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Primordial non-Gaussianity

The origin of primordial fluctuations is one of the 
important issues.

How can we probe? (CMB, LSS, ...)

Power-spectrum [amplitude, scale-dependence (spectral index)]

Gravitational waves (tensor-to-scalar ratio)

Non-Gaussianity

What is the origin?

Fluctuations of an inflaton? some other scalar field?  ......

f local
NL = 32± 21 (68% CL)

f equil
NL = 26± 140 (68% CL)

[WMAP7, Komatsu et al, 2010 ]



Non-Gaussianity: Bispectrum

Bispectrum:

wave number (scales)
x3 = k3/k1

x
2 =

k
2 /k

1

〈
ζ("k1)ζ("k2)ζ("k3)

〉
= (2π)3B(k1, k2, k3)δ("k1 + "k2 + "k3)

Local-type Equilateral-type 

cf. power spectrum:〈
ζ("k1)ζ("k2)

〉
= (2π)3P (k1)δ("k1 + "k2)

[Balbi, Creminelli, Zaldarriaga 2004]



Bispectrum:
〈
ζ("k1)ζ("k2)ζ("k3)

〉
= (2π)3B(k1, k2, k3)δ("k1 + "k2 + "k3)

Local-type Equilateral-type 

curvaton model,
modulated reheating, 
multi-field inflation, 
....

DBI inflation,
Ghost inflation,
....

Models can be categorized by “shapes”



How can we differentiate models?

Even if we limit ourselves to models of a particular type,
there are a lot of possibilities......

Using “consistency relation” (relative size) 
between bispectrum and trispectrum.



Consistency relation between fNL, τNL and gNL

There are some relation between the non-linearity 
parameters in most models:

fNL

τNL gNL

By using “consistency relation” between these parameters, 
we can divide the models into some categories.

:Bispectrum

:Tripectrum

(In this talk, we focus on the local-type models)



Bispectrum and Trispectrum for local type 

〈ζ!k1
ζ!k2

ζ!k3
〉 = (2π)3Bζ(k1, k2, k3)δ($k1 + $k2 + $k3)

3-point correlation function:

Bispectrum

Bζ(k1, k2, k3) =
6
5
fNL (Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1))



Bispectrum and Trispectrum for local type 

〈ζ!k1
ζ!k2

ζ!k3
ζ!k4

〉 = (2π)3Tζ(k1, k2, k3, k4)δ($k1 + $k2 + $k3 + $k4)

Trispectrum

4-point correlation function:

Tζ(k1, k2, k3, k4) = τNL (Pζ(k13)Pζ(k3)Pζ(k4) + 11 perms.)

+
54
25

gNL (Pζ(k2)Pζ(k3)Pζ(k4) + 3 perms.)

k13 = k1 + k3



Non-linearity parameters in δN formalism

Three non-linearity parameters:

ζ(tf ) = Naδφa
∗ +

1
2
Nabδφ

a
∗δφ

b
∗ +

1
6
Nabcδφ

a
∗δφ

b
∗δφ

c
∗ + · · ·

where 

Na ≡
∂N

∂φa
Nab ≡

∂2N

∂φa∂φb Nabc ≡
∂3N

∂φa∂φb∂φc

6
5
fNL =

NaNbNab

(NcN c)2
τNL =

NabNacN bNc

(NdNd)3
54
25

gNL =
NabcNaN bN c

(NdNd)3

[Lyth&Rodriguez 2005, Alabidi&Lyth 2006, Byrnes et al. 2006]

Curvature perturbation in the δN formalism



Non-linearity parameters: Case with one field

Curvature perturbation

ζ = Nφδφ∗ +
1
2
Nφφ(δφ∗)2 +

1
6
Nφφ(δφ∗)3

Non-linearity parameters:

6
5
fNL =

Nφφ

N2
φ

τNL =

(
Nφφ

N2
φ

)2

=
25
36

f2
NL

“Consistency relation” for one-field case

τNL =
36
25

f2
NL

Single-source model



Non-linearity parameters: Case with multi-source

In multi-source models, 

No definite relation between fNL and τNL ,

(However, the “local-type inequality” should be satisfied.)

