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Assisted inflation
Assisted inflation (Liddle-Mazumdar-Schnook 1998) is 
the observation that multiple scalar fields 
can cooperate to drive inflation even if each 
individually is unable to.

Each field feels the acceleration from its own 
potential, but the collective Hubble friction 
from all fields.
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N-flation
N-flation (Dimopolos et al 2008) is a realization of 
assisted inflation using string axions.



Motivations and assumptions
One motivation for this idea is that sufficient 
inflation can be obtained with all fields maintaining 
sub-Planckian values.

Another is that it may be possible to relate 
assisted inflation to proper fundamental physics 
models.

Focused on adiabatic perturbations.
Random initial conditions for fields.
Assumptions we made; 

Horizon crossing and Slow-roll approximations.
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N-flation phenomenology
The full string axion potential is

, where there are Nf fields with constants Λi and fi. 
Throughout will ignore possible couplings btw the 
fields.

This has been extensively explored in the quadratic 
approximation where all fields are close to their 
minima, in which case they are simply a set of 
massive fields with

4

Nflation phenomenology

The full string axion potential is 

where there are Nf fields with constants !i and fi.     
Throughout I will ignore possible couplings between the fields.

Vi = Λ4
i

�
1− cos

2πφi

fi

�

This has been extensively explored in the quadratic 
approximation where all fields are close to their minima, in 
which case they are simply a set of massive fields with

mi ≡
2πΛ2

i

fi

Nflation phenomenology

The full string axion potential is 

where there are Nf fields with constants !i and fi.     
Throughout I will ignore possible couplings between the fields.

Vi = Λ4
i

�
1− cos

2πφi

fi

�

This has been extensively explored in the quadratic 
approximation where all fields are close to their minima, in 
which case they are simply a set of massive fields with

mi ≡
2πΛ2

i

fi



N-flation phenomenology
Regardless of these choices, the Nflation 
phenomenology in this approximation is remarkably 
simple:
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Nflation phenomenology
Regardless of these choices, the Nflation phenomenology in 
this approximation is remarkably simple:

The tensor-to-scalar ratio always equals the single-field 
value:   r = 8/N  where N is the number of e-foldings.

The scalar spectral index cannot exceed the single-field 
value, equalling it only in the equal-mass case:  n ! 1-2/N

The non-gaussianity fNL always                                  
equals its single-field value:                                             
fNL = 2/N and hence is                                         
unobservably small.

38 Komatsu et al.

While the KS profiles are generally in a good agreement
with the X-ray derived profiles, they are more extended
than the X-ray-derived profiles (see Figure 16), which
makes the KS prediction for the projected SZ profiles
bigger. Note, however, that the outer slope of the fitting
formula given by Arnaud et al. (2009) (equation (C3))
has been forced to match that from hydrodynamical sim-
ulations of Nagai et al. (2007) in r ≥ r500. See the bot-
tom panels of Figure 16. The steepness of the profile
at r ! r500 from the simulation may be attributed to a
significant non-thermal pressure support from ρv2, which
makes it possible to balance gravity by less thermal pres-
sure at larger radii. In other words, the total pressure
(i.e., thermal plus ρv2) profile would probably be closer
to the KS prediction, but the thermal pressure would
decline more rapidly than the total pressure would.
If the SZ effect seen in the WMAP data is less than

expected, what would be the implications? One possibil-
ity is that protons and electrons do not share the same
temperature. The electron-proton equilibration time is
longer than the Hubble time at the virial radius, so that
the electron temperature may be lower than the pro-
ton temperature in the outer regions of clusters which
contribute a significant fraction of the predicted SZ flux
(Rudd & Nagai 2009; Wong & Sarazin 2009). The other
sources of non-thermal pressure support in outskirts of
the cluster (turbulence, magnetic field, and cosmic rays)
would reduce the thermal SZ effect relative to the ex-
pectation, if these effects are not taken into account in
modeling the intracluster medium. Heat conduction may
also play some role in suppressing the gas pressure (Loeb
2002, 2007).
In order to explore the impact of gas pressure at

r > r500, we cut the X-ray derived pressure profile at
rout = r500 (instead of 6r500) and repeat the analysis.
We find a = 0.74± 0.09 and 0.44± 0.14 for high and low
LX clusters, respectively. (We found a = 0.67±0.09 and
0.43± 0.12 for rout = 6r500. See Table 12.) These results
are somewhat puzzling - the X-ray observations directly
measure gas out to r500, and thus we would expect to find
a ≈ 1 at least out to r500. This analysis may suggest that
the fiducial scaling relation of Böhringer et al. (2007) is a
source of a < 1. Note that a = 1 is within the systematic
error due to the scatter in the scaling relation. Had we
used the scaling relations of Melin et al. (2010), we would
find a ≈ 1 for rout = r500. While a large uncertainty in
the scaling relation prevents us from convincingly ruling
out a = 1, the relative amplitudes between high and low
LX clusters suggest that a significant amount of pressure
is missing in low mass (M500 " 4 × 1014 h−1 M") clus-
ters, even if we scale all the results such that high-mass
clusters are forced to have a = 1. A similar trend is also
seen in Figure 3 of Melin et al. (2010).
This interpretation is consistent with the SZ power

spectrum being lower than expected. The SPT mea-
sures the SZ power spectrum at l ! 3000. At such high
multipoles, the contributions to the SZ power spectrum
are dominated by relatively low-mass clusters, M500 "
4 × 1014 h−1 M" (see Figure 6 of Komatsu & Seljak
2002). Therefore, a plausible explanation for the lower-
than-expected SZ power spectrum is a missing pressure
in lower mass clusters.
Scaling relations, gas pressure, and entropy of low-

mass clusters and groups have been studied in the lit-

Fig. 19.— Two-dimensional joint marginalized constraint (68%
and 95% CL) on the primordial tilt, ns, and the tensor-to-scalar
ratio, r, derived from the data combination of WMAP+BAO+H0.
The symbols show the predictions from “chaotic” inflation models
whose potential is given by V (φ)  φα (Linde 1983), with α =
4 (solid) and α = 2 (dashed) for single-field models, and α =
2 for multi-axion field models with β = 1/2 (dotted; Easther &
McAllister 2006).

erature.35 Leauthaud et al. (2010) obtained a rela-
tion between LX of 206 X-ray-selected galaxy groups
and the mass (M200) derived from the stacking anal-
ysis of weak lensing measurements. Converting their
best-fitting relation to r200–LX relation, we find r200 =
1.26 h − 1 Mpc

E0.89(z) [LX/(1044 h−2 erg s−1)]0.22. (Note that
the pivot luminosity of the original scaling relation is
2.6 × 1042 h−2 erg s−1.) As r500 ≈ 0.65r200, their rela-
tion is ≈ 1σ higher than the fiducial scaling relation that
we adopted (equation (89)). Had we used their scaling
relation, we would find even lower normalizations.
The next generation of simulations or analytical cal-

culations of the SZ effect should be focused more on
understanding the gas pressure profiles, both the ampli-
tude and the shape, especially in low-mass clusters. New
measurements of the SZ effect toward many individual
clusters with unprecedented sensitivity are now becom-
ing available (Staniszewski et al. 2009; Hincks et al. 2009;
Plagge et al. 2009). These new measurements would be
important for understanding the gas pressure in low-mass
clusters.

