Classifying models of large (local-type) non-Gaussianity

September 27, 2010 @ Cosmo 2010, Tokyo

Tomo Takahashi

Department of Physics, Saga University

Based on arXiv.1009.1979

Collaborator: Teruaki Suyama (RESCEU, U. of Tokyo) Masahide Yamaguchi (Tokyo Tech.) Shuichiro Yokoyama (Nagoya U.)

Primordial non-Gaussianity

- The origin of primordial fluctuations is one of the important issues.
- What is the origin?

Fluctuations of an inflaton? some other scalar field?

- How can we probe? (CMB, LSS, ...)
 - Power-spectrum [amplitude, scale-dependence (spectral index)]
 - Gravitational waves (tensor-to-scalar ratio)
 - Non-Gaussianity $f_{\rm NL}^{\rm local} = 32 \pm 21 \quad (68\% \ {\rm CL})$ $f_{\rm NL}^{\rm equil} = 26 \pm 140 \quad (68\% \ {\rm CL})$

[WMAP7, Komatsu et al, 2010]

Non-Gaussianity: Bispectrum

• **Bispectrum:** $\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\rangle = (2\pi)^3 P(k_1)\delta(\vec{k}_1 + \vec{k}_2)$ $\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3)\rangle = (2\pi)^3 B(k_1, k_2, k_3)\delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)$

Local-type

Equilateral-type

[Balbi, Creminelli, Zaldarriaga 2004]

Models can be categorized by "shapes"

• Bispectrum:

$$\left\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3) \right\rangle = (2\pi)^3 B(k_1,k_2,k_3)\delta(\vec{k}_1+\vec{k}_2+\vec{k}_3)$$

Local-type

Equilateral-type

How can we differentiate models?

• Even if we limit ourselves to models of a particular type, there are a lot of possibilities.....

Using "consistency relation" (relative size) between bispectrum and trispectrum.

Consistency relation between f_{NL} , τ_{NL} and g_{NL}

There are some relation between the non-linearity parameters in most models:

By using "consistency relation" between these parameters, we can divide the models into some categories.

(In this talk, we focus on the <u>local-type</u> models)

Bispectrum and Trispectrum for local type

• 3-point correlation function:

$$\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = (2\pi)^3 B_{\zeta}(k_1, k_2, k_3) \delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)$$

Bispectrum

$$B_{\zeta}(k_1, k_2, k_3) = \frac{6}{5} f_{\rm NL} \left(P_{\zeta}(k_1) P_{\zeta}(k_2) + P_{\zeta}(k_2) P_{\zeta}(k_3) + P_{\zeta}(k_3) P_{\zeta}(k_1) \right)$$

Bispectrum and Trispectrum for local type

• 4-point correlation function:

$$\langle \zeta_{\vec{k}_{1}}\zeta_{\vec{k}_{2}}\zeta_{\vec{k}_{3}}\zeta_{\vec{k}_{4}}\rangle = (2\pi)^{3} \underline{T_{\zeta}(k_{1},k_{2},k_{3},k_{4})} \delta(\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3}+\vec{k}_{4})$$
Trispectrum
$$\begin{array}{c} & \downarrow \\ & \downarrow \\ T_{\zeta}(k_{1},k_{2},k_{3},k_{4}) = \tau_{\mathrm{NL}} \left(P_{\zeta}(k_{13})P_{\zeta}(k_{3})P_{\zeta}(k_{4})+11 \text{ perms.}\right) \\ & + \frac{54}{25}g_{\mathrm{NL}} \left(P_{\zeta}(k_{2})P_{\zeta}(k_{3})P_{\zeta}(k_{4})+3 \text{ perms.}\right) \end{array}$$

Non-linearity parameters in δN formalism

• Curvature perturbation in the δN formalism

$$\zeta(t_f) = N_a \delta \phi^a_* + \frac{1}{2} N_{ab} \delta \phi^a_* \delta \phi^b_* + \frac{1}{6} N_{abc} \delta \phi^a_* \delta \phi^b_* \delta \phi^c_* + \cdots$$

where

$$N_a \equiv \frac{\partial N}{\partial \phi^a} \qquad N_{ab} \equiv \frac{\partial^2 N}{\partial \phi^a \partial \phi^b} \qquad N_{abc} \equiv \frac{\partial^3 N}{\partial \phi^a \partial \phi^b \partial \phi^c}$$

