coSMO/CosPA 2010@ The University of Tokyo

Trispectrum estimator in equilateral type nonGaussian models

Shuntaro Mizuno (Portsmouth)
with Kazuya Koyama (Portsmouth) arXiv:1007.1462 [hep-th]

Primordial Trispectrum

- Definition

$$
\left\langle\zeta\left(k_{1}\right) \zeta\left(k_{2}\right) \zeta\left(k_{3}\right) \zeta\left(k_{4}\right)\right\rangle_{c}=(2 \pi)^{3} \delta\left(k_{1}+k_{2}+k_{3}+k_{4}\right) T_{\zeta}^{\prime}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)
$$

gives also important information !!

Takahashi
Kobayashi
Izumi

$$
\left\langle\zeta^{n}\right\rangle \sim \frac{1}{c_{s}^{3 n-5}} \quad \Rightarrow \quad f_{N L} \sim \frac{1}{c_{s}^{2}} \tau_{N L} \sim \frac{1}{c_{s}^{4}}
$$

Primordial Trispectrum in equilateral type model

Ex) • single field DBI Arroja, SM, Koyama, Tanaka `09

- multi-field DBI SM, Arroja, Koyama `09

Includes complicated functions like

$$
\begin{aligned}
\tilde{\mathcal{F}}_{2}\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}\right)= & -\frac{\left|k_{1} k_{4}\right|^{\frac{1}{2}}}{\left|k_{2} k_{3} k_{5} k_{6}\right|^{\frac{3}{2}}} \frac{1}{\mathcal{A C}}\left[1+\frac{k_{5}+k_{6}}{\mathcal{A}}+2 \frac{k_{5} k_{6}}{\mathcal{A}^{2}}\right. \\
& +\frac{1}{\mathcal{C}}\left(k_{2}+k_{3}+k_{5}+k_{6}+\frac{1}{\mathcal{A}}\left(\left(k_{2}+k_{3}\right)\left(k_{5}+k_{6}\right)+2 k_{5} k_{6}\right)+2 \frac{k_{5} k_{6}\left(k_{2}+k_{3}\right)}{\mathcal{A}^{2}}\right) \\
& +\frac{2}{\mathcal{C}^{2}}\left(k_{5} k_{6}+\left(k_{2}+k_{3}\right)\left(k_{5}+k_{6}\right)+k_{2} k_{3}+\frac{1}{\mathcal{A}}\left(k_{2} k_{3}\left(k_{5}+k_{6}\right)+2 k_{5} k_{6}\left(k_{2}+k_{3}\right)\right)\right. \\
& \left.+2 \frac{k_{2} k_{3} k_{5} k_{6}}{\mathcal{A}^{2}}\right)+\frac{6}{\mathcal{C}^{3}}\left(k_{2} k_{3}\left(k_{5}+k_{6}\right)+k_{5} k_{6}\left(k_{2}+k_{3}\right)+2 \frac{k_{2} k_{3} k_{5} k_{6}}{\mathcal{A}}\right) \\
& \left.+24 \frac{k_{2} k_{3} k_{5} k_{6}}{\mathcal{C}^{4}}\right]
\end{aligned}
$$

practically, not so useful as a theoretical template !!

Bispectrum estimator

- Estimator for general case model theory

$$
\mathcal{E}=\frac{1}{\mathcal{N}^{2}} \sum_{l_{i} m_{i}}\left(\begin{array}{ccc}
l_{1} & l_{2} & l_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right) \frac{B_{l_{1} l_{2} l_{3}}}{C_{l_{1}} C_{l_{2}} C_{l_{3}}} a_{l_{1} m_{1}}^{o b s} a_{l_{2} m_{2}}^{o b s} a_{l_{3} m_{3}}^{o b s}
$$

calculation time $N_{\text {pix }}^{5 / 2} \quad$ in general
Komatsu, Spergel `01