8. CONCLUSION

With the WMAP 7-year temperature and polarization
data, new measurements of H0 (Riess et al. 2009), and
improved large-scale structure data (Percival et al. 2009),
we have been able to rigorously test the standard cosmo-
logical model. The model continues to be an exquisite
fit to the existing data. Depending on the parameters,
we also use the other data sets such as the small-scale
CMB temperature power spectra (Brown et al. 2009; Re-
ichardt et al. 2009, for the primordial helium abundance),
the power spectrum of LRGs derived from SDSS (Reid
et al. 2009, for neutrino properties), the Type Ia super-
nova data (Hicken et al. 2009b, for dark energy), and the
time-delay distance to the lens system B1608+656 (Suyu
et al. 2009a, for dark energy and spatial curvature). The
combined data sets enable improved constraints over the

35 A systematic study of the thermodynamic properties of low-
mass clusters and groups is given in Finoguenov et al. (2007) (also
see Finoguenov et al. 2005a,b).
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The tensor-to-scalar ratio always equals to the single-
field values: r = 8/N where N is the number of e-
foldings.

The scalar spectral index cannot exceed the single-field 
value, equalling it only in the equal-mass case:                   
n ! 1-2/N.
The non-gaussianity fNL 
always equals its single-field 
value: fNL = 2/N and hence is 
unobservably small.



The N-flation model
But..
.. in fact the quadratic approximation to the 
potential is unlikely to be valid. We should 
consider the full potential

Even if the potentials are all taken to be identical, 
assisted inflation is an attractor solution only if 
d2V/dɸ2 > 0 (Calcagni and Liddle 2008), which is not true 
near the maximum of the potential(s) where the 
trajectories will diverge.                              
[  ===>   From now on, called the Naxion model ]
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Naxion equations
With the full potential, the obervalbes can be 
calculated using the so-called δN formalism

Here αi=2!ɸi/fi, εi is the slow-roll parameter of each 
field, derivatives wrt field i and indicated by a comma, 
and * indicates evaluation at horizon crossing
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Naxion equations
2

into the minimum of its potential. The horizon-crossing
formulas will then be a reasonable approximation. Us-
ing this method, and conventional definitions for each
observable parameter [7], we find
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H2

∗
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i
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8π2M2
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i
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where N,i and N,ij are respectively the first and second
derivatives of N , and ∗ indicates evaluation at horizon
crossing. In writing Eq. (6) any intrinsic non-gaussianity
among the field perturbations at horizon crossing has
been neglected, which is a good approximation whenever
fNL > 1 [8, 9]. Our sign convention for fNL is chosen
to match WMAP [10]. The observed amplitude of per-
turbations is obtained by adjusting the Λi to give an
appropriate value of H∗.
Under a quadratic approximation to each potential, it

can be shown that Eqs. (5) and (6) recover their single-
field values of order ∼ 1/N∗ [9, 11], making fNL unde-
tectably small. The spectral index can be shown to be
less than its single field value 1− 2/N∗ [12] with equality
only in the equal-mass case. Its value for a given choice
of parameters must be computed numerically [13]. How-
ever, we will see that these results all change whenever
our initial conditions populate the hilltop region.

NAXION PERTURBATIONS

Eqs. (3)–(6) apply for any choice of Λi and fi. In this
article we restrict attention to the case where all fields
have the same potential, which already captures the in-
teresting phenomenology. A broader investigation will be
published elsewhere. The scale Λ ≡ Λi is fixed by requir-
ing that Pζ has its observed amplitude, leaving f ≡ fi
and Nf as adjustable parameters. The initial conditions
are drawn randomly from a uniform distribution of angles
αi, with several realizations to explore the probabilistic
spread. From these two parameters we predict the ob-
servables n, r and fNL.
There are two constraints. First, we require sufficient

e-foldings. For a given set of initial angles αi, and ig-
noring a small correction from the location of the end of
inflation, one finds

Ntot "
∑

i

(

fi
2πMP

)2

ln
2

1 + cosαi
"

ln 2

2π2

f2

M2
P

Nf , (7)

where in the second equality we have replaced Ntot by
its expectation value. Eq. (7) is replicated to high ac-
curacy by our numerical simulations. For a given f it
determines the minimum number of fields required to
obtain sufficient inflation, typically several hundred or
more. There is no similar constraint from the spectral in-
dex. When Ntot ≈ N∗, the α∗

i are uniformly distributed
and 〈n− 1〉 " −5 ln 2/N∗. This tilt is observationally ac-
ceptable. For larger Nf the spectral index approximately
satisfies Eq. (8), to be discussed below.
Second, a key motivation of the Nflation model was to

obviate the requirement for superplanckian field values,
which are invoked in many single-field models. If one
literally imposes |φ| < MP this requires fi < 2MP for
each i. However, it would be reasonable to regard this
condition as approximate and not mandatory.
The εi approach zero for fields close to the hilltop, so

each summation in Eqs. (3)–(6) is dominated by those
fields with the smallest εi. Suppose some number N̄ of
fields have roughly comparable εi, of order ε̄. The ob-
servable parameters have different scalings with N̄ . The
spectrum, Pζ , scales like N̄ copies of a single-field model
with slow-roll parameter ε̄, whereas r is reduced by a
factor N̄ compared to its value in the same single-field
model. The spectral index can be written exactly (within
slow-roll) as

n− 1 ≈ −2ε∗ − 8π2

(

MP

f

)2
/

∑

i

(1− cosα∗

i ) , (8)

and is independent of N̄ . It becomes close to −2ε∗ when
the denominator is of order 103. This is the standard
assisted-inflation mechanism. Most importantly, fNL has
the approximate behaviour
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fNL ≈

2π2

N̄

(

MP

f

)2

, (9)

which is independent of ε̄ if the dominant fields are suf-
ficiently close to the hilltop. Nflation has lifted the
single-field consistency condition fNL ≈ −(5/12)(n − 1)
[8, 9], which makes these models unviable in a single-field
framework.
Where the summations in Eqs. (3)–(6) are dominated

by a single field this formula shows that fNL can become
rather large, and scales as (MP/f)2. For f = 2MP, we
find fNL ! 4.1, whereas f = MP implies fNL ! 16.4. It
is even possible to achieve fNL ∼ 100 for f ∼ 0.4MP,
though once f becomes small Nf must be very large to
gain sufficient e-foldings. Depending on our exact choice
of parameters, a non-gaussian fraction of this magnitude
may be visible to the Planck satellite which is expected
to detect fNL " 5. If fNL " 50 it may be more prof-
itable for Planck to search for non-linearity in the trispec-
trum [14], for which estimates in the quadratic approx-
imation were given in Ref. [15]. We defer a full analy-
sis of the Naxion trispectrum to future work but note

With the full potential, the observables can be calculated 
using the so-called !N formalism

Here "i=2!#i/fi, $i is the slow-roll parameter of each field, derivatives wrt field i 
are indicated by a comma, and * indicates evaluation at horizon crossing.
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We study perturbations in the multi-field axion Nflation model, taking account of the full cosine
potential. We find significant differences with previous analyses which made a quadratic approxima-
tion to the potential. The tensor-to-scalar ratio and the scalar spectral index move to lower values,
which nevertheless provide an acceptable fit to observation. More importantly, we find that the
bispectrum non-gaussianity parameter fNL may be large, typically of order 10 for moderate values
of the axion decay constant, increasing to of order 100 for decay constants slightly smaller than the
Planck scale. Such a non-gaussian fraction is detectable. We argue that this property is generic in
multi-field models of hilltop inflation.

PACS numbers: 98.80.Cq

INTRODUCTION

Present ideas in fundamental physics suggest there
may be many scalar fields which can influence the early
Universe, including inflation. Nflation [1] uses many
string axions to provide a realization of the ‘assisted infla-
tion’ phenomenon [2], in which a collection of scalar fields
cooperatively support inflation even if their potentials are
individually too steep. The phenomenology of such mod-
els provides a link between fundamental physics and up-
coming cosmological observations, including those of the
Planck satellite. For related constructions see Ref. [3].