• Three non-linearity parameters:

$$\frac{6}{5}f_{\rm NL} = \frac{N_a N_b N^{ab}}{\left(N_c N^c\right)^2} \qquad \tau_{\rm NL} = \frac{N_{ab} N^{ac} N^b N_c}{\left(N_d N^d\right)^3} \qquad \frac{54}{25}g_{\rm NL} = \frac{N_{abc} N^a N^b N^c}{\left(N_d N^d\right)^3}$$

[Lyth&Rodriguez 2005, Alabidi&Lyth 2006, Byrnes et al. 2006]

Non-linearity parameters: Case with one field

• Curvature perturbation

$$\zeta = N_{\phi}\delta\phi_* + \frac{1}{2}N_{\phi\phi}(\delta\phi_*)^2 + \frac{1}{6}N_{\phi\phi}(\delta\phi_*)^3$$

• Non-linearity parameters:

$$\frac{6}{5}f_{NL} = \frac{N_{\phi\phi}}{N_{\phi}^2} \qquad \qquad \tau_{\rm NL} = \left(\frac{N_{\phi\phi}}{N_{\phi}^2}\right)^2 = \frac{25}{36}f_{\rm NL}^2$$

••• "Consistency relation" for one-field case
$$au_{\rm NL} = \frac{36}{25} f_{\rm NL}^2$$

Single-source model

Non-linearity parameters: Case with multi-source

• In multi-source models,

$$\tau_{\rm NL} \neq \left(\frac{6}{5}f_{\rm NL}\right)^2$$

No definite relation between $f_{\rm NL}$ and $\tau_{\rm NL}$, (a general situation)

We classify models of this kind as "multi-source model"

(However, the "local-type inequality" should be satisfied.)

"Local-type inequality"

• (As far as the 2nd order term (loop term) does not dominate in the power spectrum, practically, $f_{\rm NL} < 100$)

Any local-type models should satisfy the "local-type inequality"

 $\tau_{\rm NL} > \left(\frac{6}{5}f_{\rm NL}\right)^2$

(This inequality can be derived from Cauchy-Schwartz inequality *

for
$$\frac{6}{5}f_{\rm NL} = \frac{N_a N_b N^{ab}}{(N_c N^c)^2}$$
 $\tau_{\rm NL} = \frac{N_{ab} N^{ac} N^b N_c}{(N_d N^d)^3}$

* It is first derived in [Suyama and Yamaguchi, 0709.2545] and a more general version is discussed in [Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].

Another model with definite relation between $f_{\rm NL}$ and $\tau_{\rm NL}$

• Two fields, but one is Gaussian, the other is totally non-Gaussian

$$\zeta = N_{\phi}\delta\phi_* + \dots + \frac{1}{2}N_{\sigma\sigma}(\delta\sigma_*)^2 + \dots$$

- Ungaussiton-like model
- Non-linearity parameters:

$$\frac{6}{5}f_{\rm NL} = \frac{N_{\sigma\sigma}^3 \mathcal{P}_{\delta\sigma} \ln(k_{m1}L)}{N_{\phi}^4}$$

$$\tau_{\rm NL} = \frac{N_{\sigma\sigma}^4 \mathcal{P}_{\delta\sigma} \ln(k_{m1}L)}{N_{\phi}^6}$$

Multi-source model, but definite relation between $f_{\rm NL}$ and $\tau_{\rm NL}$

10⁶ Constrained multi-source (Ung 10^{5} Vaton: ENL Single-sourc ed modulated. 10^{4} \mathfrak{r}_{NL} 10^{3} Multi-sourc. 10^{2} $\tau_{\rm NL} < (36/25) f_{\rm NL}^2$ 10^{1} 10 100 $f_{\rm NL}$

[Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].

