PAMELA's Cosmic Positron from Decaying LSP in SO(10) SUSY GUT

arXiv:0909.3139 [ph] (PLB) arXiv:0902.3578 [ph] (JHEP) arXiv:0902.0071[ph] (JCAP)

Bumseok KYAE

(Pusan National Univ.)

"WIMP miracle"

Weakly Interacting Massive Particle (WIMP) can explain naturally Dark Matter.

Lightest Supersymmetric Particle (LSP) in MSSM is one of the best examples of WIMP.

Recently **PAMELA/Fermi** reported very challenging observational results.

PRL102,051101(2009); Nature 458, 607 (2009) arXiv:0905.0025(astro- ph HE)

- **PAMELA** (Payload for Anti Matter Exploration and Light nuclei Astrophysics)
 - [exp. by a **SATELLITE**] measures **particles** & nuclei fluxes in cosmic ray.
- Fermi [exp. by a SATELLITE] released data on electrons & positrons fluxes in cosmic ray.

What are surprising?

PAMELA [arXiv.0810.4994,4995]

What are surprising?

Fermi-LAT

[arXiv:0905.0025(astro- ph HE)]

 $(e^+ + e^-)$ **EXCESSES** of cosmic ray are observed. [100 GeV - 1000 GeV]

What are surprising?

(Fermi- LAT) Positron excess keeps rising

mildly upto 1 TeV.

As a strong possibility, it can be interpreted as a result from TeV scale DM annihilation or decay.

To explain the e⁺ excess with annihilation,

- Should overcome "helicity suppression," to enhance DM annihl. to e⁺e⁻.
 [Need a Large Boost Factor (> 10⁴)]
- Should suppress the hadronic modes.

"Leptophilic annihilation !!"

DM annihl. seems to be disfavored by Gamma ray constraint,

 if m_{DM} ~ TeV (for explaining Fermi), [Φ_{e+}∝ (ρ/m_{DM})²] and
 if accept the galactic profile of
 NFW or Einasto, because of
 Bremsstrahlung at the galactic center.

(DM $\rightarrow e^+ e^-$, $\mu^+ \mu^-$, $\tau^+ \tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious. $[\Phi_{e^+} \propto (\rho/m_{DM})^T]$
- Hadronic decay should not exceed 10 %.
 i.e. should be "Leptophilic Decay"
- $\sim \Gamma_{\rm DM} \sim 10^{-26} \, {\rm sec^{-1}}$ for needed et ilux
- \sim m_{DM} \sim 2 TeV for explaining Fermi
- Various and/or many body leptonic clearys are needed for mild positron excess. [Bergtrom etal '09]

(DM $\rightarrow e^+ e^-$, $\mu^+ \mu^-$, $\tau^+ \tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious. $[\Phi_{\text{ex}} \sim (\rho/m_{\text{DM}})^{1}]$
- Hadronic decay should not exceed 10 %.
 i.e. should be "Leptophilic Decay"
- $\sim 10^{-26}$ sec⁻¹ for needed et flux
- $\sim m_{\rm DM} \sim 2$ TeV for explaining Fermi
- Various and/or many body leptonic clecays are needed for mild positron excess. [Bergtrom etal '09]

(DM $\rightarrow e^+ e^-$, $\mu^+ \mu^-$, $\tau^+ \tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious. $[\Phi_{e+} \propto (\rho/m_{DM})^{1}]$
- Hadronic decay should not exceed 10 %.
 i.e. should be "Leptophilic Decay"
- $\sim 10^{-28} \text{ sec}^{-1}$ for needed efflux
- $\sim m_{\rm DM} \sim 2$ TeV for explaining Fermi
- Various and/or many body leptonic clecays are needed for mild positron excess. [Bergtrom etal '09]

(DM $\rightarrow e^+ e^-$, $\mu^+ \mu^-$, $\tau^+ \tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious.

