Matter Inflation in Heterotic String Theory

Sebastian Halter, Max-Planck-Institut für Physik, München

In collaboration with: S. Antusch, K. Dutta and J. Erdmenger

Abstract

Inflation is a very appealing paradigm solving e.g. the flatness and horizon problems of standard big bang cosmology [1]. However, its connection to particle physics remains unknown, which makes scenarios of matter inflation attractive.

Unfortunately, inflation generically suffers from the η -problem and thus an appropriate symmetry is required to protect the potential. In the case of matter inflation, this is achieved using the so-called Heisenberg symmetry [2, 3, 4]. It combines the inflaton with a modulus and hence one has to address the issue of moduli stabilization. For this purpose, we employ a generlization of the model of [4], where inflation ends via the (supersymmetric) hybrid mechanism [5]. This class of models is capable of realizing matter inflation, i.e. inflation with a gauge non-singlet field, as has been shown recently in [6]. We outline how such a scenario with an extended 'tribrid' structure might be realized in orbifold compactifications of the heterotic string. The inflaton is a D-flat direction in the untwisted sector of the orbifold and hence enjoys the Heisenberg symmetry. During inflation, moduli stabilization can be achieved using the F-term providing the vacuum energy, while moduli stabilization after inflation requires a different mechanism.

Dilaton Stabilization

The presence of the dilaton ℓ makes the situation more complicated, but it can be stabilized via non-perturbative corrections to the Kähler potential [3]. The ℓ and x_3 dependence of the potential in our case is of the form

$$V \propto rac{\mathbf{X}_3^q \,\ell^d \, \mathbf{e}^{g(\ell)}}{1 + \gamma \ell + eta \ell \left(\log \mathbf{X}_3 - rac{\pi}{6} \mathbf{X}_3 + \lambda |\Phi|^2
ight)},$$

General Model

We consider a class of models which is a generalization of the 'tribrid' models [4], suitable to realize matter inflation along the lines of [6]:

> $W = a(T_i) \times \left(b(T_i, T_3) H^+ H^- - \langle \Sigma \rangle^2 \right) + c(T_i, T_3) H^+ H^- \phi^2 + \dots ,$ $K = -\log(T_1 + \bar{T}_1) - \log(T_2 + \bar{T}_2) - \log x_3 + k(T_i + \bar{T}_i, x_3) |X|^2$ $+\widetilde{k}(T_i + \overline{T}_i, X_3) |H^+|^2 + \widetilde{k}(T_i + \overline{T}_i, X_3) |H^-|^2 + \dots$

with
$$\Phi^2$$
 a shorthand for a D-flat direction, e.g. $\Phi^+\Phi^-$, $x_3 \equiv T_3 + \overline{T}_3 - |\Phi^+|^2 - |\Phi^-|^2$ etc., and
 $k(T_i + \overline{T}_i, x_3) = \frac{1 + d(x_3)}{(T_1 + \overline{T}_1)^{q_1}(T_2 + \overline{T}_2)^{q_2}}$, $\widetilde{k}(T_i + \overline{T}_i, x_3) = \frac{1}{(T_1 + \overline{T}_1)^{p_1}(T_2 + \overline{T}_2)^{p_2} x_3^{p_3}}$,
where the $q_i, p_i \ge 0$ are rational numbers and $i = 1, 2$.
Inflation takes place along the D-flat trajectory
 $(H^+) = (H^-) = (X) = 0$, and e.g. $|\langle \Phi^+ \rangle| = |\langle \Phi^- \rangle|$ for $\Phi^2 = \Phi^+ \Phi^-$

 $\langle \mathbf{H}^{+} \rangle = \langle \mathbf{H}^{+} \rangle = \langle \mathbf{X} \rangle = \mathbf{0}$ and e.g. $|\langle \Phi^{+} \rangle| = |\langle \Phi^{-} \rangle|$ for

Important advantages of this scenario:

• During inflation: W, $W_{\Phi} \simeq 0$, $W_{X} \neq 0$ and W_{X} set dynamically by $\langle \Sigma \rangle$, e.g. via cancelling

where d is an integer, q is some rational number and $g(\ell)$ parametrizes $K_{\text{non-pert.}}$.

- Moduli fixed at $\langle \ell \rangle \sim \mathcal{O}(1)$, $\langle x_3 \rangle \sim 1/\beta \langle \ell \rangle$ and with masses $m^2 \sim V$.
- $\langle \mathbf{x}_3 \rangle$ fixed at 'large radius' for $\beta \langle \boldsymbol{\ell} \rangle$ sufficiently small.

The typical shape of V with respect to ℓ and x_3 is

Fig. 3: Dependence of the potential on the dilaton ℓ and the 'radius' x_3 .

Inflaton Slope

At tree-level: inflaton slope induced by $\lambda |\phi|^2$ term. Around $\phi \simeq 0$, the slow-roll η -parameter is simply $\eta \sim \lambda$. If λ is exponentially suppressed for 'large radius', i.e. $\sim e^{-2\pi T_3}$, $\eta \ll 1$ is easily achieved. However, λ has to be determined by a direct string computation.

Alternatively, the dominant slope could be induced by other sources, for example

- a Fayet-Illiopoulos term.
- Tree-level: inflaton potential flat and of 'hybrid' form.
- One-loop: H^{\pm} induces a slope for ϕ via Coleman-Weinberg effective potential.