Previous investigations of the Nflation paradigm have
worked under the assumption that all relevant fields are
close to their minima and can be described by quadratic
potentials. For axions the full potential is trigonometric
and we will show that the quadratic approximation is
unreliable. Even in the case of identical potentials, the
condition for stable co-evolution of the fields is violated
near the hilltop [4]. Therefore fields in this region evolve
on divergent trajectories. Accounting for this divergence
by retaining the full potential leads to two very significant
changes. The predicted scalar spectral index and tensor-
to-scalar ratio, r, are reduced. This remains compatible
with existing observations but may leave r undetectable.
More importantly, the non-gaussianity parameter fNL is
predicted to be large, and very plausibly within the range
of future probes.

This unexpectedly large non-gaussianity is a genuine
multi-field phenomenon. It is a consequence of the di-
verging trajectories near the hilltop, implied by a nega-
tive η-parameter of order unity or larger. In single-field
models, potentials of this form lead to a density pertur-
bation with a spectral index, n, in conflict with obser-
vation. The assisted inflation mechanism reduces 1 − n
to an acceptable value, but leaves fNL dominated by the
η-contribution of the field closest to the peak.

THE NAXION MODEL

The axion Nflation model, which we will call the Nax-
ion model, is based on a set of Nf uncoupled fields, la-
belled φi, each of which experiences a potential [1]

Vi = Λ4
i (1− cosαi) , (1)

where αi = 2πφi/fi and fi is the ith axion decay con-
stant. In a more general model couplings may exist be-
tween the fields, but we will not consider these. The
mass of each field in vacuum satisfies mi = 2πΛ2

i /fi, and
the angular field variables αi lie in the range (−π,+π].
Without loss of generality we will set initial conditions
with all αi positive. If only a single field is present this
model is known as natural inflation [5].
Calculation of the observables n, r and fNL makes use

of the δN formula [6]. We define slow-roll parameters for
each field,

εi ≡
M2

P

2

(

V ′

i

Vi

)2

, (2)

where MP ≡ (8πG)−1/2 is the reduced Planck mass, a
prime denotes the derivative of a function with respect
to its argument, and no summation over i is implied. The
global slow-roll parameter ε ≡ −Ḣ/H2 can be written as
a weighted sum ε #

∑

i(Vi/V )2εi, in which each field
contributes in proportion to its share of the total energy
density. We must have ε < 1 during inflation.
We work in the horizon-crossing approximation, in

which the dominant contribution to each observable is
assumed to arise from fluctuations present only a few
e-folds after horizon exit of the wavenumber under dis-
cussion. After smoothing the universe on a superhori-
zon scale somewhat smaller than any scale of interest,
the horizon-crossing approximation becomes valid when-
ever the ensemble of trajectories followed by smoothed
patches of the universe approaches an attractor. We sup-
pose that inflation exits gracefully, with each field settling

ε ≡ -!/H2 

" #i (Vi/V)2 εi



Naxion : Ntot

The number of e-foldings is given by

where the last expression calculates the 
expectation value of the sum under assumption of 
uniformly-distributed angles αi. For values of f of 
order the Planck mass, sufficient inflation requires 
a large number of fields, at least hundreds.
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The number of e-foldings is given by

where the last expression calculates the expectation value of 
the sum under assumption of uniformly-distributed angles !i. 
For values of f of order the Planck mass, sufficient inflation 
requires a large number of fields, at least many hundreds.
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into the minimum of its potential. The horizon-crossing
formulas will then be a reasonable approximation. Us-
ing this method, and conventional definitions for each
observable parameter [7], we find
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8π2M2
P

∑
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1
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8π2

3H2
∗

∑

j

Λ4
j

f2
j

1

ε∗j

/

∑
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; (4)
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∑
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where N,i and N,ij are respectively the first and second
derivatives of N , and ∗ indicates evaluation at horizon
crossing. In writing Eq. (6) any intrinsic non-gaussianity
among the field perturbations at horizon crossing has
been neglected, which is a good approximation whenever
fNL > 1 [8, 9]. Our sign convention for fNL is chosen
to match WMAP [10]. The observed amplitude of per-
turbations is obtained by adjusting the Λi to give an
appropriate value of H∗.
Under a quadratic approximation to each potential, it

can be shown that Eqs. (5) and (6) recover their single-
field values of order ∼ 1/N∗ [9, 11], making fNL unde-
tectably small. The spectral index can be shown to be
less than its single field value 1− 2/N∗ [12] with equality
only in the equal-mass case. Its value for a given choice
of parameters must be computed numerically [13]. How-
ever, we will see that these results all change whenever
our initial conditions populate the hilltop region.

NAXION PERTURBATIONS

Eqs. (3)–(6) apply for any choice of Λi and fi. In this
article we restrict attention to the case where all fields
have the same potential, which already captures the in-
teresting phenomenology. A broader investigation will be
published elsewhere. The scale Λ ≡ Λi is fixed by requir-
ing that Pζ has its observed amplitude, leaving f ≡ fi
and Nf as adjustable parameters. The initial conditions
are drawn randomly from a uniform distribution of angles
αi, with several realizations to explore the probabilistic
spread. From these two parameters we predict the ob-
servables n, r and fNL.
There are two constraints. First, we require sufficient

e-foldings. For a given set of initial angles αi, and ig-
noring a small correction from the location of the end of
inflation, one finds

Ntot "
∑

i

(

fi
2πMP

)2

ln
2

1 + cosαi
"

ln 2

2π2

f2

M2
P

Nf , (7)

where in the second equality we have replaced Ntot by
its expectation value. Eq. (7) is replicated to high ac-
curacy by our numerical simulations. For a given f it
determines the minimum number of fields required to
obtain sufficient inflation, typically several hundred or
more. There is no similar constraint from the spectral in-
dex. When Ntot ≈ N∗, the α∗

i are uniformly distributed
and 〈n− 1〉 " −5 ln 2/N∗. This tilt is observationally ac-
ceptable. For larger Nf the spectral index approximately
satisfies Eq. (8), to be discussed below.
Second, a key motivation of the Nflation model was to

obviate the requirement for superplanckian field values,
which are invoked in many single-field models. If one
literally imposes |φ| < MP this requires fi < 2MP for
each i. However, it would be reasonable to regard this
condition as approximate and not mandatory.
The εi approach zero for fields close to the hilltop, so

each summation in Eqs. (3)–(6) is dominated by those
fields with the smallest εi. Suppose some number N̄ of
fields have roughly comparable εi, of order ε̄. The ob-
servable parameters have different scalings with N̄ . The
spectrum, Pζ , scales like N̄ copies of a single-field model
with slow-roll parameter ε̄, whereas r is reduced by a
factor N̄ compared to its value in the same single-field
model. The spectral index can be written exactly (within
slow-roll) as

n− 1 ≈ −2ε∗ − 8π2

(

MP

f

)2
/

∑

i

(1− cosα∗

i ) , (8)

and is independent of N̄ . It becomes close to −2ε∗ when
the denominator is of order 103. This is the standard
assisted-inflation mechanism. Most importantly, fNL has
the approximate behaviour
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2π2
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, (9)

which is independent of ε̄ if the dominant fields are suf-
ficiently close to the hilltop. Nflation has lifted the
single-field consistency condition fNL ≈ −(5/12)(n − 1)
[8, 9], which makes these models unviable in a single-field
framework.
Where the summations in Eqs. (3)–(6) are dominated

by a single field this formula shows that fNL can become
rather large, and scales as (MP/f)2. For f = 2MP, we
find fNL ! 4.1, whereas f = MP implies fNL ! 16.4. It
is even possible to achieve fNL ∼ 100 for f ∼ 0.4MP,
though once f becomes small Nf must be very large to
gain sufficient e-foldings. Depending on our exact choice
of parameters, a non-gaussian fraction of this magnitude
may be visible to the Planck satellite which is expected
to detect fNL " 5. If fNL " 50 it may be more prof-
itable for Planck to search for non-linearity in the trispec-
trum [14], for which estimates in the quadratic approx-
imation were given in Ref. [15]. We defer a full analy-
sis of the Naxion trispectrum to future work but note

For the rest of this talk I will assume that the 
potentials are all identical, fi = f and "i = ".