[Φ_{e+}∝ (ρ/m_{DM})¹]

- Hadronic decay should not exceed 10 %.
 i.e. should be "Leptophilic Decay"
- -10^{-26} sec⁻¹ for need e⁺ flux
- $\sim m_{\rm DM} \sim 2$ TeV for explaining Fermi
- Various and/or many body leptonic cleases are needed for mild positron excess. [Bergtrom etal '09]

(DM $\rightarrow e^+ e^-$, $\mu^+ \mu^-$, $\tau^+ \tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious.

[Φ_{e+}∝ (ρ/m_{DM})¹]

Hadronic decay should not exceed 10 %.

i.e. should be "Leptophilic Decay"

- $\Gamma_{\rm DM} \sim 10^{-26} \, {\rm sec^{-1}}$ for needed e⁺ flux
- $\sim m_{\rm DM} \sim 2$ TeV for explaining Fermi
- Various and/or many body leptonic clecarys are needed for mild positron excess. [Bergtrom etal '09]

(DM $\rightarrow e^+ e^-$, $\mu^+ \mu^-$, $\tau^+ \tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious.

[Φ_{e+}∝ (ρ/m_{DM})¹]

• Hadronic decay should not exceed 10 %.

i.e. should be "Leptophilic Decay"

- $\Gamma_{\rm DM} \sim 10^{-26} \, {\rm sec^{-1}}$ for needed e⁺ flux
- $m_{DM} \sim 2 \text{ TeV}$ for explaining Fermi
- Various and/or many body leptonic decays are needed for mild positron excess. [Bergtrom etal '09]

(DM $\rightarrow e^+ e^-$, $\mu^+ \mu^-$, $\tau^+ \tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious.

[Φ_{e+}∝ (ρ/m_{DM})¹]

• Hadronic decay should not exceed 10 %.

i.e. should be "Leptophilic Decay"

- $\Gamma_{\rm DM} \sim 10^{-26} \, {\rm sec^{-1}}$ for needed e⁺ flux
- $m_{DM} \sim 2 \text{ TeV}$ for explaining Fermi
- Various and/or many body leptonic decays are needed for mild positron excess. [Bergtrom etal '09]

Important Notice [comment 1]

by **Dim. 6 operator** suppr. by **M²_{GUT}** (4 fermion int.)

for $m_{DM} \sim 2 \text{ TeV}$, $M_{GUT} \sim 10^{16} \text{ GeV}$ ($m_{DM} \sim 100 \text{ GeV}$, $M_{GUT} \sim 10^{15} \text{ GeV}$)

PAMELA/Fermi's observ. might be a signal of GUT.

For a promising **DM Decay** Model

- Introduce Leptophilic int. between superheavy fields and DM.
- Introduce other (global) symmetries to completely kill the dim. 5 operators.
- Introduce an extra DM component with a TeV scale mass for light enough Higgs mass.

PAMELA/Fermi anomaly is **easily explained** in 2-DM decay model !! [comment 2]

$$\Phi_{e^+}(E) = \left(\frac{\rho}{m_{\rm DM}}\right) \cdot \Gamma_{\rm DM} \times \frac{1}{4b(E)} \int_E^{m_{\rm DM}} dE' \; \frac{dN_{e^+}}{dE'} \; I(\lambda_D),$$

because the needed $\rho_{DM} \sim 10^{-6} \text{ GeV cm}^{-3}$ can be supported by χ .

2 component DM

χ: Thermally produced, Absolutely stable, Main comp. Relic density explained.

N: Non-thermally produced, Meta-stable, decay to e⁺e⁻, PAMELA/Fermi explained.

- χ : Absolutely stable, Thermally produced.
- **N**: Meta-stable, Non-thermally produced.

Even extremely small amount of N $[\underline{BK}, \underline{Takahasi etal.}]$ $[O(10^{-10}) > (O(10^{-10})]$

can produce the positron flux needed to account for PAMELA/Fermi data,

only if the decay rate is enhanced by relatively lighter M.