Moduli Stabilization

The moduli can be stabilized by $W_X \neq 0$, for example

• if $d(x_3) = \gamma + \beta x_3$ and $a(T_1, T_2) = e^{a_1 T_1 + a_2 T_2}$ with $a_i > 0, q_i < 1, |\gamma| \ll 1$ and $\beta < 0$ • at $\langle \text{Re } T_i \rangle \sim \mathcal{O}(1), \langle x_3 \rangle \sim 1/\beta$ and with masses $m^2 \sim V$.

Realization in Heterotic Orbifolds

The above class of models might be realized in the context of heterotic orbifolds:

- $T_i \leftrightarrow K$ ähler moduli, i.e. radii of the three tori,
- $\Phi \leftrightarrow$ D-flat direction of untwisted matter fields, associated to e.g. T_3 \Rightarrow Heisenberg symmetry and $V_D = 0$ during inflation,

• neglected terms in W with e.g. $\langle W \rangle \neq 0$ but small compared to W_X ,

• one-loop Coleman-Weinberg effective potential via H^{\pm} .

Conclusions and Outlook

We have described a general class of models suitable for hybrid inflation in the matter sector. By extending the 'tribrid' models of [4] to a case with three moduli, we arrived at models which could possibly be realized in heterotic orbifolds. The untwisted matter fields in heterotic orbifolds enjoy a Heisenberg symmetry in their Kähler potential, which is required to solve the η -problem.

- Several problems of a gauge non-singlet inflaton can be solved in this class of models [6].
- Different mechanisms to stabilize moduli during and after inflation \Rightarrow relaxes tension between low-scale supersymmetry breaking and high-scale inflation present in a large class of string inflation models [8].
- Heterotic orbifolds are promising candidates for realizing MSSM-like spectra in string theory, see e.g. $[9] \Rightarrow$ establish connection to particle physics.
- Open issues:
- construct an explicit model,
- compute λ directly from string theory.

References

- [1] A. H. Guth, Phys. Rev. **D23** (1981), 347–356; A. D. Linde, Phys. Lett. **B108** (1982), 389– 393; A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48 (1982), 1220–1223; for a review containing an extensive list of references, see e.g.: D. H. Lyth and A. Riotto, Phys. Rept. **314** (1999) 1.
- [2] E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart and D. Wands, Phys. Rev. D 49 (1994) 6410 [arXiv:astro-ph/9401011]; M. K. Gaillard, H. Murayama and K. A. Olive, Phys. Lett. B **355** (1995) 71 [arXiv:hep-ph/9504307]. [3] M. K. Gaillard, D. H. Lyth and H. Murayama, Phys. Rev. D 58, 123505 (1998) [arXiv:hepth/9806157]. [4] S. Antusch, M. Bastero-Gil, K. Dutta, S. F. King and P. M. Kostka, JCAP **0901** (2009) 040 [arXiv:0808.2425 [hep-ph]]. [5] A. D. Linde, Phys. Rev. D **49** (1994) 748 [arXiv:astro-ph/9307002]; [6] S. Antusch, M. Bastero-Gil, J. P. Baumann, K. Dutta, S. F. King and P. M. Kostka, JHEP **1008** (2010) 100 [arXiv:1003.3233 [hep-ph]]. [7] I. Antoniadis, E. Gava, K. S. Narain and T. R. Taylor, Nucl. Phys. B 407 (1993) 706 [arXiv:hep-th/9212045]. [8] R. Kallosh and A. D. Linde, JHEP **0412**, 004 (2004) [arXiv:hep-th/0411011]; J. P. Conlon, R. Kallosh, A. D. Linde and F. Quevedo, JCAP **0809**, 011 (2008) [arXiv:0806.0809 [hep-th]]. [9] O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sanchez, M. Ratz, P. K. S. Vaudrevange and A. Wingerter, Phys. Rev. D 77 (2008) 046013 [arXiv:0708.2691 [hep-th]].

- $X \leftrightarrow$ twisted matter field in $\mathcal{N} = 2$ subsector,
- $H^{\pm} \leftrightarrow$ a priori twisted or untwisted matter fields,
- $\Sigma \leftrightarrow$ string theory superpotential starts at cubic order \Rightarrow provides $W_X \neq 0$;
- Modular invariance $\Rightarrow a(T_1, T_2) = \eta(T_1)^{b_1} \eta(T_2)^{b_2} \approx e^{a_1 T_1 + a_2 T_2}$, with rational numbers b_i and $a_i = -\frac{\pi}{12}b_i$.
- For large radius, Re $T \gtrsim 1$, and without background matter fields, string-loop corrections to *K* have a moduli-dependence of the form [7]

$$\log |\eta(T)|^4 (T + \overline{T}) \approx \log(T + \overline{T}) - \frac{\pi}{6} (T + \overline{T}) + \mathcal{O}(e^{-2\pi T} + c.c.)$$

We assume that this also holds approximately including background matter fields, i.e.

 $d(\mathbf{x}_3) \approx \gamma \ell + \beta \ell (\log \mathbf{x}_3 - \frac{\pi}{6} \mathbf{x}_3 + \lambda |\Phi|^2),$

where $|\phi|^2 = |\phi^+|^2 + |\phi^-|^2$ etc. and $\ell \sim 1/(S + \overline{S})$ denotes the dilaton.

COSMO/CosPA Conference 2010, University of Tokyo, Tokyo, Japan