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1. Introduction

Inflation solves theoretical problems of the std. cosmology,

and it is strongly supported by observation. Starobinsky ‘79,
Guth "81, Sato "8l

Linde 82, Albrecht and Steinhardt “82

N= 50 60 \ AC | +WMAP
Mte @ .
s m?¢? o | O . ¢P. N=60
_~N-lation m?¢? © | © R |

HZ B

Tensor=to=Scalar Ratio (r)

0.96 0.98 1.00 1,02
Primordial Tilt (n,)

Komatsu et al (2010) Talk by Dunkley

The constraint on r” will be improved by the Planck,
QUIET, PolarBeaR, and LiteBIRD. .

However, the inflation model is not yet determined.
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Inflationary Zoo
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Inflationary Zoo
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Large-field inflation

Talk by Kaloper, Silverstein
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Goal

| Build a new inflation model which |
| predicts the tensor-to-scalar ratio
within the reach of observations. |

It would be nicer if

i the model has implications for o’rher
| probes such as the direct GW
| detection experiment and/or LHC.
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2.Running Kinefic Inflation

FT, PLB 693 (2010) 140-143 [arXiv:1006.2801]
Nakayama and FT, 1008.2956
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2.1 Basic Idea

The inflaton moves over a long distance
during inflation, especially if r > 0.01.

During
inflation
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2.1 Basic Idea

The inflaton moves over a long distance
during inflation, especially if r > 0.01.

The physics during inflation may be different
from after inflation.

After
inflati
| |
_‘/ z MP nriarion
- 5

During
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® For instance let us consider

Planck unit
e M =1

At ¢ = 0, canonically normalized.
At &> 1, &~ ¢ is the canonically norm field.

So, the effective potential changes!

2010F9 29 H /K IEH



.canonically
2 inorm. inflato

P

{ The power of the potfential
changes due to :
{ theru
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Similarly a linear term can be realized:

cananically
norm. inflaton
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It seems generic that the form of the kinetic
term changes, especially if the inflaton moves over
a large scale as in the chaotic inflation.

A large kinetic term is advantageous for the
inflation to occur, because the potential becomes
flatter!

Eri— §(8¢)2

In the limit of A >> 1, the potential becomes flat.
Dimopoulos, Thomas, hep-th/0307004
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2.2 RK inflation in sugra

Some sort of shift symmetry is needed to prevent
the inflaton from appearing in the exponential
pre-factor.

vV = e (DiWg (D;W) - 3|W|?)

The inflaton is @ in this case.

Kawasaki, Yamaguchi, Yanagida, "00
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There are In general other possibilities.
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We assume that the Kahler potential respects
the shift symmeftry.

K = ie(¢? - 8%) = 3(6% — P2+

AK = r|¢]?

=D | L = (54 @+ )[02) 0610,

The kinetic term grows at large field values, in
a controlled way thanks to the shift symmetry.

Note: ¢? — 2T = const. along the inflation trajectory.
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Quadratic chaotic inflation with RK term
K = slgl? + ic(¢? ~ %) = 3(8% — $1)2 + | X[

W = AX ¢2, We impose Z; and U(1)r symmetries.

icanonically
N ¢2 norm. inflaton

/N
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Linear chaotic inflation

5 : . ud -, T arXiv:1006.2801
W =mXo, We impose Z, and U(1)z symmetries.

canonically
norr'in. inflaton

\

p°_~ 0

K Kt

oscillations

Cf. McAllister, Silverstein and Westphal 0808.706 for the stringy construction.
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Generalization is straightforward.

The shift symmetry can be generalized to ¢".

¢" - ¢" +a

2010F9 29 H /K IEH



The Kahler and super-potentials are given by

K = slgf? + ca(9" - ¢m) = 5(8" — ™) 4

2
W = AX¢™

during inflation

after 1nflation
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The potential looks like

Thus, we can have a variety of chaotic inflation models.

2010F9 29 H /K IEH



Implications of RK inflation

@ The gravity waves can be enhanced if m > 2.

@ Naturally avoids the non-thermal gravitino

PrOblem. Kawasaki, F.T. and Yanagida, hep-ph/0603265, 0605297
Asaka, Nakamura and Yamaguchi, hep-ph/0604132

@ Likely coupled to the Higgs sector for successful
reheating. In this case the inflation sector can
be studied thru experiments!! Inflatino can be
dark matter.

See Nakayama and FT 1008.2956 for details.



