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Inflationary scenario
・Our universe underwent an accelerated expansion in its early days.
・We can explain the origin of the large scale structure in the universe 
by the quantum fluctuation of a scalar field (inflaton field) in this era.

Problem of classicality of the fluctuation
Quantum variable in
inflationary scenario

Classical stochastic variable in
the theory of structure formation

Introduction

Classical stochastic variable : 
Stochastic variables whose averages or variances are calculated 
by using a normalized positive definite distribution function

Ex. 〈x2〉 =
∫

x2ρ(x)dx

∫
ρdx = 1 ρ ≥ 0



Bell’s theorem (J. S. Bell, 1964; E. G. Cavalcanti et al, 2007)

There does not exist a classical distribution function in 
the system with quantum correlation (entanglement).

What is the condition for it?

If the fluctuation has entanglement,
they cannot be described by the classical distribution.

Main Problem

Can we use the classical distribution
to describe the quantum system? 

The entanglement must disappear.



- We are interested in the entanglement between the 
field on spatially separated two points.
- There are some methods to estimate the entanglement 
between two points...

- Particle detector model (B. Reznik, 2000; 2005)

- Two particle detectors coupling to a scalar field
- They do not interact with each other.
- We can estimate the entanglement of the field in directly by 
calculating the entanglement between the two detectors.

I review the basic idea of this model and our current 
result.



For pure state

Entangled state:

Separable state:

Entanglement

For mixed state
∑

n

pn = 1 and pn ≥ 0

ρ !=
∑

n

pnρ(n)
A ⊗ ρ(n)

B

ρ =
∑

n

pnρ(n)
A ⊗ ρ(n)

B

Entangled state:

Separable state:

| ↑〉A| ↑〉B + | ↑〉A| ↓〉B + | ↓〉A| ↑〉B + | ↓〉A| ↓〉B = (| ↑〉A + | ↓〉A)(| ↑〉B + | ↓〉B)
Separable state:

Entangled state:
| ↑〉A| ↑〉B + | ↓〉A| ↓〉B

Example

Let us consider a bipartite system consisting of subsystems A, B.

|Ψ〉 = |ψ〉A ⊗ |φ〉B
|Ψ〉 "= |ψ〉A ⊗ |φ〉B



Entanglement measure

However, we cannot use the entanglement entropy
 for mixed states.

If the system is separable, S=0.
If the system is entangled, S>0.

For pure state, the entanglement entropy is usually used as the entanglement 
measure.

S := −Tr[ρA log ρA] ρA := TrB [ρ]

Entanglement entropy

We can distinguish whether the system is entangled or not 
from the positivity of the entanglement entropy.



PPT criterion

Entanglement measure (Negativity): N(ρ)

The system is entangled ↔ There exists a negative eigenvalue of ρTB

↔ || ρTB || >1 ↔ N(ρ)>0

The system is entangled.A negative eigenvalue of ρTB exists.

- For two qubits (A. Peres, 1996; R. Horodecki et al, 1996. 
For continuous variables in Gaussian state, R. Simon, 2000; L. M. Duan et al, 2000.)

ρTB
µα,νβ := ρµβ,ναρ: density matrix for the system

※ ||A||: Sum of the absolute 
values of the eigenvalues of A N(ρ) := ||ρTB ||− 1



Hint = ε(τ)M(τ)φ(x(τ), τ)

| ↑〉, | ↓〉
- Moving in spacetime along classical geodesics
- 2 level system spanned by 

Φ: operator of the free real scalar field
τ: proper time of the detector
x(τ): world line of the detector
M(τ): operator of the detector
Ω: energy gap between two levels
σ_±: raising and lowering operator
ε(τ): window function giving switch on/off (<1)

De Witt detector model

M(τ) = eiΩτσ+ + e−iΩτσ−

Ω Φ

x(τ)

ε(τ)



How to detect the entanglement (Basic idea)
B. Reznik, 2000; 2005

Entanglement cannot be produced by local unitary operation.
→If the final state of the detectors are entangled, 

we can regard it as the entanglement
initially possessed by the field!