Naxion: n and r
A similar summation trick, assuming 
uniformly distributed fields, gives an analytic 
estimate of the spectral index as 

At the same time, the tensor-to-scalar ratio 
is highly suppressed by the small εi of fields 
close to the maximum.
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where N,i and N,ij are respectively the first and second
derivatives of N , and ∗ indicates evaluation at horizon
crossing. In writing Eq. (6) any intrinsic non-gaussianity
among the field perturbations at horizon crossing has
been neglected, which is a good approximation whenever
fNL > 1 [8, 9]. Our sign convention for fNL is chosen
to match WMAP [10]. The observed amplitude of per-
turbations is obtained by adjusting the Λi to give an
appropriate value of H∗.
Under a quadratic approximation to each potential, it

can be shown that Eqs. (5) and (6) recover their single-
field values of order ∼ 1/N∗ [9, 11], making fNL unde-
tectably small. The spectral index can be shown to be
less than its single field value 1− 2/N∗ [12] with equality
only in the equal-mass case. Its value for a given choice
of parameters must be computed numerically [13]. How-
ever, we will see that these results all change whenever
our initial conditions populate the hilltop region.

NAXION PERTURBATIONS

Eqs. (3)–(6) apply for any choice of Λi and fi. In this
article we restrict attention to the case where all fields
have the same potential, which already captures the in-
teresting phenomenology. A broader investigation will be
published elsewhere. The scale Λ ≡ Λi is fixed by requir-
ing that Pζ has its observed amplitude, leaving f ≡ fi
and Nf as adjustable parameters. The initial conditions
are drawn randomly from a uniform distribution of angles
αi, with several realizations to explore the probabilistic
spread. From these two parameters we predict the ob-
servables n, r and fNL.
There are two constraints. First, we require sufficient

e-foldings. For a given set of initial angles αi, and ig-
noring a small correction from the location of the end of
inflation, one finds

Ntot "
∑

i

(

fi
2πMP

)2

ln
2

1 + cosαi
"

ln 2

2π2

f2

M2
P

Nf , (7)

where in the second equality we have replaced Ntot by
its expectation value. Eq. (7) is replicated to high ac-
curacy by our numerical simulations. For a given f it
determines the minimum number of fields required to
obtain sufficient inflation, typically several hundred or
more. There is no similar constraint from the spectral in-
dex. When Ntot ≈ N∗, the α∗

i are uniformly distributed
and 〈n− 1〉 " −5 ln 2/N∗. This tilt is observationally ac-
ceptable. For larger Nf the spectral index approximately
satisfies Eq. (8), to be discussed below.
Second, a key motivation of the Nflation model was to

obviate the requirement for superplanckian field values,
which are invoked in many single-field models. If one
literally imposes |φ| < MP this requires fi < 2MP for
each i. However, it would be reasonable to regard this
condition as approximate and not mandatory.
The εi approach zero for fields close to the hilltop, so

each summation in Eqs. (3)–(6) is dominated by those
fields with the smallest εi. Suppose some number N̄ of
fields have roughly comparable εi, of order ε̄. The ob-
servable parameters have different scalings with N̄ . The
spectrum, Pζ , scales like N̄ copies of a single-field model
with slow-roll parameter ε̄, whereas r is reduced by a
factor N̄ compared to its value in the same single-field
model. The spectral index can be written exactly (within
slow-roll) as

n− 1 ≈ −2ε∗ − 8π2

(

MP

f

)2
/

∑

i

(1− cosα∗

i ) , (8)

and is independent of N̄ . It becomes close to −2ε∗ when
the denominator is of order 103. This is the standard
assisted-inflation mechanism. Most importantly, fNL has
the approximate behaviour

6

5
fNL ≈

2π2

N̄

(

MP

f

)2

, (9)

which is independent of ε̄ if the dominant fields are suf-
ficiently close to the hilltop. Nflation has lifted the
single-field consistency condition fNL ≈ −(5/12)(n − 1)
[8, 9], which makes these models unviable in a single-field
framework.
Where the summations in Eqs. (3)–(6) are dominated

by a single field this formula shows that fNL can become
rather large, and scales as (MP/f)2. For f = 2MP, we
find fNL ! 4.1, whereas f = MP implies fNL ! 16.4. It
is even possible to achieve fNL ∼ 100 for f ∼ 0.4MP,
though once f becomes small Nf must be very large to
gain sufficient e-foldings. Depending on our exact choice
of parameters, a non-gaussian fraction of this magnitude
may be visible to the Planck satellite which is expected
to detect fNL " 5. If fNL " 50 it may be more prof-
itable for Planck to search for non-linearity in the trispec-
trum [14], for which estimates in the quadratic approx-
imation were given in Ref. [15]. We defer a full analy-
sis of the Naxion trispectrum to future work but note

NB:  5 ln 2 ! 3.5

At the same time, the tensor-to-scalar ratio is highly 
suppressed by the small !i of fields close to the maximum.
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FIG. 1: Model predictions in the n–r plane, averaged over
realizations, for various f in the range 0.4MP ≤ f ≤ 2MP and
Nf ranging from 464 to 10,000, all giving sufficient inflation.
The black (left) cluster of points takes N∗ = 50 and the red
(right) cluster N∗ = 60. The quadratic expansion predicts
r = 8/N∗ which is far off the top of this plot. The region to
the right of the line falls within the WMAP7+BAO+H0 95%
confidence contour [10].

that the trispectrum equivalents of Eq. (9) are, in con-
ventional notation [16], τNL = (4π4/N̄2)(M4

P
/f4) and

(54/25)gNL = (8π4/N̄2)(M4
P/f

4).
The expectations described above are borne out in nu-

merical calculations. In Fig. 1 we show model predictions
in the n–r plane, averaged over several realizations of the
initial conditions. We see n and r are only weakly depen-
dent on the model parameters (though there is significant
dispersion amongst realizations, not shown here), with
the choice of N∗ being the principal determinant of n.
In Fig. 2 we plot fNL as a function of Nf for f = MP,
with ten realizations at each Nf . This clearly shows the
expected maximum, which is nearly saturated in cases
where a single field dominates the summations. In cases
where several fields contribute to the sums in Eqs. (3)–
(6), the non-gaussian fraction is reduced. Fig. 3 shows
the mean predicted non-gaussianity, averaged over real-
izations, as a function of f .
Eqs. (8) and (9) clarify the origin of large fNL in this

model. The cooperative effect of the Nflation mecha-
nism does not enhance the non-gaussian signal. Indeed,
fNL is suppressed by the central limit theorem where
N̄ ! 1 fluctuations contribute equally to the curvature
perturbation. Nor does the large effect arise from a sin-
gularity in the e-folding history, N , as a function of its
initial angles αi. Although Eq. (7) is singular in the
limit αi → π, its Taylor expansion is trustworthy un-
less |αi − π| ! (Pζr)1/2(MP/fi). The observed magni-
tude of Pζ requires |αi− π| " r1/2(fi/MP) for each field,
so a breakdown of the Taylor expansion cannot become
relevant unless at least one fi is a few orders of magni-
tude less than the Planck scale, of order (fi/MP)4 ! Pζ .

FIG. 2: Predicted non-gaussian fraction, measured by
(6/5)fNL, for the case f = MP and N∗ = 50. The error bars
indicate error on the mean over realizations, not the standard
deviation. In this case the maximum achievable value of 6

5
fNL

is 2π2 " 20, which is almost saturated in some realizations.
There is a significant spread due to initial condition random-
ness with typical mean values being around half the maximum
achievable value, and no discernable trend with Nf .

These constraints additionally imply that we do not tres-
pass on any region of field space where quantum diffusion
competes with classical motion.