- Estimator for local type model $B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right) \propto\left[P_{\zeta}\left(k_{1}\right) P_{\zeta}\left(k_{2}\right)+\right.$ perms. $]$ $\mathcal{E}=\frac{1}{\mathcal{N}^{2}} \int d^{3} x A(x)(B(x))^{2}$ separable form
with

$$
\left\{\begin{array}{l}
A(x)=\sum_{l, m} \frac{2}{\pi} \int k^{2} d k \Delta_{l}(k) j_{l}(k x) \frac{a_{l m}^{o b s}}{c_{l}} Y_{l m}(\hat{x}) \\
B(x)=\sum_{l, m} \frac{2}{\pi} \int k^{2} d k \frac{25}{9} P_{\zeta}(k) \Delta_{l}(k) j_{l}(k x) \frac{a_{l m}^{o b s}}{c_{l}} Y_{l m}(\hat{x})
\end{array}\right.
$$

calculation time $N_{p i x}^{3 / 2}$
HEALPix

Bispectrum estimator in equilateral type model

- Separable equilateral shape function

Babichi, Creminelli, Zaldarriaga `04
$F\left(k_{1}, k_{2}, k_{3}\right)=(2 \pi)^{4}\left(\frac{9}{10} f_{\mathrm{NL}}^{e q u i l}\right)\left(-\frac{1}{k_{1}^{3} k_{2}^{3}}-\frac{1}{k_{1}^{3} k_{3}^{3}}-\frac{1}{k_{2}^{3} k_{3}^{3}}-\frac{2}{k_{1}^{2} k_{2}^{2} k_{3}^{2}}+\frac{1}{k_{1} k_{2}^{2} k_{3}^{3}}+5\right.$ perms. $)$
This template fits the bispectrum in DBI inflation very well !!

Separable form

$$
k_{1}=k_{2}=k_{3} \quad \longrightarrow \quad f_{\mathrm{NL}}^{\text {equil }}=-\frac{35}{108} \frac{1}{c_{s}^{2}}
$$

Separable Trispectrum

Trispectrum in DBI inflation is not separable, but there is a quasi-separable and symmetric trispectrum.

- Quasi-separable trispectrum

$$
T_{\zeta}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{g_{\mathrm{NL}}^{\text {equil }}}{k_{1} k_{2} k_{3} k_{4}\left(\frac{k_{1}+k_{2}+k_{3}+k_{4}}{4}\right)^{5}} \mathcal{P}_{\zeta}(k)^{3}
$$

- appears for k-inflation with $P_{, X X X X} \neq 0$
- not constrained by the bispectrum measurements
separable by introducing the integral

$$
\frac{1}{M^{n}}=\frac{1}{\Gamma(n)} \int_{0}^{\infty} t^{(n-1)} e^{-M t}
$$

Chen et al `09
validity to use this shape as a template is nontrivial

Shape function

- Shape function motivated by CMB trispectrum
$S_{\mathcal{T}}\left(k_{1}, k_{2}, k_{3}, k_{4} ; k_{12}\right)=\left(k_{1} k_{2} k_{3} k_{4}\right)^{2} k_{12} \mathcal{T}_{\zeta}\left(k_{1}, k_{2}, k_{3}, k_{4} ; k_{12}\right)$
reduced trispectrum
configurations are specified by $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{12}, \theta_{4}\right)$
- Physical region should satisfy
-Triangle conditions for $\left(k_{1}, k_{2}, k_{12}\right)$ and $\left(k_{3}, k_{4}, k_{12}\right)$
$-\left|\cos \theta_{4}\right| \geq \frac{\left|k_{4}^{2}+k_{12}^{2}-k_{3}^{2}\right|}{2 k_{12} k_{4}}$

Shape correlator

- Overlap integral

$$
F\left(S_{\mathcal{T}}, S_{\mathcal{T}^{\prime}}\right)=\int d \mathcal{V}_{k} \int d\left(\cos \theta_{4}\right) S_{\mathcal{T}}\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{12}, \theta_{4}\right) S_{\mathcal{T}^{\prime}}\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{12}, \theta_{4}\right) w
$$

-integration is over physical region
-weight function motivated by the estimator in l space

$$
w\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{12}\right)=\frac{1}{k_{12}\left(k_{1}+k_{2}+k_{12}\right)\left(k_{3}+k_{4}+k_{12}\right)}
$$

- Shape correlator

$$
\overline{\mathcal{C}}\left(S_{\mathcal{T}}, S_{\mathcal{T}^{\prime}}\right)=\frac{F\left(S_{\mathcal{T}}, S_{\mathcal{T}^{\prime}}\right)}{\sqrt{F\left(S_{\mathcal{T}}, S_{\mathcal{T}}\right) F\left(S_{\mathcal{T}^{\prime}}, S_{\mathcal{T}^{\prime}}\right)}}
$$

