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Abstract
When approaching the Planck scale of energies the need to consider generalizations of Einstein’s theory of general relativity (GR) seems inescapable. Recently, these extended gravity theories have
also attracted a lot of interest because of the possibility that they might convey an explanation for the late time acceleration of the universe. Among the generalized gravity theories, scalar-tensor
(ST) theories stand up as exhibiting a dynamical scalar-field non-minimally coupled to the space-time geometry. This provides an appropriate theoretical framework for the variation of Newton’s
fundamental constant and is akin to the archetypal dilaton of the low-energy limit of string theories. In the present work we analyse Friedmann scalar-tensor cosmologies with a perfect fluid,
and put forward a new integration method that: On the one hand, permits the derivation of exact solutions in a unified, and simpler way than in previous approaches; And, on the other hand,
allows a thorough characterization of the cosmological attractor mechanisms. We find that, in addition to the mechanism of relaxation to GR investigated by Damour and Nordtvedt, Brans-Dicke
theory provides another cosmological attractor. Our procedure also enables us to investigate form-invariance transformations that establish dualities between solutions of different scalar-tensor
theories, and between different solutions within a single theory.

1 Introduction

In the so-called Jordan-Fierz frame [1], scalar-tensor gravity theories are
defined from the lagrangian description [2, 3]

LΦ=ΦR −ω(Φ)

Φ
g abΦ,aΦ

,b +2U (Φ)+16πLm, (1)

where R is the usual Ricci curvature scalar of a space-time endowed with
the metric gab,Φ is a scalar field,ω(Φ) is a dimensionless coupling func-
tion, U (Φ) is a cosmological potential for Φ, and L m represents the La-
grangian for the matter fields (note that we shall use units that set c = 1).
Since Φ is a dynamical field the trademark of these theories is the varia-
tion of the gracitational constant G =Φ−1 , and the archetypal theory is
Brans-Dicke theory in which ω(Φ) is a constant [4].
This class of theories can be given in the so-called Einstein frame by
means of an appropriate conformal transformation. Following Damour
and Nordvedt’s notation [1] , the original metric is rescaled according
to (gab → g̃ab = A−2(ϕ) gab, where A−2(ϕ) = (Φ/Φ∗) with Φ∗ = G−1 being
a constant that we take to be the inverse of Newton’s gravitational con-

stant, and dlnΦ
dϕ =

√
16π
Φ∗
α(ϕ)). The action becomes

Lϕ= R̃ − g̃ abϕ,aϕ
,b +2U (ϕ)+16πL̃m(Ψm, A2(ϕ)g̃ab). (2)

Still as in Damour and Nordvedt [1] we introduce A (ϕ) = ln A(ϕ),α(ϕ) =
∂A (ϕ)

∂ϕ
and K (ϕ) = ∂α(ϕ)

∂ϕ
.

2 Equations and procedure

We introduce a new dimensionless variable x = ϕ̇/H̃ , the time coordi-
nate τ∝ ln a [5], and m(ϕ) ∝ A4−3γ(ϕ). We then obtain the following
autonomous planar dynamical system

x ′ = −
(

3− x2

2

)[(
1− γ

2

)
x + m,ϕ

m

]
, (3)

ϕ′ = x. (4)

Dividing the former of these equations by the latter, we reduce the inte-
gration to a quadrature. Moreover, specifying x(ϕ) always allows us to
obtain the solutions in parametric form

a(ϕ) = a0 exp

(∫
dϕ

x(ϕ)

)
, (5)

t (ϕ) =
∫

d t =
∫

dϕ

±pm0x(ϕ)
exp

(∫ [(
2−γ

4

)
x(ϕ)+ 3γ

2x(ϕ)

]
dϕ

)
. (6)

The choice of the generating function x(ϕ) corresponds to choosing
m(ϕ) which effectively defines the scalar-tensor gravity theory under
consideration.