Instead, the large fNL derives from a generic dispersive
effect present in any hilltop potential. Measuring the
displacement of φi from the hilltop by δi, each potential
can be approximated in its vicinity by Vi ≈ 2Λ4

i (1 +
ηiδ2i /2M

2
P
), where ηi < 0 satisfies

ηi ≡ M2
P

V ′′

i

Vi
& −2π2

(

MP

fi

)2

. (10)

These potentials are tachyonic. Fields close to the hill-
top remain almost stationary, while fields further away
are ejected downhill. This process typically leaves a few
fields on top of the hill, which have small εi and dominate
the sums in Eqs. (3)–(6). It seems clear this behaviour
is generic for any Nflation model constructed using hill-
top potentials. The few fields remaining in the vicinity
of the hilltop each generate contributions to the curva-
ture perturbation with third moment (6/5)fNL ≈ −η∗ [8].
Accounting for suppression arising from the central limit
theorem, we recover the approximate expression (9). For
a general hilltop potential, well-rehearsed arguments lead
us to expect |η| ∼ 1 and therefore fNL ∼ 1. In a single-
field model this is the ‘η problem’. In an Nflation model,
it is a generic expectation of enhanced non-gaussianity.
Even larger yields are possible in some models, including
the Naxion case, if it is possible to achieve |η| ! 1 while
preserving technical naturalness.

Black: N* = 50
Red:   N* = 60
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This plot shows simulations with 
several different values of f. Clearly 
the dependence on N* dominates.

Nflation phenomenology
Regardless of these choices, the Nflation phenomenology in 
this approximation is remarkably simple:

The tensor-to-scalar ratio always equals the single-field 
value:   r = 8/N  where N is the number of e-foldings.

The scalar spectral index cannot exceed the single-field 
value, equalling it only in the equal-mass case:  n ! 1-2/N

The non-gaussianity fNL always                                  
equals its single-field value:                                             
fNL = 2/N and hence is                                         
unobservably small.
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While the KS profiles are generally in a good agreement
with the X-ray derived profiles, they are more extended
than the X-ray-derived profiles (see Figure 16), which
makes the KS prediction for the projected SZ profiles
bigger. Note, however, that the outer slope of the fitting
formula given by Arnaud et al. (2009) (equation (C3))
has been forced to match that from hydrodynamical sim-
ulations of Nagai et al. (2007) in r ≥ r500. See the bot-
tom panels of Figure 16. The steepness of the profile
at r ! r500 from the simulation may be attributed to a
significant non-thermal pressure support from ρv2, which
makes it possible to balance gravity by less thermal pres-
sure at larger radii. In other words, the total pressure
(i.e., thermal plus ρv2) profile would probably be closer
to the KS prediction, but the thermal pressure would
decline more rapidly than the total pressure would.
If the SZ effect seen in the WMAP data is less than

expected, what would be the implications? One possibil-
ity is that protons and electrons do not share the same
temperature. The electron-proton equilibration time is
longer than the Hubble time at the virial radius, so that
the electron temperature may be lower than the pro-
ton temperature in the outer regions of clusters which
contribute a significant fraction of the predicted SZ flux
(Rudd & Nagai 2009; Wong & Sarazin 2009). The other
sources of non-thermal pressure support in outskirts of
the cluster (turbulence, magnetic field, and cosmic rays)
would reduce the thermal SZ effect relative to the ex-
pectation, if these effects are not taken into account in
modeling the intracluster medium. Heat conduction may
also play some role in suppressing the gas pressure (Loeb
2002, 2007).
In order to explore the impact of gas pressure at

r > r500, we cut the X-ray derived pressure profile at
rout = r500 (instead of 6r500) and repeat the analysis.
We find a = 0.74± 0.09 and 0.44± 0.14 for high and low
LX clusters, respectively. (We found a = 0.67±0.09 and
0.43± 0.12 for rout = 6r500. See Table 12.) These results
are somewhat puzzling - the X-ray observations directly
measure gas out to r500, and thus we would expect to find
a ≈ 1 at least out to r500. This analysis may suggest that
the fiducial scaling relation of Böhringer et al. (2007) is a
source of a < 1. Note that a = 1 is within the systematic
error due to the scatter in the scaling relation. Had we
used the scaling relations of Melin et al. (2010), we would
find a ≈ 1 for rout = r500. While a large uncertainty in
the scaling relation prevents us from convincingly ruling
out a = 1, the relative amplitudes between high and low
LX clusters suggest that a significant amount of pressure
is missing in low mass (M500 " 4 × 1014 h−1 M") clus-
ters, even if we scale all the results such that high-mass
clusters are forced to have a = 1. A similar trend is also
seen in Figure 3 of Melin et al. (2010).
This interpretation is consistent with the SZ power

spectrum being lower than expected. The SPT mea-
sures the SZ power spectrum at l ! 3000. At such high
multipoles, the contributions to the SZ power spectrum
are dominated by relatively low-mass clusters, M500 "
4 × 1014 h−1 M" (see Figure 6 of Komatsu & Seljak
2002). Therefore, a plausible explanation for the lower-
than-expected SZ power spectrum is a missing pressure
in lower mass clusters.
Scaling relations, gas pressure, and entropy of low-

mass clusters and groups have been studied in the lit-

Fig. 19.— Two-dimensional joint marginalized constraint (68%
and 95% CL) on the primordial tilt, ns, and the tensor-to-scalar
ratio, r, derived from the data combination of WMAP+BAO+H0.
The symbols show the predictions from “chaotic” inflation models
whose potential is given by V (φ)  φα (Linde 1983), with α =
4 (solid) and α = 2 (dashed) for single-field models, and α =
2 for multi-axion field models with β = 1/2 (dotted; Easther &
McAllister 2006).

erature.35 Leauthaud et al. (2010) obtained a rela-
tion between LX of 206 X-ray-selected galaxy groups
and the mass (M200) derived from the stacking anal-
ysis of weak lensing measurements. Converting their
best-fitting relation to r200–LX relation, we find r200 =
1.26 h − 1 Mpc

E0.89(z) [LX/(1044 h−2 erg s−1)]0.22. (Note that
the pivot luminosity of the original scaling relation is
2.6 × 1042 h−2 erg s−1.) As r500 ≈ 0.65r200, their rela-
tion is ≈ 1σ higher than the fiducial scaling relation that
we adopted (equation (89)). Had we used their scaling
relation, we would find even lower normalizations.
The next generation of simulations or analytical cal-

culations of the SZ effect should be focused more on
understanding the gas pressure profiles, both the ampli-
tude and the shape, especially in low-mass clusters. New
measurements of the SZ effect toward many individual
clusters with unprecedented sensitivity are now becom-
ing available (Staniszewski et al. 2009; Hincks et al. 2009;
Plagge et al. 2009). These new measurements would be
important for understanding the gas pressure in low-mass
clusters.

8. CONCLUSION

With the WMAP 7-year temperature and polarization
data, new measurements of H0 (Riess et al. 2009), and
improved large-scale structure data (Percival et al. 2009),
we have been able to rigorously test the standard cosmo-
logical model. The model continues to be an exquisite
fit to the existing data. Depending on the parameters,
we also use the other data sets such as the small-scale
CMB temperature power spectra (Brown et al. 2009; Re-
ichardt et al. 2009, for the primordial helium abundance),
the power spectrum of LRGs derived from SDSS (Reid
et al. 2009, for neutrino properties), the Type Ia super-
nova data (Hicken et al. 2009b, for dark energy), and the
time-delay distance to the lens system B1608+656 (Suyu
et al. 2009a, for dark energy and spatial curvature). The
combined data sets enable improved constraints over the

35 A systematic study of the thermodynamic properties of low-
mass clusters and groups is given in Finoguenov et al. (2007) (also
see Finoguenov et al. 2005a,b).

