Peculiar Velocity PDF and signature of primordial non-Gaussianity
 INSTITUTE FOR THE PHYSICS AND

iPMU MATHEMATICS OFTHE UNIVERSE
\section*{TSZ YAN LAM (IPMU, University of Tokyo)}
arXiv: 1008.0406 Collaborators: Takahiro Nishimichi, Naoki Yoshida (IPMU)

Abstract

We study how primordial non-Gaussianity affects the pairwise velocity probability density function (PDF) using an analytical model and cosmological N-body simulations. We develop an analytical model based on the Zeldovich approximation to describe the evolution of the pairwise velocity PDF. We show thatour analytical model matches the measurements while linear theory fails to predict the PDF in the $f_{n l}$ model. We also show explicitly how $f_{n l}$ induces correlations between originally independent velocities along the parallel and the perpendicular to the line of separation directions.

1 Introduction

Detections of primordial non-Gaussianity can discriminate inflationary models. The local $f_{n l}$ model parameterizes the primordial perturbation potential as,

$$
\begin{equation*}
\Phi=\phi+f_{n l}\left(\phi^{2}-\left\langle\phi^{2}\right\rangle\right), \tag{1}
\end{equation*}
$$

where ϕ is the Gaussian potential field.
Most of the studies on the effect of primordial non-Gaussianity on large-scale structure (LSS) focus on density-related quantities - scaledependent halo bias, halo/void abundances, bi/tri-spectrum. The motivation of this work is two-folded:

1. Introduce a complementary LSS probe using the peculiar velocity field;
2. Develop an analytical model that can describe the change in the peculiar velocity PDF due to primordial non-Gaussianity.

2 Linear Pairwise Velocity PDF

The Poisson Equation relates the linear overdensity $\delta(k)$ and the Bardeen potential Φ while the continuity equation relates $\delta(k)$ and the peculiar velocity $\boldsymbol{u}(\boldsymbol{k}, z)$, hence:
$u_{j}(k)=i \dot{D}(z) k_{j} M(k) \Phi(k)$, where $M(k)=2 c^{2} T(k) / 3 \Omega_{m} H_{0}^{2}$ and $j=\left(\|, \perp_{a}, \perp_{b}\right)$.
Denote the pairwise velocity by $\boldsymbol{v}(\boldsymbol{r}) \equiv \boldsymbol{u}(\boldsymbol{x}+\boldsymbol{r})-\boldsymbol{u}(\boldsymbol{x})$.

2.1 Uniform weighted PDF

The linear pairwise velocity PDF when $f_{n l}=0$ is described by the multivariate Gaussian distribution:

$$
\begin{equation*}
p_{0}(\boldsymbol{v} ; r)=\frac{1}{(2 \pi)^{3 / 2} \sqrt{|A|}} \exp \left(-\frac{1}{2} \boldsymbol{v}^{T} A^{-1} \boldsymbol{v}\right)=p_{0}\left(v_{\|} ; r\right) p_{0}\left(v_{\perp_{a}} ; r\right) p_{0}\left(v_{\perp_{b}} ; r\right) \tag{3}
\end{equation*}
$$

where $\boldsymbol{v}=\left(v_{\|}, v_{\perp_{a}}, v_{\perp_{b}}\right)$ and the last equality is due to no correlation between v_{j} 's (i.e. $\left\langle v_{i} v_{j}\right\rangle \equiv 0$ when $f_{n l}=0$).
When $f_{n l} \neq 0$, primordial bispectrum is non-zero and connected moments higher than 2nd order contribute to the PDF. The leading nonvanishing connected moments are $\left\langle v_{\|}^{3}\right\rangle$ and $\left\langle v_{\|} v_{\perp}^{2}\right\rangle \rightarrow$ induces correlations between $v_{\|}$and v_{\perp}. The first order correction to the linear pairwise velocity PDF is

$$
\begin{aligned}
& p\left(v_{\|}, v_{\perp_{a}}, v_{\perp_{b}} ; f_{n l}, r\right)=p_{0}\left(v_{\|}, v_{\perp_{a}}, v_{\perp_{b}} ; r\right)\left[1+\alpha_{300} h_{300}+\alpha_{120}\left(h_{120}+h_{102}\right)\right] \text { (4) } \\
& \text { where } \quad \alpha_{300}=\frac{1}{6}\left\langle v_{\|}^{3}\right\rangle\left\langle v_{\|_{\|}^{2 / 2}}^{3 / 2}, \quad \alpha_{120}=\frac{1}{2} \frac{\left\langle v_{1} v_{\perp}^{2}\right\rangle}{\left\langle v_{\|}^{2}\right\rangle^{1 / 2}\left\langle v_{\perp}^{2}\right\rangle}, \quad h_{i j k} \equiv H_{i}\left(\nu_{\|}\right) H_{j}\left(\nu_{\perp_{a}}\right) H_{k}\left(\nu_{\perp_{b}}\right)\right.
\end{aligned}
$$