 $[10^{12} \text{ GeV} < M_{*} < 10^{13} \text{ GeV}].$

- χ : Absolutely stable, Thermally produced.
- **N**: Meta-stable, Non-thermally produced.

Even extremely small amount of N [BK, Takahasi etal.] $[O(10^{-10}) < (n_N / n_\chi)]$

can produce the positron flux needed to account for PAMELA/Fermi data,

only if the decay rate is enhanced by relatively lighter M*,

 $[10^{12} \text{ GeV} < M_* < 10^{16} \text{ GeV}].$

- Explain PAMELA/Fermi data with leptophilic
 YUKAWA couplings between GUT scale fields
 and an extra DM component M (M -> xHF).
- Even extremely small amount of N can explain the PAMELA/Fermi data.
- The nobleness of the MSSM (SUSY at 10² GeV, gauge coupling unit., XCDM) can be maintained.
- The models can be easily embedded in
 Flipped SU(5).

- Explain PAMELA/Fermi data with leptophilic YUKAWA couplings between GUT scale fields and an extra DM component N ($N \rightarrow \chi I^+I^-$).
- Even extremely small amount of N can explain the PANELA/Fermi data.
- The nobleness of the MSSM (SUSY at 10² GeV, gauge coupling unit., XCDM) can be maintained.
- The models can be easily embedded in Flipped SU(5).

- Explain PAMELA/Fermi data with leptophilic YUKAWA couplings between GUT scale fields and an extra DM component N $(N \rightarrow \chi I^+I^-)$.
- Even extremely small amount of N can explain the PAMELA/Fermi data.
- The nobleness of the MSSM (SUSY at 10² GeV, gauge coupling unit., XCDM) can be maintained.
- The models can be easily embedded in
 Flipped SU(5).

- Explain PAMELA/Fermi data with leptophilic YUKAWA couplings between GUT scale fields and an extra DM component N $(N \rightarrow \chi I^+I^-)$.
- Even extremely small amount of N can explain the PAMELA/Fermi data.
- The nobleness of the MSSM (SUSY at 10² GeV, gauge coupling unif., χCDM) can be maintained.
- The models can be easily embedded in
 Flipped SU(5).

- Explain PAMELA/Fermi data with leptophilic YUKAWA couplings between GUT scale fields and an extra DM component N $(N \rightarrow \chi I^+I^-)$.
- Even extremely small amount of N can explain the PAMELA/Fermi data.
- The nobleness of the MSSM (SUSY at 10² GeV, gauge coupling unif., χCDM) can be maintained.
- The models can be easily embedded in Flipped SU(5).

Disadvantages(?) in 1-DM decay Models

- A natural explanation for 10⁻²⁶ sec.⁻¹ decay rate is required. (→ Need a Model)
- Ad-hoc new TeV DM and new leptophilic interactions are introduced.
- Desired relic density is Not automatic.
 Need elaborate Non-thermal production of DM.
 → Reheating temp. should be tuned.

I attempt to explain PAMELA (Fermi) only within the framework of a wellknown Particle physics model, SO(10) without introducing any new DM and new special interactions. (2nd scenario) [arXiv:0909.3139, **BK**]

From now on, I will suppose that **DM is the bino-like LSP**.

SO(10)

 $45_G = SM + \{E, E^c\} + N$ + $\{Q', Q'^c\} + \{Q, Q^c; U, U^c\}$

where $E = (1,1)_{-1}$, $N = (1,1)_0$, Q' = $(3,2)_{-5/6}$, Q = $(3,2)_{1/6}$, U = $(3,1)_{2/3}$

> SIN - 가 《던, 던 '가 기 = 다 더 SIN - 가 《던, 다 '아 = SU(5)