Enhancement of gravity waves

There are a kination epoch after inflation, during which
the inflaton energy decreases faster than radiation.
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Enhancement of gravity waves

There are a kination epoch after inflation, during which
the inflaton energy decreases faster than radiation.

inflation
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There are a kination epoch after inflation, during which
the inflaton energy decreases faster than radiation.
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Enhancement of gravity waves

There are a kination epoch after inflation, during which
the inflaton energy decreases faster than radiation.

. N
@ ¢ inflation
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¢
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Example: n=4 and m=3

10712
10713
10714
1071°
1071°
10717
10718

10719 BBO/DECIGO —

10-20 BBO/DECIGO corr - —.
ultimate

102! b ]

102° 10" 10719 107
k [Hz]

Nakayama and FT, 1008.2956
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Summary of RK inflation

@ The form of the potential changes due to the
running of the Kinetic term.

v Linear or fractional power potential is possible.

v Inflaton can be massless at the origin (in the
SUSY limit), while r is large but consistent with
observation.

Many interesting phenomena:
) Enhancement of GW, Inflaton may be
produced at LHC, Inflatino DM, etc.

2010F9 29 H /K IEH




3. Higgs Inflation

Let us consider a possibility that the Higgs field
plays a role of the inflaton.

v/ The SM particles are naturally produced by
the reheating.

v/ The inflaton can be studied thru experiments.

v/Favored from a minimalistic point of view.

2010F9 29 H /K IEH



However,

v/ Quartic chaotic inflation is strongly disfavored.

v/ A very small coupling is needed for the
WMARP normalization of density perturbation.

-

—

We need to somehow make the potential |
| flatter at large field value.

l L kead Bezrukov and Shaposhnikov, 0710.3755
and many other references.

| (2) Running kinetic term |

2010F9 29 H /K IEH



3.1 Higgs inflation with a non-minimal
coupling fo gravity

Bezrukov and Shaposhnikov, 0710.3755
gV ; : and many other references such as
@ Non-minimal coupllng to gravrl'y: Lerner and McDonald 0912.5463,1005.2978
Germani and Kehagias 1003.2635
Barvinsky et al 0910.1041,0911.1408

1 2 % 2 2\2
5(08)" — “ iR ) }

After the Weyl transformation, the potential becomes
very flat in the Einstein frame,

AM3 2X e
U(x) = 16 <1+exp< \/EMP>> o - M,

Wi Salopek, Bond, and Bardeen 89
W|‘|‘h h ~ —exp ( > Futamase and Maeda 89
\/_ \/_MP Spokoiny, 84, Fakir and Unruh "90

Komatsu and Futamase 97

¢ = 0(10*) from COBE norm.

See falk by Lerner, Steinwachs, and Germani.
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3.1 Higgs inflation with a non-minimal
coupling '
@ Non-minimal coupling to

M3
2

SJ:/d4$\/jg{ R

After the Weyl transfor
very flat in the Einstein

XCOBE X
Bezrukov and Shaposhnikov, 0710.3755

U AMLL 1
(x) =~ 12 1 €exp FOM > for x> V6Mp

Wi Salopek, Bond, and Bardeen 89

with h~ 7 exXp (\/_M ) Futamase and Maeda *89
)

Spokoiny, 84, Fakir and Unruh "90
Komatsu and Futamase 97

¢ = 0(10*) from COBE norm.

See falk by Lerner, Steinwachs, and Germani.
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3.1 Higgs inflation with a non-minimal

0.98 1.00 1.02
Ng Bezrukov et al 0812.3622

very flat in the Einstein

XCOBE X
Bezrukov and Shaposhnikov, 0710.3755

AM 7
U(x) = 4§2P 1 4+ exp

Wi Salopek, Bond, and Bardeen 89
W|‘|‘h h ~ —exp ( ) Futamase and Maeda 89
\/_ \/_MP Spokoiny, 84, Fakir and Unruh "90

Komatsu and Futamase 97

¢ = 0(10*) from COBE norm.

See falk by Lerner, Steinwachs, and Germani.
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In supergravity, the Higgs inflation with non-minimal coupling
to gravity occurs in a similar way.  Einhorn and Jones 0912.2718

Ferrara, Kalosh, Linde, et al 1004.0712, 1008.2942,
Kallosh and Linde 1008.3375, H.M.Lee 1005.2735

1 1
E rav — _QR ¥
= g 6 4

where the frame function €2 is related to the Kahler potential,

(2
o= Jdog (—§>

For the frame function and the superpotential,

3

— (|Hul? + [Ha|* + | X|?) HEHWHg + hoc
W = AMXH,H;+ yX?,

the inflation occurs with the same potential.

2010F9 29 H /K IEH



3.2.1 Higgs RK inflation [SM]

Nakayama and FT, 1008.4457
We COﬂS]der a RK 'I'erm: Cf. Germani and Kehagias 1003.2635

Lerner and McDonald 1005.2978

For large h > — ,the canonically norm. field is

3 gl
- B

and the potential iIs

0!

