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Abstract 

In the present paper, certain inflation models are shown to have large non-Gaussianity in special 

cases. Namely, finite length inflation models with an effective higher derivative interaction, in 

which slow-roll inflation is adopted as inflation and a scalar-matter-dominated period or power 

inflation is adopted as pre-inflation, are considered. Using Holman and Tolley’s formula of the 

nonlinearity parameter flattened
NLf , we calculate the value of flattened

NLf . A large value of  flattened
NLf   

( 100flattened
NLf ) can be obtained for all of the models considered herein when the length of 

inflation is 60-63 e-folds and NLf  has strong dependence on the length of inflation. 

Interestingly, this length is similar to that for the case in which the suppression of the CMB 

angular power spectrum of 2  was derived using the inflation models described in our 

previous papers.  
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1. Introduction 

Non-Gaussianity of primordial perturbations is one of the most interesting problems implied by 

the WMAP data [1, 2]. The observational limits on the nonlinearity parameter from WMAP 

seven-year data [2] are 7410  local
NLf  (95% CL), 266214 

equil
NLf  (95% CL) and 

6410 
orthog
NLf  (95% CL). However, the standard simple inflation model predicts 

approximately Gaussian fluctuation, the deviation from Gaussian of which is very small. 

Several studies have attempted to achieve such large non-Gaussianity. Holman and Tolley [3] 

showed that if the effective action for the inflaton contains a higher-derivative interaction, 

which is derived, for example, from k-inflation [4] or DBI inflation [5], and the initial state of 

inflation is not the Bunch-Davies vacuum, then enhanced non-Gaussianity is derived in the 

“flattened” triangle configurations, the contribution of which is also discussed in [6].  In their 

paper, the initial state of the curvature perturbation in inflation was assumed not to be the 

Bunch-Davies vacuum, i.e., squeezed states, but they did not report a concrete value or the 

physical mechanism that generates the initial state in inflation, although the value of the 

coefficient of the initial state in inflation has a very important effect on the non-Gaussianity.  

On the other hand, the effect of the initial condition in inflation on the power spectrum of 

curvature perturbations has been considered [7] and the effect of the length of inflation and 

pre-inflation physics on the power spectrum and the angular power spectrum of scalar and 

tensor perturbations has been examined by the present authors. [8-9]. The suppression of the 

spectrum at 2l  as indicated by Wilkinson Microwave Anisotropy Probe (WMAP) data [1] 

may be explained to a certain extent by the finite length of inflation for an inflation of 50–60 

e-folds [9].  Of course, there are many attempts [10] to derive this suppression. Based on the 

physical conditions before inflation, we have shown that the initial state of scalar perturbations 
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in inflation is not simply the Bunch-Davies state, but rather a more general state (a squeezed 

state), where a scalar-matter-dominated period, a radiation-dominated period, or another 

inflation is considered as pre-inflation, and the general initial states in inflation were calculated 

analytically. In the present paper, we demonstrate a new property of the proposed inflation 

model. Using Holman and Talley’s formula for the nonlinearity parameter flattened
NLf , we 

calculate the value of flattened
NLf  for the case in which the proposed finite inflation models have 

effective higher-derivative interactions, where slow-roll inflation is adopted as inflation and a 

scalar-matter-dominated period or power-law inflation period is adopted as pre-inflation. The 

obtained results are very interesting. 

2. Scalar perturbations 

We consider curvature perturbations in inflation and a scalar-matter-dominated epoch. 

The background spectrum considered is a spatially flat Friedman-Robertson-Walker (FRW) 

universe described by metric perturbations. The line element for the background and 

perturbations is generally expressed as [11]  

  }dd]2)21[(dd2d)21){((d 222 ji

ijjiij

i

i xxhExBAas   ,  (2-1)  

where   is the conformal time, the functions A, B,  , and E represent the scalar perturbations, 

and ijh  represents tensor perturbations. The density perturbation in terms of the intrinsic 

curvature perturbation of comoving hypersurfaces is given by )/( H , where   is 

the inflaton field,   is the fluctuation of the inflaton field, H is the Hubble expansion 

parameter, and   is the curvature perturbation. Overdots represent derivatives with respect to 

time t, and primes represent derivatives with respect to the conformal time  . Introducing the 

gauge-invariant potential ))/()((  Hau    allows the action for scalar perturbations to 
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be written as [12] 
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where sc  is the velocity of sound, and in inflation HaZ / , and  Zu . The field ,(u x) 

is expressed using annihilation and creation operators as follows: 
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where 1
2
sc  is assumed in inflation. The solution of ku satisfies the normalization condition 

iuuuu kkkk   d/dd/d ** .  