2.2 Pair weighted linear PDF

The uniform weighted linear PDF does not take into account the pair weighting which would be important (Sheth \& Zehavi 2009). Scoccimarro (2004) discussed how to generalize the uniform weigthed linear pairwise PDF when $f_{n l}$ to include pair weighting:

$$
[1+\xi(r)] \frac{q_{0}\left(\nu_{\|}, \nu_{\perp_{a}}, \nu_{\perp_{b}} ; r\right)}{p_{0}\left(\nu_{\|}, \nu_{\perp_{a}}, \nu_{\perp_{b}} ; r\right)}=1+\xi(r)+h_{100} \beta_{100}+h_{200} \beta_{200}
$$

where β_{100} and β_{200} are associated with the correlation between the pairwise velocity and the linear overdensity. When $f_{n l} \neq 0$ additional terms (related to 3pt function) contribute (see arXiv: 1008.0406 for details).

3 Evolution model of pairwise velocity PDF

The analytical evolution model is based on Zeldovich approximation which assumes the comoving velocity remains unchanged. At some initial z_{i} two particles separated by r_{i} had a relative velocity $\left(v_{\|}^{i}, v_{\perp_{a}}^{i}, v_{\perp_{b}}^{i}\right)$. At a later redshift z_{0} the separation and the relative velocity of the two particles become

$$
\begin{align*}
r^{2} & =\left(r_{i}+\frac{D_{0}}{\dot{D}_{i}} v_{\|}^{i}\right)^{2}+\left(\frac{D_{0}}{\dot{D}_{i}}\right)^{2}\left(v_{\perp_{a}}^{i}{ }^{2}+v_{\perp_{b}}^{i}{ }^{2}\right) \\
v_{\|} & =\frac{\dot{D}_{0}}{r}\left(\frac{r_{i} v_{\|}^{i}}{\dot{D}_{i}}+\frac{D_{0}}{\dot{D}_{i}^{2}} v^{i^{2}}\right) \tag{7}\\
\left|v_{\perp}\right|^{2} & =v_{\perp_{a}}^{2}+v_{\perp_{b}}^{2}=\left(\frac{\dot{D}_{0}}{\dot{D}_{i}} v^{i}\right)^{2}-v_{\|}^{2} \tag{8}
\end{align*}
$$

The evolved pairwise velocity PDF is therefore
$p\left(V_{\|}, V_{\perp} ; R\right)=\int \mathrm{d} r_{i} \mathrm{~d} v_{\|}^{i} \mathrm{~d} v_{\perp_{a}}^{i} \mathrm{~d} v_{\perp_{b}}^{i} \frac{r_{i}^{2}}{R^{2}} p\left(v_{\|}^{i}, v_{\perp_{a}}^{i}, v_{\perp_{b}}^{i} ; r\right) \delta_{\mathrm{D}}(r-R) \delta_{\mathrm{D}}\left(v_{\|}-V_{\|}\right) \delta_{\mathrm{D}}\left(v_{\perp}-V_{\perp}\right)$,

4 Comparisons with simulations

Our analytical predictions are then compared to measurements from N-body simulations. The simulations were performed in boxes of 2000 $h^{-1} \mathrm{Mpc}$ on a side, each containing 512^{3} particles with WMAP 5-years Λ CDM best bit parameters. Pairwise velocity PDFs were measured from simulation outputs at $z=0.5$ at various separations $(r=4,8,12$, $\left.50 h^{-1} \mathrm{Mpc}\right)$. Here only the PDFs at $r=8 h^{-1} \mathrm{Mpc}$ are shown:

Why evolution is important

Parallel to line of separation
Perpendicular to line of separation

weighted) predicts no change

- Linear theory predictions fail in both parallel and perpendicular directions
- Our model agrees with measurements, both the profile when $f_{n l}=0$ and the ratio of PDF

Fig 2: The pairwise velocity PDF $\left(p\left(v_{\|}\right)\right.$on right and $p\left(v_{\perp}\right)$ on left for $r=8 h^{-1} \mathrm{Mpc}$. Upper panels show the PDF profile when $f_{n l}=0$; lower panels show the ratio of the PDF to the associated $f_{n l}=0$ PDF.

