Florian Kühnel

Excellence Cluster 'Universe' \& Arnold Sommerfeld Center for Theoretical Physics, LMU Munich

Overview

In this work (based on [1-4]):

- We introduce a novel technique to properly calculate correlation functions and in turn the power spectrum,
- derive a large-scale damping, which
- solves the problem of infra-red divergencies of two-point correlation functions.
- We provide a better description of CMB data.

Setup

One fruitful framework to study large quantum fluctuations is stochastic inflation:

- Split the quantum field Φ into a short- and longwavelength part, $\Phi=\varphi+\phi$, and treat φ as classical, evolving in a bath of the quantum modes ϕ, giving rise to a
- Langevin-type differential equation,

$$
\left(\square+m^{2}\right) \varphi(t, \boldsymbol{x})=\mathrm{h}(t, \boldsymbol{x})
$$

Technicalities

We would like to compute the noise-averaged

- connected correlation functions, and hence their generating functional $\ln (\mathcal{Z})$.

This is difficult to achieve directly. Hence,

- use the replica trick

$$
\overline{\ln (\mathcal{Z})}=\lim _{n \rightarrow 0} \ln \left(\left(\overline{\mathcal{Z}^{n}}\right)^{1 / n}\right)
$$

- i.e., compute only $\overline{\mathcal{Z}^{n}}$ (instead of the logarithm):

$$
\overline{\mathcal{Z}^{n}}=\int \prod_{a=1}^{n} \mathcal{D}\left[\varphi_{a}\right] \exp \left(-\mathcal{S}_{n}\left[\varphi_{1}, \ldots, \varphi_{n}\right]\right) .
$$

- Approximate the action $\mathcal{S}_{n}[\varphi]$ by

$$
\mathcal{S}_{0}[\varphi]:=\frac{1}{2} \sum_{a, b=1}^{n} \int \mathrm{~d} t \int_{k} \mathrm{G}^{-1}{ }_{a b}(t, k) \varphi_{a}(t, k) \varphi_{b}(t,-k)
$$

- Use the Feyman-Jensen inequality:

$$
\ln (\mathcal{Z}) \geq \ln \left(\mathcal{Z}_{0}\right)+\left\langle\mathcal{S}_{0}-\mathcal{S}\right\rangle_{0} .
$$

- Maximise the r.h.s. of this inequality, by writing

$$
\mathrm{G}_{a b}^{-1}(t, k):=\mathrm{G}_{0}^{-1}(t, k) \delta_{a b}-\sigma_{a b},
$$

and varying with respect to the self-energy matrix $\left(\sigma_{a b}\right)$.

Application to CMB Data

Angular temperature correlation function $\mathcal{C}(\theta)$.

Power spectrum $\mathcal{P}(k)$ of a massless test field.

Formulæ

For a single scalar-field model with quartic self-coupling we derive:

- the power spectrum $\mathcal{P}(t, k)$ at late times:

$$
\mathcal{P}(t, k) \simeq \frac{H^{2}}{(2 \pi)^{2}}\left\{\begin{array}{cl}
\left(\frac{k}{k_{*}(t)}\right)^{3} & : k \ll k_{*}(t) \\
1 & : k_{*}(t) \ll k \ll 1 /|\tau(t)|
\end{array}\right.
$$

- the scale of deviation from scale invariance:

$$
\left.k_{*}\right|_{\text {today }} \simeq \sqrt[3]{\frac{3}{2 \pi^{2}}} \sqrt[3]{\lambda N} \mathrm{e}^{-N}\left(\frac{H}{T_{\text {reh }}}\right)\left(\frac{T_{0}}{H_{0}}\right) H_{0} .
$$

[^0][^1]
[^0]: [1] F. Kühnel and D. J. Schwarz, Phys. Rev. D 78, 103501 (2008).
 [2] F. Kühnel and D. J. Schwarz, Phys. Rev. D 79, 44009 (2009).

[^1]: [3] F. Kühnel, Ph.D. Thesis (2009).
 [4] F. Kühnel and D. J. Schwarz, submitted to Phys. Rev. Lett. (2010).

