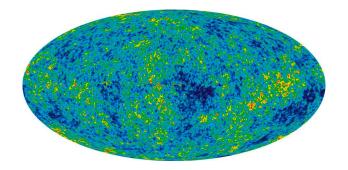
Non-Gaussianity from Preheating

Arttu Rajantie (with A. Chambers and S. Nurmi)

27 September 2010

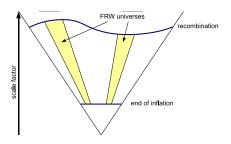
A.Chambers & AR, PRL100(2008)041302 A.Chambers & AR, JCAP08(2008)002 A.Chambers, S.Nurmi & AR, JCAP01(2010)012

Perturbations from Non-Equilibrium Fields



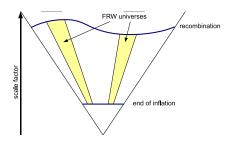
- Light scalar fields ⇒ Nearly scale invariant perturbations
- Non-equilibrium field evolution ⇒ Non-Gaussian contribution
- Sensitive test of models But how can we calculate it?

Separate Universes



- Each Hubble patch ∼ separate FRW universe (Salopek&Bond 1990)
- \bullet Curvature perturbation $\zeta = \delta N = \delta \ln a|_{\rho = \rho_*}$
- Valid at distances $d \gg 1/H$

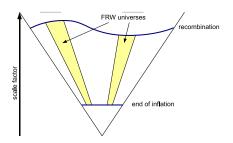
Separate Universes



- Curvature perturbation $\zeta = \delta N = \delta \ln a|_{\rho = \rho_*}$
- Conserved if $w = w(\rho)$:

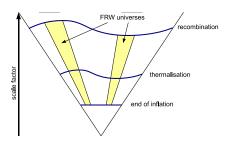
$$\frac{d \ln a}{d \rho} = -\frac{1}{3\rho(1 + w(\rho))}$$

Light Scalar Field χ



- $m_{\chi} < H \Rightarrow$ Gaussian scale-invariant perturbations
- ullet Different "universes" have different initial value χ_0
- Affects expansion \Rightarrow Scale factor depends on χ_0

Light Scalar Field χ



- Thermalisation erases memory of $\chi_0 \Rightarrow w = w(\rho)$
- Curvature perturbation determined at thermalisation: $\zeta_{\rm rec} = \zeta_{\rm therm} = \delta \ln a|_{\rho = \rho_{\rm therm}}$

Calculating the Curvature Perturbation

- Solve Friedmann eq. for each separate universe $\Rightarrow a(t), \rho(t)$
 - Non-linear, includes gravity, valid at $d \gg H^{-1}$
- Pick $\rho_* < \rho_{
 m therm}$, and calculate $\zeta = \delta \ln a |_{
 ho =
 ho_*}$
 - Two fields: $\zeta = \zeta(\phi_0, \chi_0)$
 - $\delta\phi_0\Leftrightarrow {\rm Shift}$ in time: Usual inflationary perturbations
 - $\delta \chi_0$: New contribution
- Need to calculate $N(\chi_0) = \ln a(\chi_0)$
 - Perturbative approach: Taylor expand

$$\zeta = \zeta_{\phi} + \frac{\partial N}{\partial \chi_0} \delta \chi_0 + \frac{1}{2} \frac{\partial^2 N}{\partial \chi_0^2} \delta \chi_0^2 + \dots$$

Calculating the Curvature Perturbation

- Solve Friedmann eq. for each separate universe $\Rightarrow a(t)$, $\rho(t)$
 - Non-linear, includes gravity, valid at $d \gg H^{-1}$
- Pick $\rho_* < \rho_{\mathrm{therm}}$, and calculate $\zeta = \delta \ln a |_{\rho = \rho_*}$
 - Two fields: $\zeta = \zeta(\phi_0, \chi_0)$
 - $\delta\phi_0\Leftrightarrow \text{Shift in time:}$ Usual inflationary perturbations
 - $\delta \chi_0$: New contribution
- Need to calculate $N(\chi_0) = \ln a(\chi_0)$
 - Perturbative approach: Taylor expand