Komatsu et al,  WMAP7

Naxion: n and r



Naxion: non-gaussiaity
The interesting aspect of the model is the behavior 
of the non-gaussianity:

The sum may be dominated by a small number of 
fields whose αi is very close to !. If there are Ñ 
fields which dominate with comparable εi, there is 
an approximate form

hence for f of oder Mp the fNL may be of order 
tens. 11

Naxion: non-gaussianity

The interesting aspect of the model is the behaviour of the 
non-gaussianity:

2

into the minimum of its potential. The horizon-crossing
formulas will then be a reasonable approximation. Us-
ing this method, and conventional definitions for each
observable parameter [7], we find
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,(6)

where N,i and N,ij are respectively the first and second
derivatives of N , and ∗ indicates evaluation at horizon
crossing. In writing Eq. (6) any intrinsic non-gaussianity
among the field perturbations at horizon crossing has
been neglected, which is a good approximation whenever
fNL > 1 [8, 9]. Our sign convention for fNL is chosen
to match WMAP [10]. The observed amplitude of per-
turbations is obtained by adjusting the Λi to give an
appropriate value of H∗.
Under a quadratic approximation to each potential, it

can be shown that Eqs. (5) and (6) recover their single-
field values of order ∼ 1/N∗ [9, 11], making fNL unde-
tectably small. The spectral index can be shown to be
less than its single field value 1− 2/N∗ [12] with equality
only in the equal-mass case. Its value for a given choice
of parameters must be computed numerically [13]. How-
ever, we will see that these results all change whenever
our initial conditions populate the hilltop region.

NAXION PERTURBATIONS

Eqs. (3)–(6) apply for any choice of Λi and fi. In this
article we restrict attention to the case where all fields
have the same potential, which already captures the in-
teresting phenomenology. A broader investigation will be
published elsewhere. The scale Λ ≡ Λi is fixed by requir-
ing that Pζ has its observed amplitude, leaving f ≡ fi
and Nf as adjustable parameters. The initial conditions
are drawn randomly from a uniform distribution of angles
αi, with several realizations to explore the probabilistic
spread. From these two parameters we predict the ob-
servables n, r and fNL.
There are two constraints. First, we require sufficient

e-foldings. For a given set of initial angles αi, and ig-
noring a small correction from the location of the end of
inflation, one finds

Ntot "
∑

i

(

fi
2πMP

)2

ln
2

1 + cosαi
"

ln 2

2π2

f2

M2
P

Nf , (7)

where in the second equality we have replaced Ntot by
its expectation value. Eq. (7) is replicated to high ac-
curacy by our numerical simulations. For a given f it
determines the minimum number of fields required to
obtain sufficient inflation, typically several hundred or
more. There is no similar constraint from the spectral in-
dex. When Ntot ≈ N∗, the α∗

i are uniformly distributed
and 〈n− 1〉 " −5 ln 2/N∗. This tilt is observationally ac-
ceptable. For larger Nf the spectral index approximately
satisfies Eq. (8), to be discussed below.
Second, a key motivation of the Nflation model was to

obviate the requirement for superplanckian field values,
which are invoked in many single-field models. If one
literally imposes |φ| < MP this requires fi < 2MP for
each i. However, it would be reasonable to regard this
condition as approximate and not mandatory.
The εi approach zero for fields close to the hilltop, so

each summation in Eqs. (3)–(6) is dominated by those
fields with the smallest εi. Suppose some number N̄ of
fields have roughly comparable εi, of order ε̄. The ob-
servable parameters have different scalings with N̄ . The
spectrum, Pζ , scales like N̄ copies of a single-field model
with slow-roll parameter ε̄, whereas r is reduced by a
factor N̄ compared to its value in the same single-field
model. The spectral index can be written exactly (within
slow-roll) as

n− 1 ≈ −2ε∗ − 8π2

(

MP

f

)2
/

∑

i

(1− cosα∗

i ) , (8)

and is independent of N̄ . It becomes close to −2ε∗ when
the denominator is of order 103. This is the standard
assisted-inflation mechanism. Most importantly, fNL has
the approximate behaviour
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, (9)

which is independent of ε̄ if the dominant fields are suf-
ficiently close to the hilltop. Nflation has lifted the
single-field consistency condition fNL ≈ −(5/12)(n − 1)
[8, 9], which makes these models unviable in a single-field
framework.
Where the summations in Eqs. (3)–(6) are dominated

by a single field this formula shows that fNL can become
rather large, and scales as (MP/f)2. For f = 2MP, we
find fNL ! 4.1, whereas f = MP implies fNL ! 16.4. It
is even possible to achieve fNL ∼ 100 for f ∼ 0.4MP,
though once f becomes small Nf must be very large to
gain sufficient e-foldings. Depending on our exact choice
of parameters, a non-gaussian fraction of this magnitude
may be visible to the Planck satellite which is expected
to detect fNL " 5. If fNL " 50 it may be more prof-
itable for Planck to search for non-linearity in the trispec-
trum [14], for which estimates in the quadratic approx-
imation were given in Ref. [15]. We defer a full analy-
sis of the Naxion trispectrum to future work but note
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where N,i and N,ij are respectively the first and second
derivatives of N , and ∗ indicates evaluation at horizon
crossing. In writing Eq. (6) any intrinsic non-gaussianity
among the field perturbations at horizon crossing has
been neglected, which is a good approximation whenever
fNL > 1 [8, 9]. Our sign convention for fNL is chosen
to match WMAP [10]. The observed amplitude of per-
turbations is obtained by adjusting the Λi to give an
appropriate value of H∗.
Under a quadratic approximation to each potential, it

can be shown that Eqs. (5) and (6) recover their single-
field values of order ∼ 1/N∗ [9, 11], making fNL unde-
tectably small. The spectral index can be shown to be
less than its single field value 1− 2/N∗ [12] with equality
only in the equal-mass case. Its value for a given choice
of parameters must be computed numerically [13]. How-
ever, we will see that these results all change whenever
our initial conditions populate the hilltop region.

NAXION PERTURBATIONS

Eqs. (3)–(6) apply for any choice of Λi and fi. In this
article we restrict attention to the case where all fields
have the same potential, which already captures the in-
teresting phenomenology. A broader investigation will be
published elsewhere. The scale Λ ≡ Λi is fixed by requir-
ing that Pζ has its observed amplitude, leaving f ≡ fi
and Nf as adjustable parameters. The initial conditions
are drawn randomly from a uniform distribution of angles
αi, with several realizations to explore the probabilistic
spread. From these two parameters we predict the ob-
servables n, r and fNL.
There are two constraints. First, we require sufficient

e-foldings. For a given set of initial angles αi, and ig-
noring a small correction from the location of the end of
inflation, one finds
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where in the second equality we have replaced Ntot by
its expectation value. Eq. (7) is replicated to high ac-
curacy by our numerical simulations. For a given f it
determines the minimum number of fields required to
obtain sufficient inflation, typically several hundred or
more. There is no similar constraint from the spectral in-
dex. When Ntot ≈ N∗, the α∗

i are uniformly distributed
and 〈n− 1〉 " −5 ln 2/N∗. This tilt is observationally ac-
ceptable. For larger Nf the spectral index approximately
satisfies Eq. (8), to be discussed below.
Second, a key motivation of the Nflation model was to

obviate the requirement for superplanckian field values,
which are invoked in many single-field models. If one
literally imposes |φ| < MP this requires fi < 2MP for
each i. However, it would be reasonable to regard this
condition as approximate and not mandatory.
The εi approach zero for fields close to the hilltop, so