 $f_{\rm NL}$

- Mixed inflaton+curvaton
- Mixed inflaton+modulated reh.
- Multi-brid (multi-field hybrid)

10

Multi-curvaton

 10^{1}

• There are still some (many) possibilities for each categories....

We can further look at the relation between *f*NL and *g*NL.

 $f_{\rm NL}$ - $g_{\rm NL}$ relation

Single-source model

Category	$f_{\rm NL} - \tau_{\rm NL}$ relation	Examples and $f_{\rm NL}-g_{\rm NL}$ relation
Single-source	$\tau_{\rm NL} = \left(6f_{\rm NL}/5\right)^2$	(pure) curvaton (w/o self-interaction)
		$[g_{\rm NL} = -(10/3)f_{\rm NL} - (575/108)]^{(a)}$
		(pure) curvaton (w/ self-interaction)
		$\left[g_{\rm NL} = A_{\rm NQ}f_{\rm NL}^2 + B_{\rm NQ}f_{\rm NL} + C_{\rm NQ}\right]^{(b)}$
		(pure) modulated reheating
		$[g_{\rm NL} = 10f_{\rm NL} - (50/3)]^{(c)}$
		modulated-curvaton scenario
		$\left[g_{\rm NL} = 3r_{\rm dec}^{1/2} f_{\rm NL}^{3/2}\right]^{(d)}$
		Inhomogeneous end of hybrid inflation
		$[g_{\rm NL} = (10/3)\eta_{\rm cr}f_{\rm NL}]$
		Inhomogeneous end of thermal inflation
		$[g_{\rm NL} = -(10/3)f_{\rm NL} - (50/27)]^{(e)}$
		Modulated trapping
		$[g_{\rm NL} = (2/9)f_{\rm NL}^2]^{(f)}$

[Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].

Multi-source model

Multi-source	$\tau_{\rm NL} > \left(6f_{\rm NL}/5\right)^2$	mixed curvaton and inflaton
		$\left[g_{\rm NL} = -(10/3)(R/(1+R))f_{\rm NL} - (575/108)(R/(1+R))^3\right]^{(g)}$
		mixed modulated and inflaton
		$\left[g_{\rm NL} = 10(R/(1+R))f_{\rm NL} - (50/3)(R/(1+R))^3\right]^{(h)}$
		mixed modulated trapping and inflaton
		$[g_{\rm NL} = (2/9)((1+R)/R)f_{\rm NL}^2 = (25/162)\tau_{\rm NL}]^{(i)}$
		multi-curvaton
		$[g_{\rm NL} = C_{\rm mc} f_{\rm NL}, g_{\rm NL} = (4/15) f_{\rm NL}^2]^{(j)}$
		Multi-brid inflation (quadratic potential)
		$[g_{\rm NL} = -(10/3)\eta f_{\rm NL}, g_{\rm NL} = 2f_{\rm NL}^2]^{(k)}$
		Multi-brid inflation (linear potential)
		$\left[g_{\rm NL} = 2f_{\rm NL}^2\right]^{(l)}$

[Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].

We can divide into three types by using the relation between f_{NL} and g_{NL}

• "Linear" *g*NL Type

 $g_{
m NL} \sim f_{
m NL}$ (with O(I) coefficient)

• "Suppressed" gNL Type

 $g_{\rm NL} \sim ({\rm suppression factor}) \times f_{\rm NL}$

(e.g., suppressed by the slow-roll params. ϵ , η)

• "Enhanced" gNL Type

 $g_{
m NL} \sim f_{
m NL}^n$ (n > 1, in many models n=2)

fNL - gNL diagram

Summary

- We can classify models of large (local-type) non-Gaussianity using $f_{\rm NL}$, $\tau_{\rm NL}$ and $g_{\rm NL}$:
 - $f_{\rm NL}$ $\tau_{\rm NL}$ relation
 - single-source
 - multi-source
 - constrained multi-source

• $f_{NL} - g_{NL}$ relation

- "Linear" *g*NL Type
- "Suppressed" gNL Type
- "Enhanced" gNL Type
- Local-type models should satisfy the "local-type inequality."

$$\tau_{\rm NL} > \left(\frac{6}{5}f_{\rm NL}\right)^2$$