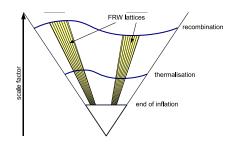
$$\zeta = \zeta_{\phi} + \frac{\partial N}{\partial \chi_0} \delta \chi_0 + \frac{1}{2} \frac{\partial^2 N}{\partial \chi_0^2} \delta \chi_0^2 + \dots$$

Imperial College

Calculating the Curvature Perturbation

- Solve Friedmann eq. for each separate universe $\Rightarrow a(t)$, $\rho(t)$
 - Non-linear, includes gravity, valid at $d \gg H^{-1}$
- Pick $\rho_* < \rho_{\mathrm{therm}}$, and calculate $\zeta = \delta \ln a |_{\rho = \rho_*}$
 - Two fields: $\zeta = \zeta(\phi_0, \chi_0)$
 - $\delta\phi_0 \Leftrightarrow$ Shift in time: Usual inflationary perturbations
 - $\delta \chi_0$: New contribution
- Need to calculate $N(\chi_0) = \ln a(\chi_0)$
 - Instead: Solve field and Friedmann eqs numerically
 - Solve for many different initial values χ
 - \Rightarrow Whole non-linear function $N(\chi_0)$ (Bassett&Tanaka 2003, Suyama&Yokoyama 2006)

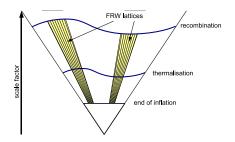
Lattice Calculation of Curvature Perturbations



- Describe each "universe" as a lattice (Chambers&AR 2007)
- Inhomogeneous fields, FRW metric
- Lattice size $L \sim 1/H$

Imperial College

Lattice Calculation of Curvature Perturbations



- Solve field evolution on lattice, coupled to Friedmann eq with average ρ
- Find curvature perturbation as $\zeta(\chi_0) = \delta \ln a(\chi_0)|_{\rho = \rho_*}$, where χ_0 is the lattice average

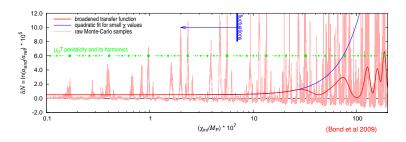
Initial Conditions

- Sub-horizon modes: Quantum vacuum
 - Gaussian classical fluctuations with (Khlebnikov&Tkachev 1996)

$$\overline{|\chi_k|^2} = \frac{1}{V} \frac{1}{2\omega_k}, \quad \overline{|\dot{\chi}_k|^2} = \frac{1}{V} \frac{\omega_k}{2}$$

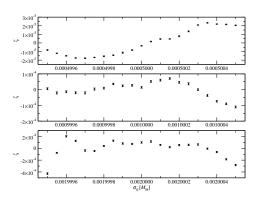
- Linear dynamics: quantum = classical
- $\bullet \ \ \text{Non-linear dynamics: quantum} \approx \text{classical} \\$
- - Initial field value χ_0
 - Input parameter we are calculating $\zeta(\chi_0)!$

Massless Preheating



- Chaotic behaviour: Highly non-Gaussian (Chambers&AR 2007)
- ullet Not well approximated by a quadratic $f_{
 m NL}$

Curvaton Resonance



- Curvaton decays through parametric resonance (Enqvist et al 2009)
- ullet Again, not well described by $f_{
 m NL}$ (Chambers, Nurmi&AR 2009)

Conclusions

- Non-linear calculation of curvature perturbation due to non-equilibrium physics
 - Separate universes + lattice field theory
 - Works with any (bosonic) field dynamics
- Massless preheating, Curvaton resonance:
 - Possibly observable effects $\Delta \zeta \sim 10^{-5}$
 - Highly non-linear
 - How should we look for these signals?

