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Introduction

-A RS 1-Brane surrounding a bulk Anti-deSitter-
Schwarzchild Black hole can look like a Friedmann-
Roberston-Walker spacetime with a modified Friedmann

equation.
-The modified Friedmann equations:
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- Gravitational waves in the bulk will propagating according

to the following wave equation:
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- With boundary condition (on the brane):
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- Our code evolves Initial perturbations, defined on a null
surface in the bulk, as it impinges on the brane; and we fit
the resulting signal on the brane to find the zero mode.
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Free Parameters: frequency of noncritical mode, ratio between Weyl and

ordinary density, Mass.
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Spectrum of a RS 1-Brane
In a Black Hole Bulk
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We define the initial data?i(?) to be a
truncated Gaussian:
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And we evolve the perturbation through the bulk to
impinge upon the brane: €w = 0.08 . p, = 135
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This provides us with the perturbation signal as measured by

observers upon the brane:
0, = 187 . €, = 0.08
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We determine the amplitude of the zero mode by fitting

the data points from the tail of the signal. We use this to
determine a spectrum:

Z.ero Mode Spectra for Gaussian €, = 0.08
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We define the initial data?i(?) to be a

Sinusoid:

Y; (v) = cos(8v)
And we evolve the perturbation through the bulk to
impinge upon the brane: €w = 0.08 , p, = 170
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This provides us with the perturbation signal as measured by

observers upon the brane:
px = 410, €, = 0.08
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We determine the amplitude of the zero mode by fitting
the data points from the tail of the signal. We use this to

determine a spectrum:
Z.ero Mode Spectra for Cos(8v)
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