3

| N ) o GOBE norm.




3.2.2 Higgs RK inflation [NMSSM]

Nakayama and FT, 1008.4457
We consider a D-flat direction, ¢* = H,H,

, ST
o< P

| K = fulHu|® + KalHal” = 5 (HuHa — (HuHa)')" + | X%}

IW = AXH, H5 4

Singlet X is needed

0o
|

(K + 2%|9]%) 9910, 6 — V(9).
e 22| g1,

X ~ 10~° from COBE normalization

2

V(o)



é:anonically
o horm. inflaton
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® The form of the kinetic term depends on the discretfe
symmetry of the Higgs.

In NMSSM,

XS

there i1s Z3 symmetry. Then
|
K = slof’ + ci(d9") Sa(o® =gl -

L = (k+6%¢|™) 0"6T8,.6 — V(9).
V(g) =~ €98 X2t

¢ S ¢6 is the canonically norm. field.



©
~

o
w

Tensor—to—Scalar Ratio (r)
o o
- N

o
o

0.96 098
Primordial Tilt (n)

2010F9 29 H /K IEH



General Analysis

Nakayama and FT, 1009.3399

20 = 13 (906, 3) + [XP + X[ + J(8) + T(B))

W = NP

| In the NM Higgs |
} inflation, :

J(¢) = &o°

20109 H29HKEH




General Analysis

Nakayama and FT, 1009.3399

20 = 13 (909, 8) + [XP + X[ + J(8) + T(B))

W = AXo™, 8 h

No inflation

4

| In the NM Higgs |
} inflation, :

J(¢) = &o°

20109 H29HKEH




General Analysis

Nakayama and FT, 1009.3399

W = AX¢™, 4 N

el l

¢) + J(9)),

No inflation

4

L 3. 9(6,0) ~[(9)], i\¥

Higgs inflation w/
non-min. coupling
or power-law inf.

~

)

201049 H29HKEH

In the NM Higgs
} inflation,

J(¢) = £¢°



General Analysis

Nakayama and FT, 1009.3399

20 = 1- 1 (9(6.8) + X2+ CIXI* + () + T(D)).

No inflation

| 1. 9(¢7 §b) > J(gb)ai/ ™

Higgs inflation w/
non-min. coupling
or power-law inf.

RIS Y

RK inﬂafion!]

In the NM Higgs
{ inflation,

J(¢) = &o°

20109 H29HKEH



General Analysis

Nakayama and FT, 1009.3399
1

~30 = 1- 2 (9(6,9) + XP + ¢IX|* + J(9) + (D)

= AX¢™, ; ~ o +algl* |

, Power-law
Higgs-type inflation

inflation (O<(m-n)/n << 1)

(m=2) .’
RK inflation
7 (n=2I)

No inflation

chaotic ~~ No inflation
inflation
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4 .Conclusions
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@ The running Kinetic inflation was proposed.
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@ The running Kinetic inflation was proposed.

@ The potential becomes flatter at large field values,
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non-thermal gravitino production. Inflatino can be DM.
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@ The running Kinetic inflation was proposed.

@ The potential becomes flatter at large field values,
and a variety of chaotic inflation has become possible.
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@ Can be applied to the Higgs chaotic inflation.

2010F9 29 H /K IEH



4 .Conclusions

@ The running Kinetic inflation was proposed.

@ The potential becomes flatter at large field values,
and a variety of chaotic inflation has become possible.

@ Many implications: GW can be enhanced. Avoids the
non-thermal gravitino production. Inflatino can be DM.

@ Can be applied to the Higgs chaotic inflation.

0.96 0.98 1.
Primordial Tilt (n)
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Back-up slides
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The inflaton potential

= X is stabilized at the origin during and after
inflation.

|V & el @htoD-seonsrt26hsing? (2 4 67) |

= ¢; is stabilized at ¢; ~ cp%' during inflation.

1

1
L = §¢%(8¢R)2 = §m2¢%{7

for or >> 1.
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eye view of the inflaton potential
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4.1 Solution to the non-thermal gravitino
problem

Gravrh nNo palr-prOduc.l-lon Kawasaki, FT. and Yanagida, hep-ph/0603265, 0605297

Asaka, Nakamura and Yamaguchi, hep-ph/0604132

® Relevant interactions: Endo, Hamaguchi and FT., hep-ph/0602061
Nakamura and Yamaguchi, hep-ph/0602081

e 1L = —ge“”p“ (G¢8p$ + G,0,z — h.c.) VY, 7,1,

1 A e
—éeG/Q (G¢§b + Goz + h-C-) % hua fYV] Yy,

@ : inflaton field G=K+1n ‘W|2

2 : SUSY breaking field, w/ G*G, ~ 3
Taking account of the mixings,

ms/2
G
6 ~ (D) o

for U < My



Gravitino Pair Production Rate:

4 B

5 2 3

Gyl mqs 1 () \T my

3/2 = —

/27 2887 m2,,M2 ~ 32r \ Mp ) M?