(a general situation)

τNL !=
(

6
5
fNL

)2

We classify models of this kind as “multi-source model”



“Local-type inequality”

(As far as the 2nd order term (loop term) does not dominate 
in the power spectrum, practically,  fNL < 100)

τNL >

(
6
5
fNL

)2

Any local-type models should satisfy the “local-type inequality” 

(This inequality can be derived from Cauchy-Schwartz inequality *

* It is first derived in [Suyama and Yamaguchi, 0709.2545] and a more general version 
is discussed in [Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].

6
5
fNL =

NaNbNab

(NcN c)2
τNL =

NabNacN bNc

(NdNd)3
for                                                    )



Another model with definite relation between         and fNL τNL

Two fields,  but one is Gaussian, the other is totally non-Gaussian

ζ = Nφδφ∗ + · · · +
1
2
Nσσ(δσ∗)2 + · · ·

Ungaussiton-like model

6
5
fNL =

N3
σσPδσ ln(km1L)

N4
φ

Non-linearity parameters:

τNL =
N4

σσPδσ ln(km1L)
N6

φ

τNL = CP−1/3
ζ f4/3

NL ∼ 103f4/3
NL

Multi-source model, but definite relation 
between  fNL and  τNL  

Constrained multi-source model



fNL - τNL diagram
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 [Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].
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(pure) modulated reheating 

Inhomogeneous end of 
hybrid inflation

Modulated trapping
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τNL >

(
6
5
fNL

)2
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6
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Can we differentiate the model?

fNL - τNL diagram

Single-source Multi-source Constrained multi-source

There are still some (many) possibilities for each categories....

We can further look at the relation between  
fNL and gNL.



Category fNL–τNL relation Examples and fNL–gNL relation
Single-source τNL = (6fNL/5)2 (pure) curvaton (w/o self-interaction)

[gNL = −(10/3)fNL − (575/108)](a)

(pure) curvaton (w/ self-interaction)

[gNL = ANQf 2
NL + BNQfNL + CNQ](b)

(pure) modulated reheating

[gNL = 10fNL − (50/3)](c)

modulated-curvaton scenario[
gNL = 3r1/2

decf
3/2
NL

](d)

Inhomogeneous end of hybrid inflation
[gNL = (10/3)ηcrfNL]

Inhomogeneous end of thermal inflation

[gNL = −(10/3)fNL − (50/27)](e)

Modulated trapping

[gNL = (2/9)f 2
NL](f)

Multi-source τNL > (6fNL/5)2 mixed curvaton and inflaton

[gNL = −(10/3)(R/(1 + R))fNL − (575/108)(R/(1 + R))3](g)

mixed modulated and inflaton

[gNL = 10(R/(1 + R))fNL − (50/3)(R/(1 + R))3](h)

mixed modulated trapping and inflaton

[gNL = (2/9)((1 + R)/R)f2
NL = (25/162)τNL](i)

multi-curvaton

[gNL = CmcfNL, gNL = (4/15)f 2
NL](j)

Multi-brid inflation (quadratic potential)

[gNL = −(10/3)ηfNL, gNL = 2f 2
NL](k)

Multi-brid inflation (linear potential)

[gNL = 2f 2
NL](l)

Constrained
multi-source τNL = Cfn

NL ungaussiton (C " 103, n = 4/3)

(a)For the case with rdec ! 1.
(b)ANQ, BNQ and CNQ are given in Eqs. (23)-(25) and this expression is for rdec ! 1.
(c)Γσσσ = 0 is assumed.
(d)This relation holds in the Region 2. For other cases, see text.
(e)g′′′ = 0 is assumed.
(f)λ = σ/M and m = gσ are assumed.
(g)A quadratic potential and rdec ! 1 are assumed for the curvaton sector. R ≡ P

(σ)
ζ /P

(φ)
ζ is the ratio of the power

spectra. This relation can also be written as gNL # −(24/5)(f3
NL/τNL) − (9936/625)(f6

NL/τ3
NL).

(h)Γσσσ = 0 is assumed for the modulated reheating sector. This relation can also be written as
gNL # (72/5)(f3

NL/τNL) − (31104/625)(f6
NL/τ3

NL).
(i)λ = σ/M and m = gσ are assumed for the modulaton sector.
(j)The former and the latter relations are for the cases where both curvatons are subdominant and dominant at their
decay, respectively. Cmc is O(1) coefficient and always negative.
(k)The former and the latter relations are for the equal mass and the large mass ratio cases, respectively.
(l)For the equal mass case with g1 = g2.