3 Asymptotic Behaviour

The system of Eqs.(3) and (4) is a 2-dimensional, autonomous system
in the ϕ, x phase plane. The fixed points correspond to the asymptotic
regimes of the scalar-tensor theories.
When x = 0, the asymptotic states are such that ϕ is frozen at ϕ∗, and
occur at extrema of m(φ). This corresponds to general relativity (GR),
and it is an attractor at the minima of m and a repellor at the maxima.
This result recovers the attractor mechanism put forward by Damour
and Nordtvedt in [1] (see also [7]).
On the other hand, there are fixed points at infinite values of ϕ, that are
analysed by studying the infinity manifold with the change o variable
χ= 1/ϕ [6] : x = x1 =+p6 or x2 =−p6 and

limϕ→∞
∂ϕm(ϕ)

m(ϕ)
=λ=−2−γ

2
x?. (7)

They correspond to a rollingϕwith an exponential, or an asymptotically
exponential behaviour of m(ϕ) arising from x(φ) = λ = const.. This is
what defines Brans-Dicke theory in the Einstein frame and, thus, we re-
alise that the latter theory is also a possible attractor (repellor) of the ST
theories.

4 Examples of Exact Solutions

In the following figures we plot m(ϕ) and α(ϕ) for choices of x(ϕ) which
yield interesting exact solutions [8].
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5 Form-Invariance dualities

If we let H be transformed into H̄ [9, 10, 5], we have a form-invariance
duality when the following conditions are satisfied

dH̄

dH
= H̄ 2

H 2

3γ̄+ (1− γ̄/2)x̄2

3γ+ (1−γ/2)x2
. (8)

and
dϕ̄

x̄ H̄
= dϕ

xH
, (9)

which translates the fact that the form invariance transformation pre-
serves the time variable (5). We have also have the redundant condition

d H̄

d H
=

(
dϕ̄

dϕ

)2 3γ̄/x̄2+ (1− γ̄/2)

3γ̄/x2+ (1−γ/2)
. (10)

We recover the general relativistic equations taking γ̄= 0 = γ.

We establish a form-invariance transformation between any pair of
scalar field solutions by selecting the corresponding generating func-
tions x(ϕ) and x̄(ϕ̄), deriving the corresponding H(ϕ) and H̄(ϕ̄) func-
tions in accordance to equation (8), and plugging them into equation
(9) from which we derive the relation ϕ̄= ϕ̄(ϕ). Subsequently, we obtain
H̄ = H̄(H) by using the conditions (10).

5.1 The case H̄ = cH +β
We consider the simplest case which corresponds to the transformation
H̄ = cH +β, where both c and β are constants. To begin with we will
set β = 0. In this case we have the expansion of the universe in the two
related theories satisfy ā = ac and a particular case of interest is the case
where c =−1 which we will address below. First we see from eq. (8) that
H → cH implies

(1− γ̄/2)x̄2 = 3(γ/c − γ̄)+ (1−γ/2)x2/c . (11)

From Eq. (9) we then derive

dϕ̄

dϕ
= c−1 x̄

x
. (12)

If γ̄ = γ/c we see that Eq.(11) simplifies and we obtain x̄ = σx where
σ=±√

(2−γ)/(2c −γ) is a constant. It follows that φ̄= cσφ+φ0.
A particularly interesting case, is that when c = −1 which yields an in-
verse relation for the scale factors, ā = a−1 and plays an important role
in pre-big-bang scenarios [11]. We see this case is fulfilled when γ (say
γ̄) is negative. This means that the perfect fluid of one of the solutions
related by this duality must have a phantom equation of state.
The particular ST solutions in this duallity belong to the same theory in
this case since the corresponding generating functions x and x̄ satisfy a
linear relation. For instance they can thus be two Brans-Dicke solutions
with different values of σ, that is hence of α.

6 Discussion

We have introduced a procedure that permits to derive exact scalar ten-
sor Friedmann solutions with a perfect fluid satisfying the barotropic
equation of state p = (γ−1)ρ.
The method devised here is much simpler than all the methods put for-
ward earlier in the literature.
In addition it permits a rigorous discussion of the asymptotic behaviours
of the scalar tensor cosmologies. This reveals that in addition to the at-
tractor mechanism towards GR disclosed by Damour and Nordtvedt [1],
we also find that there is an attractor mechanism towards Brans-Dicke
theory.
Finally, our method further allows us to analyse form-invariance dual-
ities between different solutions either belonging to the same or to di-
verse scalar-tensor theories.
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