^{Tg}, C_l^{\psi g}$ (full)

• $f_{\rm NL}$ degenerates especially with linear bias parameter b₀, however, does not degenerate with other cosmological parameters so much. • The error of $f_{\rm NL}$ become smaller by including ψg . This aspect can be seen more clearly for CMBPol, which is more sensutuve survey to CMB lensing than Planck.

5. Result 2: CMB + Galaxy + Cosmic Shear

Let's include the cosmic shear above result, and see the effects of CMB-cosmic shear & Galaxy-cosmic shear cross-correlations.

- Cross-correlation ψ g plays an important role to break some degeneracy between $f_{\rm NL}$ and b_0
- · Cosmic shear can fairly reduce the error of bias. Considering their cross-correlations, we can constrain on $f_{\rm NL}$ more tightly.
- The lensing tomography method is effective against constraint of $f_{\rm NL}$.