 $SM + \{E, E^c\} + N = LR$ $SM + \{Q', Q'^c\} = SU(5)$

where $E = (1,1)_{-1}$, $N = (1,1)_0$, Q' = $(3,2)_{-5/6}$, Q = $(3,2)_{1/6}$, U = $(3,1)_{2/3}$

 $45_G = SM + \{E, E^c\} + N$ + $\{Q', Q'^c\} + \{Q, Q^c; U, U^c\}$

SO(10)

SO(10) → SU(5) by <16_H>, <16^{*}_H> {E,E^c}, N, {Q,Q^c; U,U^c} massive

SO(10) → SU(3)_cxSU(2)_LxSU(2)_RxU(1)_{B-L}= LR by <45_H>, {Q',Q'^c}, {Q,Q^c; U,U^c} massive

 $45_G = SM + \{E, E^c\} + N$ + $\{Q', Q'^c\} + \{Q, Q^c; U, U^c\}$

SO(10)

<45_H> is 10¹⁶ GeV from RG eff.of the MSSM gauge couplings, but
<16_H> is not pinned down yet.

If $<45_H> > <16_H> = <16_H^*>$, masses of {Q',Q'c}, {Q,Qc; U,Uc} > {E,Ec}, N

If $<45_{H}> < <16_{H}> = <16_{H}^{*}>$, masses of {E,E^c}, N, {Q,Q^c; U,U^c} > {Q',Q'^c}

So {Q,Q^c; U,U^c} are always heavier.

Superheavy fields in SO(10)

- Gauge boson/Gauginos of SO(10)/SM
- Triplets in 10_h (={D^c,h_d}+{D,h_u})
 e.g. by 10_h <45_H> 10_h
- GUT breaking Higgs
 due to its VEV, they couple to MSSM fields
 only via non-renormalizable terms. They
 weakly coupled to SM

• If (1) R-parity is absolutely preserved, and (2) χ is the LSP, χ can not decay.

BUT if sRH v develops a VEV (R viol.),
 or if sRH v is lighter than X (sRH vLSP),
 X could decay.

- $\frac{1}{2} \frac{1}{2} \frac{1}$
- BUT if sRH v develops a VEV (R viol.), or if sRH v is lighter than χ (sRH v LSP), χ could decay.

How can one obtain e.g. extremely small R-parity violating effects NATURALLY?

- RH v and sRH v are <u>neutral singlets</u> under SM. But they are charged under SO(10).
- IF Yukawa couplings, e.g. W = In V^e are somehow forbidden,
 RH V and SRH V extremely weakly interact with SM,

since they can interact with SM only through superheavy SO(10) gauge fields / gauginos.

-> Assume one family of RHV/sRHV decoupled.

- RH v and sRH v are <u>neutral singlets</u> under SM. But they are charged under SO(10).
- IF Yukawa couplings, e.g. W = Ih_uv^c are somehow forbidden,
 RH v and sRH v extremely weakly interact with SM,

since they can interact with SM only through superheavy SO(10) gauge fields / gauginos.

-> Assume one family of RHV/sRHV decoupled.

- RHV and SRHV are <u>neutral singlets</u> under SML
 But they are charged under SO(10).
- IF Yukawa couplings, e.g. W = In V^c are somehow forbidden,
 RH V and SRH V extremely weakly interact with SM,

since they can interact with SM only through superheavy SO(10) gauge fields / gauginos.

 \rightarrow Assume <u>one family</u> of RH v / sRH v decoupled.

