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Motivation

(Jarosik et al. 2010) (Jarosik et al. 2010)
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(Larson et al. 2010) (Bock et al. 2009)

If a tensor signal is seen, the inflaton must have moved
over a super-Planckian distance in field space™ yth 1996

* For single field models with canonical kinetic term



Motivation

This is hard to control in an EFT field theory
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V(o) = Vo + §m2¢2 5 §M¢3+
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The ¢y, are typically unknown.

Even if they were known, the effective theory is
generically expected to break down for¢ > A, e.g.
because other degrees of freedom become light.



Motivation

Possible Solution:

Use a field with a shift symmetry, e.g. axion.
Break the shift symmetry in a controlled way.

first example '

Silverstein, Westphal, arXiv:0803.3085

If the inflaton is an axion, periodic contributions
to the potential can arise leading to

V(6) = Vi (d)r K% 08 (?)

numerical studies Chen, Easther, Lim, arXiv:0801.3295
Hannestad, Haugboelle, Jarnhus, Sloth, arXiv:0912.3527



Summary of Results

The primordial power spectrum

The usual slow-roll derivation breaks down
because of parametric resonance, and the
Mukhanov-Sasaki equation has to be solved.
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The primordial power spectrum
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Then for large x




Summary of Results

The primordial power spectrum

S

(Linear potential with f = 107°M,, b =10"2))



Summary of Results

The primordial power spectrum

One finds -
A% (k) = A% (k) (%) {1 0N COS <%>}

with
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< 1. For the general case see our paper.)

ng="1~ 4e,"— 20, and ongs = 3b (
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For constraints on these parameters from VWMAPS for a
linear potential, see
Flauger, McAllister, Pajer, Westphal, Xu, arXiv:0907.2916

(This assumes




Summary of Results

The bispectrum

Models with large 0 can lead to large non-Gaussianities
Chen, Easther, Lim, arXiv:0801.3295

(R(ky, )R (ka )R (ks, 1)) 2
e / Rk, R (ka, R (s, Hy () B
with e
CH (1) > — / P a® ()OS (ORxHR(x. 1)

* with slight abuse of notation
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Summary of Results

The bispectrum

After some algebra
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The bispectrum

g(kla k27 kS) [ h ( 26* ) ¢
= ' |sin In K/k,
k1kaks / f /

\/?_; — COS (\/;T*ln[(/k*).*l—‘

with | o, |
K=k + ko + k3 = ,;?'
ros 3.\ 21 [ +/2€, on? »

This satisfies the consistency condition.



Summary of Results

The bispectrum

G (k1. k) Xz k) Xs)




Summary of Results

Existing constraints on local, equilateral,
and orthogonal shapes cannot be used to infer
constraints on this shape.
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Conclusions

This shape of nhon-Gaussianities might be
present in the case of large field inflation, but
is currently essentially unconstrained.

Techniques to measure this shape, or better |
yet general shapes/are desirable. E.g.

Fergusson, Liguori, Shellard, arXiv:0912.5516
Meerburg, arXiv:1006.2771

Our analytic results will hopefully aid in
constraining this shape. ,

Still more work to be done...






