Status and Results of the ANTARES Neutrino Telescope

Holger Motz for the ANTARES Collaboration Erlangen Centre for Astroparticle Physics University of Erlangen-Nuremberg COSMO/CosPa2010, Tokyo

Neutrino Telescope: Detection Principle

- Neutrinos can penetrate Earth
- CC interaction in the vicinity of the detector → muon with (almost) same trajectory
- Muon emits Cerenkov light when traversing water
- Reconstruction of muon track from position and time of Cerenkov photons detected

The ANTARES Collaboration and Site

Detector located in Mediterranean near Toulon at 2475 m depth (to shield from atmospheric muons)

24 Institutes from 7 Countries

The ANTARES Collaboration and Site

Shore Station "Michel Pacha" in La Seyne sur Mer

40km electro-optical cable for power and data transmission

Sky Coverage

Galactic Coordinates

Assumption: only sensitive to upgoing neutrinos

Sky Coverage

Galactic Coordinates

Assumption: only sensitive to upgoing neutrinos

The ANTARES Detector

- 12 Lines + IL, ~0.1km² geometric area
- Each line: 25 storeys with 3 PMTs per storey
- 885 PMTs total (one sector acoustic particle detection)

Detection and Calibration Elements

Position Calibration

Lineshape formula fitted to data. → Position and Orientation of all Optical Modules at ~cm precision

Effective Area and Angular Resolution

Angular resolution better than 0.3° above a few TeV, limited by:

- Light scattering and chromatic dispersion in sea water: σ ~ 1.0 ns
- TTS in photomultipliers: σ ~ 1.3 ns
- Electronics + time calibration: σ < 0.5 ns
- OM position reconstruction: σ < 10 cm ($\leftrightarrow \sigma$ < 0.5 ns)

Optical Background

Dominated by two effects:

1. β – decay of ⁴⁰ K

2. Bioluminescent organisms:

Background from Cosmic Radiation

Quality cuts required to remove atmospheric muon background

Atmospheric Neutrinos and Muons

- 341 days of lifetime
- Data (upgoing events):

1062 neutrino candidates = 3,1 per day

 Expectation from Monte Carlo:

916 atmospheric neutrinos (30% systematic error)

40 wrong reconstructed muons (50% systematic error)

Atmospheric Muons – Intensity vs Depth

Diffuse Flux Limit

10-

1.2

1.1

1.3

1.4

Fraction of PMTs which see light arriving late (from EM-showers along the muon track)

1.7 **R**

1.6

1.5

Indirect Search for Dark Matter

Cold Dark Matter Candidates:

- LSP from SUSY (here: mSugra minimal Supergravity)
- LKP from Kaluza Klein (here: mUED minimal univ. extra dim.)

Elastic scattering \rightarrow bound to massive stellar objects (Sun/Earth)

- Increase of Neutralino density \rightarrow Annihilation rate enhanced
- Primary annihilation products (quarks, gauge bosons, leptons) decay into neutrinos

telescope

Dark Matter: Limit

- Reconstructed neutrinos from an effective lifetime of 68.4 days as a function of angular distance from Sun's direction
- Consistent with background estimation from both full sky measurement and MC
- Search cone for actual limit optimized from MC prior to analysis for different neutralino masses and hard/soft neutrino energy spectrum

Dark Matter: Limit on Neutrino Flux

- Limits for soft (b-quark) and hard (W-boson) annihilation channel
- mSugra parameter space not yet reached

Dark Matter: Limit on Muon Flux

- Competitive limit given the short time of measurement
- Only 5 lines out of the total 12 of the final detector deployed at that time
- Analysis for full detector still going on

Sensitivity: Detection Rate

- Sensitivity calculated for three years of taking data
- Random walk scan of
 mSugra parameter space
- Background from atmospheric neutrinos and wrong reconstructed atmospheric muons
- 3° radius search cone

- 90% CL excludable by KM3NeT
- not excludable

Sensitivity: Spin Dependent X-section

- ANTARES sensitivity vs other experiments limits
- Sun consists mostly of Hydrogen – spin dependent scattering
- Annihilation in equilibrium with capture rate

Kaluza Klein Dark Matter (SD-X-section)

More than just Neutrinos

- Triggers for Signatures of Magnetic Monopoles and relic Strangelets
- Acoustic Neutrino Detection project AMADEUS also
 monitors anthropogenic and biogenic sound
- Trigger for optical follow up with automatic telescopes Tarot and ROTSE
- Receiving GRB alerts from satellites (triggers a period of storing all data for later analysis)
- Infrared biocams on IL look for sea creatures
- Seismometer for study of earthquakes and integrated in Tsunami warning network

Summary - ANTARES

- continuously takes data for several years now
- complements the sky coverage of IceCube
- has put limits on observables for astrophysical neutrino sources, directly and on diffuse flux
- is a valuable tool for indirect Dark Matter search
- has many analyses with recent data going on at the moment for improved results

Backup Slides

Neutrino Skymap (scrambled)

26

Point Source Limits

No excess above background detected in any direction nor close towards possible source directions

ANTARES Neutrino Effective Area in the low-energy regime

ANTARES Low-Energy Effective Area

60 kHz background rate from K-40 decay and bioluminescence

Neutrino Flux from mSugra Dark Matter Annihilation in the Sun

- •Integrated v_{μ} and \overline{v}_{μ} flux above 10 GeV threshold energy plotted against m_{χ}
- •From random walk scan of mSugra Parameter Space
- Calculated with DarkSUSY
- Includes oscillation effects
- •RGE-code: ISASUGRA
- •Halo-model: NFW

•m_{tp} = 172.5 GeV

- Iower than WMAP
- higher than WMAP

mSugra Parameter Space Regions

mSugra models favoured by WMAP

- 90% CL excludable by ANTARES
- 🛑 not excludable

mSugra models disfavoured by WMAP

- 90% CL excludable by ANTARES
- not excludable

Muon Flux from mSugra Dark Matter Annihilation in the Sun

Comparison to other neutrino experiments
Site dependent quantity
Derived from neutrino flux through v to μ conversion rate extracted from DarkSUSY for different m_x (approximation)

Direct Detection (Spin Independent)

•Comparison to direct detection experiments sensitive to spin independent WIMP-nucleon crossection

CDMS: arXiv:0802.3530 XENON: arXiv:0706.0039

Exclusion Capabilities of ANTARES for the mSugra Parameter Space

In Situ Calibration with Potassium-40

34