Interactions of the MSSM fields and heavy gauginos

$\tilde{e}^{c*}_i \nu^c_i \tilde{E}^c \ , \tilde{d}^{c*}_i u^c_i \tilde{E}^c \ , h^{+*}_u \tilde{h}^0_d \tilde{E}^c \ , h^{0*}_u \tilde{h}^d \tilde{E}^c$
$\tilde{\nu}_i^{c*} e_i^c \tilde{E} , \tilde{u}_i^{c*} d_i^c \tilde{E} , h_d^{0*} \tilde{h}_u^+ \tilde{E} , h_d^{-*} \tilde{h}_u^0 \tilde{E}$
$\tilde{\nu}_i^{c*} \nu_i^c \tilde{N}$, $\tilde{u}_i^{c*} u_i^c \tilde{N}$, $h_u^{+*} \tilde{h}_u^+ \tilde{N}$, $h_u^{0*} \tilde{h}_u^0 \tilde{N}$
$\tilde{e}^{c*}_i e^c_i \tilde{N} \ , \tilde{d}^{c*}_i d^c_i \tilde{N} \ , h^{-*}_d \tilde{h}^d \tilde{N} \ , h^{0*}_d \tilde{h}^0_d \tilde{N}$
$\tilde{e}_i^{c*}q_i\tilde{Q}^{\prime c}$, $\tilde{d}_i^{c*}l_i\tilde{Q}^{\prime c}$, $\tilde{q}_i^*u_i^c\tilde{Q}^{\prime c}$
$\tilde{q}_i^* e_i^c \tilde{Q}'$, $\tilde{l}_i^* d_i^c \tilde{Q}'$, $\tilde{u}_i^{c*} q_i \tilde{Q}'$
$ ilde{ u}_i^{c*} q_i \tilde{Q}^c \ , ilde{u}_i^{c*} l_i \tilde{Q}^c \ , ilde{q}_i^* d_i^c \tilde{Q}^c$
$\tilde{q}_i^* \nu_i^c \tilde{Q} \ , \tilde{l}_i^* u_i^c \tilde{Q} \ , \tilde{d}_i^{c*} q_i \tilde{Q}$
$\tilde{u}_i^{c*} \nu_i^c \tilde{U}^c$, $\tilde{l}_i^* q_i \tilde{U}^c$, $\tilde{d}_i^{c*} e_i^c \tilde{U}^c$
$\tilde{\nu}_i^{c*} u_i^c \tilde{U}$, $\tilde{q}_i^* l_i \tilde{U}$, $\tilde{e}_i^{c*} d_i^c \tilde{U}$

For leptophilic χ decay,

- $<16_H><<<45_H>$, effectively LR model
- If sv^c is heavier than χ, a non-zero VEV
 <SV^C> must be assumed.
- <u>Squarks, charged Higgs, and soft para.</u> are much heavier (~TeV) than a <u>slepton.</u>
- For PAMELA, $m_{\chi} \sim 300~GeV$, Fermi is explained with astrophys. source.
- · <u>One RFLyis lighter than X.</u>

For leptophilic χ decay,

- $<16_{H}> << <45_{H}>$, effectively LR model
- If sv^c is heavier than χ, a non-zero VEV
 <SV^C> must be assumed.
- <u>Squarks, charged Higgs, and soft para.</u> are much heavier (~TeV) than a <u>slepton.</u>
- For PAMELA, $m_{\chi} \sim 300 \text{ GeV}$, Fermi is explained with astrophys. source.
- <u>One RH γ is lighter than χ.</u>

Even with 2 heavy RH v, seesaw mech. is still O.K.

$$W_{\nu} = y_{ij}^{(\nu)} \ l_i h_u \nu_j^c (j \neq 1) + \frac{1}{2} M_{i,j} \ \nu_i^c \nu_j^c (i, j \neq 1),$$

-1

$$m_{\nu} = m_{\nu}^{T} = -\begin{pmatrix} 0 & v_{12} & v_{13} \\ 0 & v_{22} & v_{23} \\ 0 & v_{32} & v_{33} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & M_{22}^{-1} & M_{23}^{-1} \\ 0 & M_{23}^{-1} & M_{33}^{-1} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ v_{12} & v_{22} & v_{32} \\ v_{13} & v_{23} & v_{33} \end{pmatrix}$$

Still 3 LH v can be maximally mixed.