\Longrightarrow We can check the validity of the estimator

Parametrisation of allowed region

From the scaling behaviour, we can separate out the overall scale q, from the behaviour on a cross-sectional slice

$$
S_{\mathcal{T}}\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{12}, \theta_{4}\right)=f(q) \bar{S}_{\mathcal{T}}\left(\frac{k_{1}}{q}, \frac{k_{2}}{q}, \frac{k_{3}}{q}, \frac{k_{4}}{q}, \frac{k_{12}}{q}, \theta_{4}\right)
$$

only this part is important
here, we set $\quad q \equiv \frac{1}{2}\left(k_{1}+k_{2}+k_{12}\right)$

- Intro. variables (α, β) for triangle $\left(k_{1}, k_{2}, k_{12}\right)$

$$
k_{12}=q(1-\beta)
$$

$\underline{\alpha}$: asymmetry between k_{1} and k_{2}

$$
-(1-\beta) \leq \alpha \leq 1-\beta
$$

$\underline{\beta}$: ratio between $k_{1}+k_{2}$ and k_{12}

$$
0 \leq \beta \leq 1
$$

Parametrisation of allowed region (cont.)

- Intro. variables $(\gamma, \delta, \epsilon)$ for triangle $\left(k_{3}, k_{4}, k_{12}\right)$
$\epsilon=\left(k_{3}+k_{4}+k_{12}\right) /\left(k_{1}+k_{2}+k_{12}\right) \quad$ ratio of the size of the two triangles not lose the generality to consider $1 \leq \epsilon<\infty$

$\underline{\gamma}$: asymmetry between k_{3} and k_{4}

$$
-\frac{1-\beta}{\epsilon} \leq \gamma \leq \frac{1-\beta}{\epsilon}
$$

δ : given by $\quad 1-\beta=\epsilon(1-\delta)$

- necessary facts for the overlap integral

$$
\begin{aligned}
S_{\mathcal{T}}\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{12}, \theta_{4}\right) & =f(q) \bar{S}_{\mathcal{T}}\left(\underline{\alpha, \beta, \gamma, \epsilon,} \theta_{4}\right), \\
w\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{12}\right) & =\frac{1}{4 \epsilon(1-\beta)}, \\
d \mathcal{V}_{k}=d k_{1} d k_{2} d k_{3} d k_{4} d K & =\epsilon q^{4} d q d \alpha d \beta d \gamma d \epsilon .
\end{aligned}
$$

Results

	Overlap-full	$\epsilon=1$	equilateral	theoretical prediction for $g_{\mathrm{NL}}^{\text {equil }}$	$f_{\mathrm{NL}}^{\text {equil }}$
equilateral shape	1	1	1	$\left(3 X^{3} P_{, 4 X}\right) /\left(16 c_{s} P_{, X}^{4}\right)$	$f_{\mathrm{NL}}^{\text {equil }}$
single DBI	0.87	0.90	0.92	$17 / c_{s}^{4}$	$-0.36 / c_{s}^{2}$
multi DBI	0.33	0.60	0.85	$2.2 /\left(c_{s}^{4} T_{\mathcal{R} S}^{2}\right)$	$-0.36 /\left(c_{s}^{2} T_{\mathcal{R} S}^{2}\right)$

$$
\begin{array}{rlrl}
F\left(S_{\mathcal{T}}^{D B I(\sigma)}, S_{\mathcal{T}}^{D B I(\sigma)}\right) & =F\left(S_{\mathcal{T}}^{\text {equil }}, S_{\mathcal{T}}^{\text {equil }}\right), & F\left(S_{\mathcal{T}}^{D B I(s)}, S_{\mathcal{T}}^{D B I(s)}\right) & =F\left(S_{\mathcal{T}}^{\text {equil }}, S_{\mathcal{T}}^{\text {equil }}\right) \\
F\left(S_{\mathcal{T}}^{D B I(\sigma)}, S_{\mathcal{T}}^{\text {equil }}\right)>0 . & F\left(S_{\mathcal{T}}^{D B I(s)}, S_{\mathcal{T}}^{\text {equil }}\right)>0
\end{array}
$$

$$
\text { when } g_{\mathrm{NL}}^{\text {equil }}=1 \text { and } \overline{\mathcal{C}}\left(S_{\mathcal{T}}^{D B I(s)}, S_{\mathcal{T}}^{\text {equil }}\right)=1 \quad \text { when } g_{\mathrm{NL}}^{\text {equil }}=1 \text { and } \overline{\mathcal{C}}\left(S_{\mathcal{T}}^{D B I(s)}, S_{\mathcal{T}}^{\text {equil }}\right)=1
$$

Matching at a point underestimate the amplitudes by factor $2 \sim 4$!!

