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Abstract

When approaching the Planck scale of energies the need to consider generalizations of Einstein’s theory of general relativity (GR) seems inescapable. Recently, these extended gravity theories have
also attracted a lot of interest because of the possibility that they might convey an explanation for the late time acceleration of the universe. Among the generalized gravity theories, scalar-tensor
(ST) theories stand up as exhibiting a dynamical scalar-field non-minimally coupled to the space-time geometry. This provides an appropriate theoretical framework for the variation of Newton’s
fundamental constant and is akin to the archetypal dilaton of the low-energy limit of string theories. In the present work we analyse Friedmann scalar-tensor cosmologies with a perfect fluid,
and put forward a new integration method that: On the one hand, permits the derivation of exact solutions in a unified, and simpler way than in previous approaches; And, on the other hand,
allows a thorough characterization of the cosmological attractor mechanisms. We find that, in addition to the mechanism of relaxation to GR investigated by Damour and Nordtvedt, Brans-Dicke
theory provides another cosmological attractor. Our procedure also enables us to investigate form-invariance transformations that establish dualities between solutions of different scalar-tensor
theories, and between different solutions within a single theory.

1 Introduction

In the so-called Jordan-Fierz frame [1], scalar-tensor gravity theories are
defined from the lagrangian description [2, 3]
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where R is the usual Ricci curvature scalar of a space-time endowed with
the metric g5, ® is a scalar field, w(®) is a dimensionless coupling func-
tion, U(®) is a cosmological potential for ®, and £, represents the La-
grangian for the matter fields (note that we shall use units that set ¢ = 1).
Since @ is a dynamical field the trademark of these theories is the varia-
tion of the gracitational constant G = ®~! | and the archetypal theory is
Brans-Dicke theory in which w(®) is a constant [4].

This class of theories can be given in the so-called Einstein frame by
means of an appropriate conformal transformation. Following Damour
and Nordvedt’s notation [1] , the original metric is rescaled according
to (8up — Zap = A°(@) gup, Where A™%(¢) = (®/D,) with @, = G~ being
a constant that we take to be the inverse of Newton’s gravitational con-

dgf =, /% a(¢)). The action becomes
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Still as in Damour and Nordvedt [1] we introduce «f (@) = In A(), a(p) =
0 () oa(p)
and £ (@) =

0 0p

2 Equations and procedure

We introduce a new dimensionless variable x = ¢/H, the time coordi-
nate T  Ina [5], and m(p) x A* 57 (¢p). We then obtain the following
autonomous planar dynamical system

X =-[3-=
2
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Dividing the former of these equations by the latter, we reduce the inte-
gration to a quadrature. Moreover, specitying x(¢) always allows us to
obtain the solutions in parametric form
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The choice of the generating function x(¢) corresponds to choosing
m(p) which effectively defines the scalar-tensor gravity theory under
consideration.

3 Asymptotic Behaviour

The system of Egs.(3) and (4) is a 2-dimensional, autonomous system
in the @, x phase plane. The fixed points correspond to the asymptotic
regimes of the scalar-tensor theories.
When x = 0, the asymptotic states are such that ¢ is frozen at ¢., and
occur at extrema of m(¢). This corresponds to general relativity (GR),
and it is an attractor at the minima of m and a repellor at the maxima.
This result recovers the attractor mechanism put forward by Damour
and Nordtvedt in [1] (see also [7]).
On the other hand, there are fixed points at infinite values of ¢, that are
analysed by studying the infinity manifold with the change o variable
y=1/¢[6]: x=x,=+v6o0rx>=-v6and

9p®) = A= —2_—Yx*.
m() 2
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They correspond to a rolling ¢ with an exponential, or an asymptotically
exponential behaviour of m(¢) arising from x(¢) = A = const.. This is
what defines Brans-Dicke theory in the Einstein frame and, thus, we re-
alise that the latter theory is also a possible attractor (repellor) of the ST
theories.

4 Examples of Exact Solutions

In the following figures we plot m(¢) and a(¢) for choices of x(¢) which
yield interesting exact solutions [8].
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5 Form-Invariance dualities

If we let H be transformed into H [9, 10, 5], we have a form-invariance

duality when the following conditions are satisfied
dH H*3y+(1-7/2)X°
dH H23y+(1-7y/2)x?

(8)

and
ap _dg
xH xH
which translates the fact that the form invariance transformation pre-
serves the time variable (5). We have also have the redundant condition
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We recover the general relativistic equations taking y =0 =1.

We establish a form-invariance transformation between any pair of
scalar field solutions by selecting the corresponding generating func-
tions x(¢) and x(¢), deriving the corresponding H(¢) and H(¢) func-
tions in accordance to equation (8), and plugging them into equation
(9) from which we derive the relation @ = ¢(¢). Subsequently, we obtain
H = H(H) by using the conditions (10).

5.1 Thecase H=cH+f3

We consider the simplest case which corresponds to the transformation
H = cH + 3, where both ¢ and 8 are constants. To begin with we will
set 6 = 0. In this case we have the expansion of the universe in the two
related theories satisfy a = a“ and a particular case of interest is the case
where ¢ = —1 which we will address below. First we see from eq. (8) that
H — cH implies

(1-7/2)x*=3(ylc—7)+ 1 -v/2)x*/c. (11)
From Eq. (9) we then derive
1 _
&P _ 12 (12)
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If ¥ = y/c we see that Eq.(11) simplifies and we obtain X = ox where
o =+./(2—7y)/(2c—7y) is a constant. It follows that ¢ = cod + .

A particularly interesting case, is that when ¢ = —1 which yields an in-
verse relation for the scale factors, @ = a™! and plays an important role
in pre-big-bang scenarios [11]. We see this case is fulfilled when y (say
¥) is negative. This means that the perfect fluid of one of the solutions
related by this duality must have a phantom equation of state.

The particular ST solutions in this duallity belong to the same theory in
this case since the corresponding generating functions x and X satisfy a
linear relation. For instance they can thus be two Brans-Dicke solutions
with different values of o, that is hence of «.

6 Discussion

We have introduced a procedure that permits to derive exact scalar ten-
sor Friedmann solutions with a perfect fluid satistying the barotropic
equation of state p = (y — 1) p.

The method devised here is much simpler than all the methods put for-
ward earlier in the literature.

In addition it permits a rigorous discussion of the asymptotic behaviours
of the scalar tensor cosmologies. This reveals that in addition to the at-
tractor mechanism towards GR disclosed by Damour and Nordtvedt [1],
we also find that there is an attractor mechanism towards Brans-Dicke
theory.

Finally, our method further allows us to analyse form-invariance dual-
ities between different solutions either belonging to the same or to di-
verse scalar-tensor theories.
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