[Frampton, Glashow, Yanagida (2002)]

If sRHv is lighter than χ , a VEV of sRHv is not essential. \rightarrow 4 bdy decay !!

Just for simplicity, assume a VEV of sRHv. $(\rightarrow 3 \text{ bdy decay})$ e.g. by

$$W \supset \frac{1}{M_P} \langle \overline{\mathbf{16}}_H \rangle \mathbf{16}_1 S^2 + S^3$$

 $R(16_1) = R(S) = 2/3$ $\langle \tilde{\nu}_1^c \rangle \sim m_{3/2} \times \frac{M_E}{M_P}$ $R(16_{H}^{*}) = 0$

including soft terms in V,

LSP decay diagram

Charged gaugino mediation

Dirac mass M_E by Gauge sym. breaking

>> Majorana mass m_{1/2} by SUSY breaking

This diagram is suppressed by

 $m_{1/2}^{}/M_{E}^{2}$

Neutral gaugino mediation

 $g_{LR} = (2/3)^{1/2} g_{B-L} = g_{10}$ $M_N = M_E x (5/2)^{1/2}$

Eff. coupling is ¹/₄ of the C.C. case.

Suppressed by $2/5 \times 1/4 = 1/10$ Compared to the C.C. case

Charged gauge field mediation

A derivative coupling is involved.

Since $m_{1/2} >> m_{\chi}$ this diagram is suppressed.

LSP decay diagram

The <u>1st realization</u> of $\Gamma_{\chi} \sim 1 / (M_{GUT})^4$ from the <u>gauge interaction</u>.

The decay rate of χ is

$$\Gamma_{\chi} = \frac{\alpha_{10}^2 \alpha_Y m_{\chi}^5}{96 M_E^4} \left(\frac{m_{3/2} \langle \tilde{\nu}_1^c \rangle}{m_{\tilde{e}_1^c}^2} \right)^2 \sim \frac{\alpha_{10}^2 \alpha_Y m_{\chi}^5}{96 M_E^2 M_P^2} \left(\frac{m_{3/2}}{\kappa m_{\tilde{e}_1^c}} \right)^4 \sim 10^{-26} \text{ sec.}^{-1},$$

To be consistent with the **PAMELA**'s data,

$$\begin{split} \mathbf{M}_{\mathsf{E}} &\sim \langle \mathbf{16}_{\mathsf{H}} \rangle \sim \mathbf{10^{14} \ GeV} \\ \mathbf{2 \ RH \ v \ masses} \sim \mathbf{10^{10} \ GeV} \\ \text{from} \quad W \supset \frac{1}{M_P} \langle \overline{\mathbf{16}}_H \rangle \langle \overline{\mathbf{16}}_H \rangle \mathbf{16}_i \mathbf{16}_j (i, j \neq 1) \supset (\mathbf{10^{10} \ GeV}) \times \nu_i^c \nu_j^c (i, j \neq 1) \end{split}$$

Dotted Line: $\chi \rightarrow e^+e^- \vee$, M χ =400 GeV, [Ibarra,etal '09]

Dotted Line: $\chi \rightarrow e^+e^- \vee$, M χ =400 GeV, [Ibarra,etal '09]

Solid Line: $\chi \rightarrow \mu^+\mu^-\nu$, M χ =3.5 TeV, [Ibarra,etal '09]

Solid Line: $\chi \rightarrow \mu^+\mu^- \nu$, M χ =3.5 TeV, [Ibarra,etal '09]

Thick Line: $\chi \rightarrow e^+e^- \vee$, M χ =300 GeV, [Ibarra,etal '08]

Conclusions

• <u>Still the bino-like LSP DM scenario is</u> consistent with PAMELA,

if sRH v develops a VEV or is lighter than bino, and a RH v is light enough.

- <u>SO(10) provides a relatively predictable</u> <u>explanation.</u>
- In the specific case, LR breaking scale is 10¹⁴ GeV, and the seesaw scale is 10¹⁰ GeV.