each summation in Eqs. (3)–(6) is dominated by those
fields with the smallest εi. Suppose some number N̄ of
fields have roughly comparable εi, of order ε̄. The ob-
servable parameters have different scalings with N̄ . The
spectrum, Pζ , scales like N̄ copies of a single-field model
with slow-roll parameter ε̄, whereas r is reduced by a
factor N̄ compared to its value in the same single-field
model. The spectral index can be written exactly (within
slow-roll) as

n− 1 ≈ −2ε∗ − 8π2

(

MP

f

)2
/

∑

i

(1− cosα∗

i ) , (8)

and is independent of N̄ . It becomes close to −2ε∗ when
the denominator is of order 103. This is the standard
assisted-inflation mechanism. Most importantly, fNL has
the approximate behaviour
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which is independent of ε̄ if the dominant fields are suf-
ficiently close to the hilltop. Nflation has lifted the
single-field consistency condition fNL ≈ −(5/12)(n − 1)
[8, 9], which makes these models unviable in a single-field
framework.
Where the summations in Eqs. (3)–(6) are dominated

by a single field this formula shows that fNL can become
rather large, and scales as (MP/f)2. For f = 2MP, we
find fNL ! 4.1, whereas f = MP implies fNL ! 16.4. It
is even possible to achieve fNL ∼ 100 for f ∼ 0.4MP,
though once f becomes small Nf must be very large to
gain sufficient e-foldings. Depending on our exact choice
of parameters, a non-gaussian fraction of this magnitude
may be visible to the Planck satellite which is expected
to detect fNL " 5. If fNL " 50 it may be more prof-
itable for Planck to search for non-linearity in the trispec-
trum [14], for which estimates in the quadratic approx-
imation were given in Ref. [15]. We defer a full analy-
sis of the Naxion trispectrum to future work but note
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hence for f of order MP the fNL may be of order tens.
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The interesting aspect of the model is the behaviour of the 
non-gaussianity:
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into the minimum of its potential. The horizon-crossing
formulas will then be a reasonable approximation. Us-
ing this method, and conventional definitions for each
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where N,i and N,ij are respectively the first and second
derivatives of N , and ∗ indicates evaluation at horizon
crossing. In writing Eq. (6) any intrinsic non-gaussianity
among the field perturbations at horizon crossing has
been neglected, which is a good approximation whenever
fNL > 1 [8, 9]. Our sign convention for fNL is chosen
to match WMAP [10]. The observed amplitude of per-
turbations is obtained by adjusting the Λi to give an
appropriate value of H∗.
Under a quadratic approximation to each potential, it

can be shown that Eqs. (5) and (6) recover their single-
field values of order ∼ 1/N∗ [9, 11], making fNL unde-
tectably small. The spectral index can be shown to be
less than its single field value 1− 2/N∗ [12] with equality
only in the equal-mass case. Its value for a given choice
of parameters must be computed numerically [13]. How-
ever, we will see that these results all change whenever
our initial conditions populate the hilltop region.

NAXION PERTURBATIONS

Eqs. (3)–(6) apply for any choice of Λi and fi. In this
article we restrict attention to the case where all fields
have the same potential, which already captures the in-
teresting phenomenology. A broader investigation will be
published elsewhere. The scale Λ ≡ Λi is fixed by requir-
ing that Pζ has its observed amplitude, leaving f ≡ fi
and Nf as adjustable parameters. The initial conditions
are drawn randomly from a uniform distribution of angles
αi, with several realizations to explore the probabilistic
spread. From these two parameters we predict the ob-
servables n, r and fNL.
There are two constraints. First, we require sufficient

e-foldings. For a given set of initial angles αi, and ig-
noring a small correction from the location of the end of
inflation, one finds
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where in the second equality we have replaced Ntot by
its expectation value. Eq. (7) is replicated to high ac-
curacy by our numerical simulations. For a given f it
determines the minimum number of fields required to
obtain sufficient inflation, typically several hundred or
more. There is no similar constraint from the spectral in-
dex. When Ntot ≈ N∗, the α∗

i are uniformly distributed
and 〈n− 1〉 " −5 ln 2/N∗. This tilt is observationally ac-
ceptable. For larger Nf the spectral index approximately
satisfies Eq. (8), to be discussed below.
Second, a key motivation of the Nflation model was to

obviate the requirement for superplanckian field values,
which are invoked in many single-field models. If one
literally imposes |φ| < MP this requires fi < 2MP for
each i. However, it would be reasonable to regard this
condition as approximate and not mandatory.
The εi approach zero for fields close to the hilltop, so

each summation in Eqs. (3)–(6) is dominated by those
fields with the smallest εi. Suppose some number N̄ of
fields have roughly comparable εi, of order ε̄. The ob-
servable parameters have different scalings with N̄ . The
spectrum, Pζ , scales like N̄ copies of a single-field model
with slow-roll parameter ε̄, whereas r is reduced by a
factor N̄ compared to its value in the same single-field
model. The spectral index can be written exactly (within
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and is independent of N̄ . It becomes close to −2ε∗ when
the denominator is of order 103. This is the standard
assisted-inflation mechanism. Most importantly, fNL has
the approximate behaviour

6

5
fNL ≈

2π2

N̄

(

MP

f

)2

, (9)

which is independent of ε̄ if the dominant fields are suf-
ficiently close to the hilltop. Nflation has lifted the
single-field consistency condition fNL ≈ −(5/12)(n − 1)
[8, 9], which makes these models unviable in a single-field
framework.
Where the summations in Eqs. (3)–(6) are dominated

by a single field this formula shows that fNL can become
rather large, and scales as (MP/f)2. For f = 2MP, we
find fNL ! 4.1, whereas f = MP implies fNL ! 16.4. It
is even possible to achieve fNL ∼ 100 for f ∼ 0.4MP,
though once f becomes small Nf must be very large to
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of parameters, a non-gaussian fraction of this magnitude
may be visible to the Planck satellite which is expected
to detect fNL " 5. If fNL " 50 it may be more prof-
itable for Planck to search for non-linearity in the trispec-
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by a single field this formula shows that fNL can become
rather large, and scales as (MP/f)2. For f = 2MP, we
find fNL ! 4.1, whereas f = MP implies fNL ! 16.4. It
is even possible to achieve fNL ∼ 100 for f ∼ 0.4MP,
though once f becomes small Nf must be very large to
gain sufficient e-foldings. Depending on our exact choice
of parameters, a non-gaussian fraction of this magnitude
may be visible to the Planck satellite which is expected
to detect fNL " 5. If fNL " 50 it may be more prof-
itable for Planck to search for non-linearity in the trispec-
trum [14], for which estimates in the quadratic approx-
imation were given in Ref. [15]. We defer a full analy-
sis of the Naxion trispectrum to future work but note

_

hence for f of order MP the fNL may be of order tens.
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FIG. 1: Model predictions in the n–r plane, averaged over
realizations, for various f in the range 0.4MP ≤ f ≤ 2MP and
Nf ranging from 464 to 10,000, all giving sufficient inflation.
The black (left) cluster of points takes N∗ = 50 and the red
(right) cluster N∗ = 60. The quadratic expansion predicts
r = 8/N∗ which is far off the top of this plot. The region to
the right of the line falls within the WMAP7+BAO+H0 95%
confidence contour [10].

that the trispectrum equivalents of Eq. (9) are, in con-
ventional notation [16], τNL = (4π4/N̄2)(M4

P
/f4) and

(54/25)gNL = (8π4/N̄2)(M4
P/f

4).
The expectations described above are borne out in nu-

merical calculations. In Fig. 1 we show model predictions
in the n–r plane, averaged over several realizations of the
initial conditions. We see n and r are only weakly depen-
dent on the model parameters (though there is significant
dispersion amongst realizations, not shown here), with
the choice of N∗ being the principal determinant of n.
In Fig. 2 we plot fNL as a function of Nf for f = MP,
with ten realizations at each Nf . This clearly shows the
expected maximum, which is nearly saturated in cases
where a single field dominates the summations. In cases
where several fields contribute to the sums in Eqs. (3)–
(6), the non-gaussian fraction is reduced. Fig. 3 shows
the mean predicted non-gaussianity, averaged over real-
izations, as a function of f .
Eqs. (8) and (9) clarify the origin of large fNL in this

model. The cooperative effect of the Nflation mecha-
nism does not enhance the non-gaussian signal. Indeed,
fNL is suppressed by the central limit theorem where
N̄ ! 1 fluctuations contribute equally to the curvature
perturbation. Nor does the large effect arise from a sin-
gularity in the e-folding history, N , as a function of its
initial angles αi. Although Eq. (7) is singular in the
limit αi → π, its Taylor expansion is trustworthy un-
less |αi − π| ! (Pζr)1/2(MP/fi). The observed magni-
tude of Pζ requires |αi− π| " r1/2(fi/MP) for each field,
so a breakdown of the Taylor expansion cannot become
relevant unless at least one fi is a few orders of magni-
tude less than the Planck scale, of order (fi/MP)4 ! Pζ .

