Dark Matter Annihilation with Electroweak Bremsstrahlung

Nicole Bell The University of Melbourne, Australia James Dent (Arizona), Thomas Jacques (Melbourne) & Tom Weiler (Vanderbilt)

Nicole Bell, The University of Melbourne

Leptophillic Dark Matter

♦ Consider "Leptophillic" models:
 → dark matter couples only to leptons

(Note that this can only be true at tree-level. Higher order corrections will inevitably lead to couplings to quarks).

Leptophillic dark matter has been subject of much recent attention due to various observed anomalies in the cosmic ray positrons: PAMELA, ATIC, Fermi...

These observations all suggest more positrons and electrons than can be readily accounted for.

Positrons

PAMELA e+ excess Nature 458, 607-609

Fermi e⁺+e⁻ excess Phys. Rev. Lett. 102, 181101 (2009) 3

Nicole Bell, The University of Melbourne

Antiprotons

Antiproton data consistent with theory expectation (for secondary production of antiprotons via cosmic ray propagation in the Galaxy).

Solution of positron anomalies

◆ Positrons from astrophysics?
 Re-examine the expected positron flux from:
 →pulsars
 →supernova remnants
 →acceleration of secondary e+
 →cosmic ray propagation

◇ Positrons from Dark Matter?
 → Must produce enough e+e- without overproducing pbar.
 → Need big cross sections!
 (Boost via DM clumping/substructure or enhanced cross sections → "Sommerfeld", non-thermal DM, ...)
 → But annihilation to leptons is often suppressed.....

Annihilation cross section

Parameterize the annihilation cross section as:

 $<\sigma v > = a + bv^2 + ...$

a -- from s-wave (*L*=0) annihilation *b* -- both s-wave and p-wave (*L*=1) contributions

The L^{th} partial wave contribution is suppressed as V^{2L}

In galactic halos, $v \sim 10^{-3}$ c, so only the s-wave contribution will be significant.

<u>However</u>, in many models, s-wave annihilation to a fermion pair is helicity suppressed by a factor of $(m_f/m_{DM})^2$

Example: SUSY

Majorana neutralinos annihilate to a fermion pair via:

t- and u-channel exchange of sfermions
 → helicity suppressed

s-channel exchange of Z
 →helicity suppressed

s-channel exchange of higgs
 → suppressed by yukawa couplings

 $(m_f/\text{vev})^2$

Nicole Bell, The University of Melbourne

When is annihilation suppressed?

- For s-channel annihilation:
- Suppressed: scalar axial-vector

P₁

ß

p

Non-suppressed: pseudo-scalar vector (not allowed for Majorana DM) tensor (not allowed for Majorana DM)

 \rightarrow s-channel exchange of a pseudo-scalar is the sole non-suppressed mode for Majorana DM.

What about t- and u-channel annihilation?

→ Fierz transform to s-channel form. → Non-suppressed only if a pseudo-scalar term present

Nicole Bell, The University of Melbourne

Example: leptophillic model

Cao, Ma, Shaughnessy, PLB 2009. Dark matter = gauge-singlet Majorana fermion = χ

$$\mathcal{L} = f(\nu_L \eta^0 - \ell_L \eta^+) \chi + h.c.$$

Annihilation to leptons via t- and u-channel exchange of an SU(2) doublet scalar, η.

$$v\,\sigma = \frac{f^4\,M_{\chi}^2}{16\pi\,M_{\eta}^4} \left[\frac{m_l^2}{s} + \frac{2}{3}v^2 + \mathcal{O}(v^4)\right]$$

Cosmo-CosPA conference, Tokyo, Japan, 30 October 2010

Nicole Bell, The University of Melbourne

Helicity suppression of s-wave

Majorana →opposite spins

In massless limit, helicity = chirality, so

$$\langle \sigma v \rangle = \left(\frac{m_\ell}{E_\ell} \right)^2 a + b v^2$$

Heavily Suppressed!

Nicole Bell, The University of Melbourne

Lifting the suppression (photons)

Emission of a high energy photon from the propagator can lift this suppression:

Bergstrom, PLB 225, 372 (1989); Flores, Olive, Rudaz, PLB 232, 377 (1989); Bringmann, Bergstrom, Edsjo, 2008); Barger, Gao, Keung, Marfatia, 2009.