Table 1: Summary of the categories and their examples.

7

fNL - gNL relation

 [Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].

Single-source model



fNL - gNL relation

Category fNL–τNL relation Examples and fNL–gNL relation
Single-source τNL = (6fNL/5)2 (pure) curvaton (w/o self-interaction)

[gNL = −(10/3)fNL − (575/108)](a)

(pure) curvaton (w/ self-interaction)

[gNL = ANQf 2
NL + BNQfNL + CNQ](b)

(pure) modulated reheating

[gNL = 10fNL − (50/3)](c)

modulated-curvaton scenario[
gNL = 3r1/2

decf
3/2
NL

](d)

Inhomogeneous end of hybrid inflation
[gNL = (10/3)ηcrfNL]

Inhomogeneous end of thermal inflation

[gNL = −(10/3)fNL − (50/27)](e)

Modulated trapping

[gNL = (2/9)f 2
NL](f)

Multi-source τNL > (6fNL/5)2 mixed curvaton and inflaton

[gNL = −(10/3)(R/(1 + R))fNL − (575/108)(R/(1 + R))3](g)

mixed modulated and inflaton

[gNL = 10(R/(1 + R))fNL − (50/3)(R/(1 + R))3](h)

mixed modulated trapping and inflaton

[gNL = (2/9)((1 + R)/R)f2
NL = (25/162)τNL](i)

multi-curvaton

[gNL = CmcfNL, gNL = (4/15)f 2
NL](j)

Multi-brid inflation (quadratic potential)

[gNL = −(10/3)ηfNL, gNL = 2f 2
NL](k)

Multi-brid inflation (linear potential)

[gNL = 2f 2
NL](l)

Constrained
multi-source τNL = Cfn

NL ungaussiton (C " 103, n = 4/3)

(a)For the case with rdec ! 1.
(b)ANQ, BNQ and CNQ are given in Eqs. (23)-(25) and this expression is for rdec ! 1.
(c)Γσσσ = 0 is assumed.
(d)This relation holds in the Region 2. For other cases, see text.
(e)g′′′ = 0 is assumed.
(f)λ = σ/M and m = gσ are assumed.
(g)A quadratic potential and rdec ! 1 are assumed for the curvaton sector. R ≡ P

(σ)
ζ /P

(φ)
ζ is the ratio of the power

spectra. This relation can also be written as gNL # −(24/5)(f3
NL/τNL) − (9936/625)(f6

NL/τ3
NL).

(h)Γσσσ = 0 is assumed for the modulated reheating sector. This relation can also be written as
gNL # (72/5)(f3

NL/τNL) − (31104/625)(f6
NL/τ3

NL).
(i)λ = σ/M and m = gσ are assumed for the modulaton sector.
(j)The former and the latter relations are for the cases where both curvatons are subdominant and dominant at their
decay, respectively. Cmc is O(1) coefficient and always negative.
(k)The former and the latter relations are for the equal mass and the large mass ratio cases, respectively.
(l)For the equal mass case with g1 = g2.

Table 1: Summary of the categories and their examples.

7

 [Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].

Multi-source model



We can divide into three types by using the relation 
between  fNL and gNL

“Linear” gNL Type

“Suppressed” gNL Type

“Enhanced” gNL Type

gNL ∼ (suppression factor)× fNL

gNL ∼ fNL

gNL ∼ fn
NL (n > 1, in many models n=2)

(e.g., suppressed by the slow-roll params. ε, η)

(with O(1) coefficient)
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gNL ∼ (suppression factor)× fNL

 [Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].
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“Linear” gNL Type

gNL ∼ fNL

 [Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].
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 [Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].



Summary

We can classify models of large (local-type) non-Gaussianity 
using fNL, τNL and gNL:

Local-type models should satisfy the “local-type inequality.” 

τNL >

(
6
5
fNL

)2

fNL - τNL relation

single-source

fNL - gNL relation

multi-source

constrained multi-source

“Linear” gNL Type

“Suppressed” gNL Type

“Enhanced” gNL Type


