STATUS OF ULTRA-HIGH ENERGY COSMIC RAYS

Esteban Roulet (Bariloche)

COSMO / CosPA 2010, Tokyo

Power law flux → stochastic (Fermi) acceleration in shocks

Small fractional energy gain after each shock crossing \rightarrow dN

 $\frac{dN}{dE} \sim E^{-\alpha} \quad with \; \alpha \simeq 2 - 2.4$

For E < Z 1017 eV, $r_L < 100 \text{ pc} \rightarrow \text{diffusive propagation in Galaxy}$ escape time is E dependent $\tau_{esc}(E) \sim E^{-\beta}$ with $\beta \simeq 0.3 - 1$ Spectrum: convolution of source spectrum + escape time $\frac{dN}{dE} \sim E^{-(\alpha + \beta)}$

For $E > 10^{18}$ eV, CRs are likely extragalactic, source spectrum is shaped by attenuation during propagation through CMB

Knee due to:

- limit in acceleration by galactic sources ?
- more efficient escape from galaxy (drift effects) ?

rigidity (E/Z)

dependent

effects

Ankle due to:

- galactic extragalactic transition ? (ankle scenario)
- pair production dip ? (dip scenario)

the Greisen-Zatsepin-Kuzmin effect (1966)

AT THE HIGHEST ENERGIES, PROTONS LOOSE ENERGY BY INTERACTIONS WITH THE CMB BACKGROUND

PROTONS CAN NOT ARRIVE WITH E > 6x10¹⁹ eV FROM D > 200 Mpc

(π^{0} produce GZK photons)

(π^{\pm} produce cosmogenic neutrinos)

For Fe nuclei: after ~ 200 Mpc the leading fragment has E < 6x10¹⁹ eV

ligther nuclei get disintegrated on shorter distances

1600 detectors instrumenting 3000 km² and 24 telescopes the Auger Collaboration: 18 countries, ~ 400 scientists

a hybrid event

Longitudinal distribution in air

Core Distance [m]

(duty cycle ~15%)

Measure Xmax Energy calibration angular resolution < 1°

(duty cycle ~100%)

Previous experiments:

AGASA: (Akeno, Japan 1990-2004) Area: 100 km² 111 Scintillators (e⁺e⁻) and 27 shielded proportional counters (muons)

Fly's Eye (1981-1993) Utah, USA HiRes (1997-2006)

Fluorescence telescopes

Also Volcano Ranch, Haverah Park, Yakutsk, Sugar, ...

HADRONIC SHOWERS

each interaction produces n_{tot} pions (multiplicity) $n_{neut} = n_{tot}/3 \ (\pi^0 \rightarrow 2\gamma)$ em component $n_{ch} = 2 n_{tot}/3 \ (\pi^{\pm})$ reinteract until $E < E_{dec} \simeq 20 \text{GeV} \ (\pi \rightarrow \mu \nu \nu)$

Number of π^{\pm} generations from: $E_0/n_{tot}^n = E_{dec}$ (typically $n \sim 5-6$) Energy of em component: $E_{em} = E_0 - (2/3)^n E_0$ (~0.9 E_0 for $10^{19} eV$)

Estimating X_{max} as the maximum of the first generation π^0 s:

$$X_{max} = \lambda_I + X_R \ln \left(\frac{E_0 / n_{tot}}{E_c} \right) \qquad \text{depends on } \lambda_I \sim \sigma_{p-air}^{-1}$$

and on multiplicity

For nuclei: A nucleons with $E_n = E_0 / A$ (smaller X_{max})

CONFLICTING RESULTS AT UHE ?

HiRes: consistent with protons

Auger: transition towards heavy component or change in hadronic interactions?

THE END OF THE SPECTRUM: GZK? previous results AGASA: NO HiRes: YES

AUGER and HiRes SPECTRA

Auger, arXiv:1002.1975

to compare spectrum with theoretical expectations, source redshift evolution is relevant

Simple models for UHECR sources

dip scenario requires steep spectrum and/or strong evolution $dn/dz \sim (1+z)^m$

featureless galactic extragalactic transition below 10¹⁸ eV ?