The photon carries away a unit of angular momentum \rightarrow no longer helicity suppressed.

$$\chi\chi \to f\bar{f}\gamma \gg \chi\chi \to f\bar{f}$$

Nicole Bell, The University of Melbourne

Lifting the suppression (photons)

Final state radiation (FSR)

"Virtual internal bremsstrahlung" (VIB)

 FSR not effective in lifting suppression (soft/collinear)
 VIB is effective in lifting suppression, but is suppressed by additional η propagator

 \rightarrow Large effect only for near-degenerate χ and η masses.

Lifting suppression (electroweak brem.)¹³

Bell, Dent, Jacques & Weiler

Radiating a W or Z boson can also lift the suppression
 Radiation from a final state particle is sufficient

 (& radiation from propagator suppressed for heavy η)
 Don't need near-degenerate χ and η masses

♦ W and Z bosons decay to leptons, gamma, and hadrons
 → hadron production even for leptophillic models

Nicole Bell, The University of Melbourne

Electroweak brem. diagrams

Nicole Bell, The University of Melbourne

Cosmo-CosPA conference, Tokyo, Japan, 30 October 2010

14

Ratio of evW and e+e- cross sections

Annihilation to evW or e+e-Z dominates over e+eEnhancement by many orders of magnitude!

Nicole Bell, The University of Melbourne

χχ→evW

Iepton energy spectrum

Nicole Bell, The University of Melbourne

W energy spectrum

Including the Z brem

W-brem and Z-brem cross sections related in simple way

$$\begin{split} \chi\chi \to e^+\nu W^- & v \,\sigma_{e^+e^-Z} = \frac{2\left(\sin^2\theta_W - \frac{1}{2}\right)^2}{\cos^2\theta_W} \times v \,\sigma_{e^+\nu W^-} \Big|_{M_W \to M_Z} \\ \simeq 0.19 \times v \,\sigma_{e^+\nu W^-} \Big|_{M_W \to M_Z} \cdot & (Q_W \to Q_W \to W) \\ \chi\chi \to e^+e^-Z & \chi\chi \to \nu\bar{\nu}Z & v \,\sigma_{e^+\nu W^-} \Big|_{M_W \to M_Z} \cdot & (Q_W \to Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{M_W \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{M_W \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{M_W \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{M_W \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{M_W \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{M_W \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{M_W \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} \Big|_{W^+ \to M_Z} \cdot & (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} = (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} = (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} = (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} = (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} = (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} = (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} = (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\nu W^-} = (Q_W \to W) \\ \simeq 0.65 \times v \,\sigma_{e^+\vee W^+} =$$

$$\begin{split} \langle \sigma v \rangle_{\rm Brem} &= \langle \sigma v \rangle_{e^+\nu W^-} + \langle \sigma v \rangle_{e^-\bar{\nu}W^+} \\ &+ \langle \sigma v \rangle_{e^+e^-Z} + \langle \sigma v \rangle_{\nu\bar{\nu}Z} \end{split}$$

Nicole Bell, The University of Melbourne

Cosmo-CosPA conference, Tokyo, Japan, 30 October 2010

17

Total electron energy spectrum

Nicole Bell, The University of Melbourne

Annihilation spectra

Nicole Bell, The University of Melbourne

Annihilation spectra

Nicole Bell, The University of Melbourne

Maximum allowed cross sections

→ Can't make significant contribution to e+ flux, without overproducing pbar!

Nicole Bell, The University of Melbourne

Models with no helicity suppression

→EW-brem still occurs, but is subdominant

→W/Z decays ensures there is at least a minimal yield of hadrons, photons, charged leptons and neutrinos.

Kachelriess, Serpico and Solberg arXiv:0911.0001

Nicole Bell, The University of Melbourne

Conclusions

Electroweak bremsstrahlung lifts helicity suppression → dominant annihilation channel

- e+e-Z and evW rates dominate over e+e- by several orders of magnitude
- Allows indirect detection of processes that would otherwise be too suppressed to give observable signals
 Unavoidable hadronic component from W/Z decay
 Can't produce significant amount of e+ without overproducing antiprotons.

Even models where the there is no suppression, purely leptonic annihilation products impossible

NFB, J. B. Dent, T. D. Jacques and T. J. Weiler, arXiv:1009.2584 NFB, J. B. Dent, T. D. Jacques and T. J. Weiler, in preparation