Cf. Bispectrum

$$
f_{\mathrm{NL}}^{e q u i l}=-\frac{35}{108} \frac{1}{c_{s}^{2}} \quad \sim-0.33 \frac{1}{c_{s}^{2}}
$$

Matching at a point

Conclusion and discussion

- Estimator for equilateral type primordial non-Gaussianity
- Separable shape

$$
\begin{aligned}
& T_{\zeta}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{g_{\mathrm{NL}^{\text {quil }}}}{k_{1} k_{2} k_{3} k_{4}\left(\frac{k_{1}+k_{2}+k_{3}+k_{4}}{1}\right)^{5}} \mathcal{P}_{\zeta}(k)^{3} \\
& \overline{\mathcal{C}}\left(S_{\mathcal{T}}, S_{\mathcal{T}^{\prime}}\right)=\frac{F\left(S_{\mathcal{T}}, S_{\mathcal{T}^{\prime}}\right)}{\sqrt{F\left(S_{\mathcal{T}}, S_{\mathcal{T}}\right) F\left(S_{\mathcal{T}^{\prime}}, S_{\mathcal{T}^{\prime}}\right)}}
\end{aligned}
$$

More accurate than considering only the equilateral configuration

- Predictions
- special class of k-inflation $g_{\mathrm{NL}}^{\text {equil }}=\frac{3 X^{3} P_{, 4 X}}{16 c_{s} P_{, X}^{4}}$
- single field DBI inflation $\quad g_{N L}^{\text {equil }}=\frac{17}{c_{o}^{4}} \quad \longleftarrow 87 \%$ correlation
- multi-field DBI inflation $g_{N L}^{\text {equil }}=\frac{2.2}{c_{s}^{4} T_{\mathcal{R S}}^{2}} \longleftarrow 33 \%$ correlation
- Detectability

Creminelli, Senatore, Zaldarriaga `07

$$
\Delta g_{\mathrm{NL}} \sim \frac{1}{\mathcal{P}_{\zeta} N_{p i x}^{1 / 2}} \sim \frac{\Delta f_{\mathrm{NL}}}{\mathcal{P}_{\zeta}^{1 / 2}}
$$

- Application to other models?

Ghost inflation, Lifshitz field, DBI Galileon,

Thank you very much!

Equilateral shape

$$
S_{\mathcal{T}}^{\text {equil }}(\alpha, \beta, \gamma, 1)
$$

$$
\beta=0 \quad \beta=0.25 \quad \beta=0.75
$$

This shape is obtained by a special class of k -inflation shown to be natural from effective theory of inflation Senatore and Zaldarriaga `10

Shape function for single field DBI inflation

$$
S_{\mathcal{T}}^{D B I(\sigma)}(\alpha, \beta, \gamma, 1)
$$

$$
\beta=0
$$

$$
\beta=0.25
$$

$$
\beta=0.75
$$

- Shape correlation $\overline{\mathcal{C}}\left(S_{\mathcal{T}}^{\text {equil }}, S_{\mathcal{T}}^{D B I(\sigma)}\right)$
0.90 (configs. with $\epsilon \sim 1$) $\quad 0.87$ (full configs.) Sufficiently large overlap

Shape function for multi-field DBI inflation

$$
S_{\mathcal{T}}^{D B I(s)}(\alpha, \beta, \gamma, 1)
$$

$$
\beta=0
$$

$$
\beta=0.25
$$

$$
\beta=0.75
$$

- Shape correlation $\overline{\mathcal{C}}\left(S_{\mathcal{T}}^{\text {equil }}, S_{\mathcal{T}}^{D B I(s)}\right)$
0.60 (configs. with $\epsilon \sim 1$) $\quad 0.33$ (full configs.)

Trispectrum can distinguish single DBI from multi DBI SM, Arroja, Koyama `09