Ankle: Galactic – extragalactic transition or e⁺e⁻ dip in Xgal protons ?

GZK: proton or Fe suppression ? (and/or exhaustion of sources?)

ASSOCIATED PHOTON FLUXES

- dip models lead to significant cascade fluxes from pair production \rightarrow restricts large m

- ankle models (harder fluxes) lead to larger GZK photon fluxes

AUGER SD photon bound

photon showers are more penetrating (small curvature radius)
and lack muons (electromagnetic signal in detectors have long rise times)
→ essentially no UHE photon candidates observed

excludes most top-down models, but still above GZK photons

ASSOCIATED COSMOGENIC NEUTRINO FLUXES:

- New Fermi bounds on GeV-TeV gamma fluxes (stronger than EGRET)

- ankle models (harder fluxes) lead to larger cosmogenic neutrino fluxes

BOUNDS ON DIFFUSE NEUTRINO FLUXES

Auger., ICRC09

If cosmogenic neutrinos were observed, it would be a strong hint favoring a light composition

COSMIC RAY ASTRONOMY ?

only for $E/Z \gg 10^{19}$ eV deflections in galactic magnetic fields become less than a few degrees and CR astronomy could become feasible

galaxies up to 100 Mpc

Corona-Borealis Capricornus 100 million ly Supercluster Supercluster Hercules Bootes Superclusters Capricorpus Suberclusters Vioid - Pavo-Indus Bootes Void Supercluster Centaurus Supercluster 14 6.1 Shapley Supercluster Spulptor Sculptor Superclusters Void Virgo Coma. Superclüster Ursa Major Supercluster 1. A. C. Hudra Pisces-Cetus Perseus-Pisces Supercluster Superclusters en Superclusters

Horologium Supercluster Columba Supercluster Sextans Supercluster

the nearby Universe is quite inhomogeneous

the radio sky

supernovae: preferred candidate sources for $E < 10^{18} \text{ eV}$

active galaxies: plausible candidates for E > 10¹⁸ eV

with the data up to 31 august 2007, from the 27 CRs with highest energies, 20 were at less than ~3 degrees from an active galaxy at less than ~ 75 Mpc , while 6 were expected (from the 7 which are not, 5 have $|b_G| < 12$ deg, where catalog is largely incomplete) What happened thereafter ?

From 31 August 2007 until 31 December 2009: Auger has 42 events with E > 55 EeV (new calibration) and 12 are within 3.1 deg of an AGN closer than 75 Mpc

Fraction correlating (after 5/2006)

(from the 9 new events which have $|b_G| < 10$ deg, none correlate)

about 40% are expected to come from within 75 Mpc for E > 60 EeV

(AUGER arXiv1009.1855)

(in total, 29 out of 69 are in correlation within 3 deg of AGNs within 75 Mpc, while ~14.5 expected if isotropic)

69 events with E > 55 EeV

Excess around Centaurus A: closest AGN

13 events within 18 deg of CenA, while 3.2 expected for isotropy

AGNs may be just tracers of nearby large scale structure which may host other CR sources (GRBs, colliding Galaxies, ...).

Or UHECR sources may be a particular AGN subclass

Smoothed SWIFT map in $\sigma = 5 \text{ deg}$

Scan of likelihood vs. smoothing angle and added isotropic fraction

Best fit to data requires adding ~ 60% isotropic fraction: Due to sources beyond 100 Mpc? Or to heavy composition contribution?

CONCLUSIONS

Evidence that CRs are attenuated by GZK effect

CRs arriving to Earth with E > 6x10¹⁹ eV are correlated with the distribution of nearby extragalactic matter

Sources preferentially in regions at less than ~ 100 Mpc in which Active Galactic Nuclei are present (if other than AGN, sources must have a similar spatial distribution)

Interesting excess in Centaurus A region

Puzzling results on X_{max} (composition or cross sections?)

Photon fraction small (< 2% above 10 EeV) \rightarrow top-down

No neutrinos yet

Unambiguous identification of sources would be next breakthrough

Attenuation lengths vs E