\ 3/2 P
Endo, Hamaguchi and FT., hep-ph/0602061

Nakamura a%d Yamaguchi, he:-;h/0602081 For me < mz

@ Gravitino pair production is effective especially
for low-scale inflation models.

@ Gravitino abundance is inversely proportional to
the reheating temperature!
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@ Gravitino Abundance:

)

s g
v 1 —14 9x R
! <20()> (106(}6\/
; (@) 2( Mg, )2
1015GeV 1019GeV

T2
Note: Tiotal ~ —
OTC: | e
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Gravitino Abundance

A
Y3/ 2 | non-thermal thermal




Conservative
onstraints on the inflation models;

+ :new(single);1TeV
% : new(single);100TeV
........... : new(multi)
: hybrid
: smooth hyb.
...... : chaotic (wW/o0 Z»)

A:msp=1TeV; Bh=1
B: m3p =1TeV; Bh =10
C: msp = 100TeV

D: m3p =1GeV

3

1012-...I...I...I...I...I...I...I...I...
10® 10° 10'°10'"10'210'10'10'®10'® 10"’

mg [GeV]
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Inflatino dark matter

Nakayama and FT,1008.2956
The inflaton is massless in the SUSY limit, if m > 2.

me — O(mg/g)

For successful reheating, the inflaton should have
unsuppressed couplings with the SM sector.

EI:Z:> / d29 )\¢¢Hqu

The set-up resembles nMSSM, where the singlino
becomes DM. The discrete Z,x symmetry in nMSSM
can be consistent with the shift symmeftry;

ol e
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Reheating of RK inflation

® Preheating depends on the global shape of
the potential and the interactions.

@ Generically, for the preheating to proceed
efficiently,

(1) the inflaton should pass near the origin

(2) the back reaction should not be important.

The second requirement is likely satisfied if the produced particles
decay soon, as in the instant preheating. Otherwise, the preheating
will stop to proceed, and in general it is difficult to follow the
evolution until thermalization.

See Garcia-Bellido et al 0812.4624 and Bezrukov et al 0812.3622 for
the preheating of the SM Higgs inflation.
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1 n Tn\2
(6" = o1 4 -

K = k|¢|* + c1(¢™ — ™) —
W = AX o™

Preheating can be suppressed if the inflaton does not pass
near the origin. This depends on the symmetry.

2010F9 29 H /K IEH



eye view of the inflaton potential
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Symmetry or funing?

@ A large coefficient of the kinetic term is
advantageous for the inflation to occur.

A
Lg = 5(8@2
@ In the limit of large coefficient, an approximate shift
symmetry appears. Dimopoulos, Thomas, hep-th/0307004

In supergravity,
K(z,y)=Az*+y* with A>1 ¢=z+1y

results in an approximate shift sym. along y direction
Izawa and Shinbara 0710.1141
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@ The RK inflation appears if

K= p% Loy LA S e A

The coefficient of the kinetic term is

| A A
Kyp = 1Ko + Kyy) = 14+ (2" +1°) = T lof

Note that the inflation takes place
with sub-Planckian value of ¢ in the
original frame.
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Higgs inflation with non-minimal coupling
After the Weyl transformation,

h2
2
gﬁ:mgw () :1+§_N1%

the potential becomes very flat in the Einstein
frame,

w0~ (e (55

for x> V6Mp

with  h= 22 ex (ﬁf\@)'
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General Analysis

Nakayama and FT, 1009.3399
1

~30 = 1- 2 (9(6,9) + XP + ¢IX|* + J(9) + (D)

= AX¢™, ; ~ o +algl* |

, Power-law
Higgs-type inflation

inflation (O<(m-n)/n << 1)

(m=2) .’
RK inflation
7 (n=2I)

No inflation

chaotic ~~ No inflation
inflation
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where we defined a = /2/3. As we have mentioned, the potential V' exhibits runaway

behavior for m < n as well as m = n > 3, while the potential 1s an exponentially growing
function for m > n. If m = n = 2, the scalar potential asymptotically approaches a constant

value and the tilt of the potential 1s exponentially suppressed. The last case corresponds to

2010F9 29 H /K IEH



