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Abstract
Inflation is a very appealing paradigm solving e.g. the flatness and horizon problems of standard
big bang cosmology [1]. However, its connection to particle physics remains unknown, which
makes scenarios of matter inflation attractive.
Unfortunately, inflation generically suffers from the η-problem and thus an appropriate symme-
try is required to protect the potential. In the case of matter inflation, this is achieved using the
so-called Heisenberg symmetry [2, 3, 4]. It combines the inflaton with a modulus and hence one
has to address the issue of moduli stabilization. For this purpose, we employ a generlization
of the model of [4], where inflation ends via the (supersymmetric) hybrid mechanism [5]. This
class of models is capable of realizing matter inflation, i.e. inflation with a gauge non-singlet
field, as has been shown recently in [6].
We outline how such a scenario with an extended ‘tribrid’ structure might be realized in orbifold
compactifications of the heterotic string. The inflaton is a D-flat direction in the untwisted sector
of the orbifold and hence enjoys the Heisenberg symmetry. During inflation, moduli stabilization
can be achieved using the F-term providing the vacuum energy, while moduli stabilization after
inflation requires a different mechanism.

General Model
We consider a class of models which is a generalization of the ‘tribrid’ models [4], suitable to
realize matter inflation along the lines of [6]:

W = a(Ti) X
(
b(Ti, T3)H+H− − 〈Σ〉2

)
+ c(Ti, T3)H+H−

Φ
2 + ... ,

K = − log(T1 + T̄1) − log(T2 + T̄2) − log x3 + k (Ti + T̄i, x3) |X |2

+k̃ (Ti + T̄i, x3) |H+|2 + k̃(Ti + T̄i, x3) |H−|2 + ... ,

with Φ
2 a shorthand for a D-flat direction, e.g. Φ

+
Φ
−, x3 ≡ T3 + T̄3 − |Φ+|2 − |Φ−|2 etc., and

k (Ti + T̄i, x3) =
1 + d(x3)

(T1 + T̄1)q1(T2 + T̄2)q2
, k̃(Ti + T̄i, x3) =

1
(T1 + T̄1)p1(T2 + T̄2)p2 x3

p3
,

where the qi, pi ≥ 0 are rational numbers and i = 1, 2.
Inflation takes place along the D-flat trajectory

〈H+〉 = 〈H−〉 = 〈X 〉 = 0 and e.g. |〈Φ+〉| = |〈Φ−〉| for Φ
2 = Φ

+
Φ
− .

Important advantages of this scenario:

•During inflation: W , WΦ ≃ 0, WX 6= 0 and WX set dynamically by 〈Σ〉, e.g. via cancelling
a Fayet-Illiopoulos term.

• Tree-level: inflaton potential flat and of ‘hybrid’ form.

•One-loop: H± induces a slope for Φ via Coleman-Weinberg effective potential.

Moduli Stabilization
The moduli can be stabilized by WX 6= 0, for example

• if d(x3) = γ + βx3 and a(T1, T2) = ea1T1+a2T2 with ai > 0, qi < 1, |γ| ≪ 1 and β < 0
• at 〈Re Ti〉 ∼ O(1), 〈x3〉 ∼ 1/β and with masses m 2 ∼ V .
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Fig. 1: Re T1-dependence of the potential.
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Fig. 2: x3-dependence of the potential.

Realization in Heterotic Orbifolds
The above class of models might be realized in the context of heterotic orbifolds:

•Ti ↔ Kähler moduli, i.e. radii of the three tori,

•Φ ↔ D-flat direction of untwisted matter fields, associated to e.g. T3
⇒ Heisenberg symmetry and VD = 0 during inflation,

•X ↔ twisted matter field in N = 2 subsector,

•H± ↔ a priori twisted or untwisted matter fields,

•Σ ↔ string theory superpotential starts at cubic order ⇒ provides WX 6= 0;

•Modular invariance ⇒ a(T1, T2) = η(T1)b1 η(T2)b2 ≈ ea1T1+a2T2, with rational numbers
bi and ai = − π

12bi .

• For large radius, Re T & 1, and without background matter fields, string-loop corrections to
K have a moduli-dependence of the form [7]

log|η(T )|4(T + T̄ ) ≈ log(T + T̄ ) −
π

6
(T + T̄ ) + O(e−2πT + c.c.) .

We assume that this also holds approximately including background matter fields, i.e.

d(x3) ≈ γℓ + βℓ (log x3 −
π

6
x3 + λ|Φ|2) ,

where |Φ|2 = |Φ+|2 + |Φ−|2 etc. and ℓ ∼ 1/(S + S̄) denotes the dilaton.

Dilaton Stabilization
The presence of the dilaton ℓ makes the situation more complicated, but it can be stabilized
via non-perturbative corrections to the Kähler potential [3]. The ℓ and x3 dependence of the
potential in our case is of the form

V ∝
x3

q ℓd e g(ℓ)

1 + γℓ + βℓ (log x3 −
π
6x3 + λ|Φ|2)

,

where d is an integer, q is some rational number and g(ℓ) parametrizes Knon-pert..

•Moduli fixed at 〈ℓ〉 ∼ O(1), 〈x3〉 ∼ 1/β〈ℓ〉 and with masses m 2 ∼ V .

• 〈x3〉 fixed at ‘large radius’ for β〈ℓ〉 sufficiently small.

The typical shape of V with respect to ℓ and x3 is
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Fig. 3: Dependence of the potential on the dilaton ℓ and the ‘radius’ x3.

Inflaton Slope
At tree-level: inflaton slope induced by λ|Φ|2 term. Around Φ ≃ 0, the slow-roll η-parameter
is simply η ∼ λ. If λ is exponentially suppressed for ‘large radius’, i.e. ∼ e−2πT3, η ≪ 1 is
easily achieved. However, λ has to be determined by a direct string computation.

Alternatively, the dominant slope could be induced by other sources, for example

• neglected terms in W with e.g. 〈W 〉 6= 0 but small compared to WX ,

• one-loop Coleman-Weinberg effective potential via H±.

Conclusions and Outlook
We have described a general class of models suitable for hybrid inflation in the matter sector.
By extending the ‘tribrid’ models of [4] to a case with three moduli, we arrived at models which
could possibly be realized in heterotic orbifolds. The untwisted matter fields in heterotic orbifolds
enjoy a Heisenberg symmetry in their Kähler potential, which is required to solve the η-problem.

• Several problems of a gauge non-singlet inflaton can be solved in this class of models [6].

•Different mechanisms to stabilize moduli during and after inflation⇒ relaxes tension between
low-scale supersymmetry breaking and high-scale inflation present in a large class of string
inflation models [8].

•Heterotic orbifolds are promising candidates for realizing MSSM-like spectra in string theory,
see e.g. [9] ⇒ establish connection to particle physics.

•Open issues:

– construct an explicit model,
– compute λ directly from string theory.
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