ρdetec = Trfield[|ψfin(t)〉〈ψfin(t)|] |ψ_fin(t)>:
final state of the total system

N(ρdetec)

Two detectors: Separable
+ field: vacuum

tini

time evolution

Two detectors: Entangled (?)
+ field: not vacuum

t

For two detectors not directly interacting with each other...

: entanglement between the detectors
= entanglement of the field



Detector:
- Two detectors separated by distance r
- Both of them are static against the coorinate system.
- Their energy gaps Ω are taken to be the same magnitude.
- Initial state: |↓↓> (separable state).
- Window function ε(τ): Gaussian with variance σ

x
0

A B

r
| ↓〉A | ↓〉B

t

ρdetec

2σ

t

2σ

ε(τ)

τ

Example: Minkowski vacuum

Ω
Φ
Φ



In the first order perturbation...

N(ρdetec) = |Y |−X

〈φ(x1)φ(x2)〉 =
1

r2 − (t1 − t2 − iε)2

Y := −2
∫ ∞

−∞

∫ t1

−∞
ε(t1)ε(t2)eiΩ(t1+t2)〈0|φ(xA, t1)φ(xB , t2)|0〉dt2dt1

two point funcion: propagation of the quantum

X :=
∫ ∞

−∞

∫ ∞

−∞
ε(t1)ε(t2)e−iΩ(t1−t2)〈0|φ(xA, t1)φ(xA, t2)|0〉dt2dt1

autocorrelation

Integral form of the negativity
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Plot for Minkowski spacetime

entangled

separable

Ω: Energy gap of detectors (~ frequency observed by detectors)
σ: Duration of observation
r: Distance between detectors



Field: minimal coupling massless test scalar field

Back ground spacetime: de Sitter spacetime

[a!k, a†!l ] = δ(3)("k −"l)

Expanding universe

φ =
1

(2π)3/2a(t)

∫ (
a!kϕkei!k·!x + h.c.

)
dk3

ds2 = −dt2 + e2Htd!x2 = e2Ht(−dη2 + d!x2)

(−∞ < η < 0 ⇔ −∞ < t <∞)

Boundary condition: (1/√2k) exp(-kη) in the limit η→-∞

ϕk =
√
−ηH(1)

3/2(−kη)

State: Bunch-Davies vacuum

a!k|0〉 = 0

ϕk =
√
−η(H(1)

3/2(−kη)C1 + H(1)
3/2(−kη)C2)



Detector:
- Two detectors separated by comoving distance r
- They fly away from each other by the cosmological expansion.
- Their energy gaps, Ω are taken to be the same magnitude.
- Initial state: |↓↓> (separable state).
- Window function ε(τ): Gaussian with variance σ
- The time parameter τ in the window function is the proper time of 
the detector (= cosmic time).

x
0

A B

r
| ↓〉A | ↓〉B

t

ρdetec

2σ

t

2σ

ε(τ)

τ

Ω
Φ
Φ



Negativity

N(ρdetec) = |Y |−X

〈φ(x1)φ(x2)〉 =
H2

(2π)2

[
1 − γ − ln

k0

H
− η1η2

(η1 − η2 − iε)2 − r2
− 1

2
lnH2(r2 − (η1 − η2 − iε)2)

]

k_0: infra red cut off

Y := −2
∫ ∞

−∞

∫ t1

−∞
ε(t1)ε(t2)eiΩ(t1+t2)〈0|φ(xA, t1)φ(xB , t2)|0〉dt2dt1

two point funcion: propagation of the quantum

X :=
∫ ∞

−∞

∫ ∞

−∞
ε(t1)ε(t2)e−iΩ(t1−t2)〈0|φ(xA, t1)φ(xA, t2)|0〉dt2dt1

autocorrelation

The negativity converses in the limit of k_0 → 0.
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Summary

• The entanglement of the primordial 
fluctuation between spatial two points must 
disappear. 

• We estimated the entanglement of the field 
by using the particle detectors on the 
accelerating universe model.

• The field is not entangled beyond the super 
horizon scale.