FIG. 2: Predicted non-gaussian fraction, measured by
(6/5)fNL, for the case f = MP and N∗ = 50. The error bars
indicate error on the mean over realizations, not the standard
deviation. In this case the maximum achievable value of 6

5
fNL

is 2π2 " 20, which is almost saturated in some realizations.
There is a significant spread due to initial condition random-
ness with typical mean values being around half the maximum
achievable value, and no discernable trend with Nf .

These constraints additionally imply that we do not tres-
pass on any region of field space where quantum diffusion
competes with classical motion.

Instead, the large fNL derives from a generic dispersive
effect present in any hilltop potential. Measuring the
displacement of φi from the hilltop by δi, each potential
can be approximated in its vicinity by Vi ≈ 2Λ4

i (1 +
ηiδ2i /2M

2
P
), where ηi < 0 satisfies

ηi ≡ M2
P

V ′′

i

Vi
& −2π2

(
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These potentials are tachyonic. Fields close to the hill-
top remain almost stationary, while fields further away
are ejected downhill. This process typically leaves a few
fields on top of the hill, which have small εi and dominate
the sums in Eqs. (3)–(6). It seems clear this behaviour
is generic for any Nflation model constructed using hill-
top potentials. The few fields remaining in the vicinity
of the hilltop each generate contributions to the curva-
ture perturbation with third moment (6/5)fNL ≈ −η∗ [8].
Accounting for suppression arising from the central limit
theorem, we recover the approximate expression (9). For
a general hilltop potential, well-rehearsed arguments lead
us to expect |η| ∼ 1 and therefore fNL ∼ 1. In a single-
field model this is the ‘η problem’. In an Nflation model,
it is a generic expectation of enhanced non-gaussianity.
Even larger yields are possible in some models, including
the Naxion case, if it is possible to achieve |η| ! 1 while
preserving technical naturalness.

f = MP; N* = 50Nf
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f N
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Interpretation
There is nothing particularly unusual about the 
predictions of the non-gaussianity in this model; it is in 
fact what one would get from a singe field evolving in 
the axion potential.

However a single-field model with those parameters 
would not be satisfactory, as it would not give sufficient 
inflation and the spectral index would be far from unity.

The scenario works because the assisted inflation 
mechanism strongly alters the predicted spectral index, 
but has only a marginal effect on the non-gaussianity
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Conclusion

The axion Nflation model is a simple 
construction which offers significant 
non-gaussianity while maintaining 
viable values of other observables.



Naxion: trispectrum
A similar analysis yields an estimate of the 
trispectra

As seen in the bispectrum plot, there is a large 
spread of predictions due to the randomness of 
initial conditions.

However there are predicted correlations within 
a realization, for instance between r and fNL.
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FIG. 1: Model predictions in the n–r plane, averaged over
realizations, for various f in the range 0.4MP ≤ f ≤ 2MP and
Nf ranging from 464 to 10,000, all giving sufficient inflation.
The black (left) cluster of points takes N∗ = 50 and the red
(right) cluster N∗ = 60. The quadratic expansion predicts
r = 8/N∗ which is far off the top of this plot. The region to
the right of the line falls within the WMAP7+BAO+H0 95%
confidence contour [10].
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4).
The expectations described above are borne out in nu-

merical calculations. In Fig. 1 we show model predictions
in the n–r plane, averaged over several realizations of the
initial conditions. We see n and r are only weakly depen-
dent on the model parameters (though there is significant
dispersion amongst realizations, not shown here), with
the choice of N∗ being the principal determinant of n.
In Fig. 2 we plot fNL as a function of Nf for f = MP,
with ten realizations at each Nf . This clearly shows the
expected maximum, which is nearly saturated in cases
where a single field dominates the summations. In cases
where several fields contribute to the sums in Eqs. (3)–
(6), the non-gaussian fraction is reduced. Fig. 3 shows
the mean predicted non-gaussianity, averaged over real-
izations, as a function of f .
Eqs. (8) and (9) clarify the origin of large fNL in this

model. The cooperative effect of the Nflation mecha-
nism does not enhance the non-gaussian signal. Indeed,
fNL is suppressed by the central limit theorem where
N̄ ! 1 fluctuations contribute equally to the curvature
perturbation. Nor does the large effect arise from a sin-
gularity in the e-folding history, N , as a function of its
initial angles αi. Although Eq. (7) is singular in the
limit αi → π, its Taylor expansion is trustworthy un-
less |αi − π| ! (Pζr)1/2(MP/fi). The observed magni-
tude of Pζ requires |αi− π| " r1/2(fi/MP) for each field,
so a breakdown of the Taylor expansion cannot become
relevant unless at least one fi is a few orders of magni-
tude less than the Planck scale, of order (fi/MP)4 ! Pζ .

FIG. 2: Predicted non-gaussian fraction, measured by
(6/5)fNL, for the case f = MP and N∗ = 50. The error bars
indicate error on the mean over realizations, not the standard
deviation. In this case the maximum achievable value of 6
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fNL

is 2π2 " 20, which is almost saturated in some realizations.
There is a significant spread due to initial condition random-
ness with typical mean values being around half the maximum
achievable value, and no discernable trend with Nf .

These constraints additionally imply that we do not tres-
pass on any region of field space where quantum diffusion
competes with classical motion.

Instead, the large fNL derives from a generic dispersive
effect present in any hilltop potential. Measuring the
displacement of φi from the hilltop by δi, each potential
can be approximated in its vicinity by Vi ≈ 2Λ4
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ηiδ2i /2M
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), where ηi < 0 satisfies
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These potentials are tachyonic. Fields close to the hill-
top remain almost stationary, while fields further away
are ejected downhill. This process typically leaves a few
fields on top of the hill, which have small εi and dominate
the sums in Eqs. (3)–(6). It seems clear this behaviour
is generic for any Nflation model constructed using hill-
top potentials. The few fields remaining in the vicinity
of the hilltop each generate contributions to the curva-
ture perturbation with third moment (6/5)fNL ≈ −η∗ [8].
Accounting for suppression arising from the central limit
theorem, we recover the approximate expression (9). For
a general hilltop potential, well-rehearsed arguments lead
us to expect |η| ∼ 1 and therefore fNL ∼ 1. In a single-
field model this is the ‘η problem’. In an Nflation model,
it is a generic expectation of enhanced non-gaussianity.
Even larger yields are possible in some models, including
the Naxion case, if it is possible to achieve |η| ! 1 while
preserving technical naturalness.
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theorem, we recover the approximate expression (9). For
a general hilltop potential, well-rehearsed arguments lead
us to expect |η| ∼ 1 and therefore fNL ∼ 1. In a single-
field model this is the ‘η problem’. In an Nflation model,
it is a generic expectation of enhanced non-gaussianity.
Even larger yields are possible in some models, including
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