First, slow-roll inflation is considered. The slow-roll parameters are defined as [13, 14]: 

1
22

)
2

(
2

3  V



 2

2

)(

)(
2 







 






H

H
M P ,  (2-5) 

)(

)(
2 2






H

H
M P


 , (2-6) 

2

4

))((

)()(
4






H

HH
M P


 .                                                                                           (2-7) 

The quantity )(V is the inflation potential, and PM  is the reduced Plank mass. Other slow-roll 

parameters ( VVV  ,, ) can be written in terms of the slow-roll parameters  ,  , and   for  

first-order slow roll, i.e., V  , VV   , and 233 VVVV   , where 

22 )/(2/ VVMPV
 , )/(2 VVMPV

 , and )/( 24 VVVMPV
 . Using the slow-roll 
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parameters, ZZ /)d/d( 22   is written exactly as 
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  ,  (2-8) 

and the scale factor is written as      1
1


 Ha  . Here, the slow-roll parameters are 

assumed to satisfy 1,1   , and 1 . As only the leading-order terms of   and  are 

adopted,   and   may be considered to be constant, allowing the scale factor to be written as 

  1)()(a  [14].  Equation (2-4) can be rewritten as  
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 ) ku 0 .  (2-9) 

The solution to Eq. (2-9) is written as [13] 

 I

kf ( ) = 2/)2/1(

2

 ie 2/1)(  )1(
H )( k ,  (2-10) 

where   22/3 , and )1(
H  is the Hankel function of the first kind of order  . The 

mode functions )(ku  of a general initial state in inflation are written as  

 )(ku  = 1c  
I

kf ( ) 2c  
*I

kf ( ),  (2-11) 

where the coefficients 1c  and 2c   obey the relation 1|||| 2
2

2
1  cc . The important point here is 

that the coefficients 1c  and 2c  do not change during inflation. In ordinary cases, the field 

)(ku  is considered to be in the Bunch-Davies state, i.e., 11 c  and 02 c , because as 

 , the field )(ku  must approach plane waves ( ke ik 2/ ).  Second, in the case of 

power-law inflation, where qtta )( , a similar method can be used, and the solution is obtained 

as Eq. (2-10) with )1/(12/3  qv . Third, the curvature perturbations in the scalar matter are 

calculated using a method similar to that used for inflation [12, 15, 7].  The field equation ku  
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can be written in a form similar to Eq. (2-4) with a value of 1
2
sc  and with 

Z Pa ( )[ (H
2
 - H')]

1/2
/H , (where H = Pa '/ Pa ). The solution to Eq. (2-4) is then written as 

kikkif S
k 2/])exp[)/(1()(    .   

3. Calculation of the nonlinearity parameter  

Here, an inflation model is considered.  Since we consider slow-roll inflation to have a 

finite length, we assume a pre-inflation period to be a scalar-matter-dominated period in which 

the scalar field is the inflaton field, or is power-law inflation, i.e., double inflation. A simple 

cosmological model is assumed, as defined by 

 Pre-inflation:     Pa ( ) 1b
r

j )(   ,                                                               (3-1) 

 Slow-roll Inflation: Ia ( ) 2b   1)( ,                (3-2) 

where 
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.  (3-3)  

The scale factor Ia ( ) represents slow-roll inflation. Here, de-Sitter inflation )0(   is not 

considered. Slow-roll inflation is assumed to begin at 1  . In pre-inflation, for the case of 

r = 2, the scale factor Pa ( ) indicates that pre-inflation is a scalar-matter-dominated period, 

and, for the case of )1/(  qqr , the pre-inflation is power-law inflation, where the scale 

factor Pa qtt )( .  

Using above the pre-inflation model, the initial state of inflation given by Eq. (2-11) will 

be fixed as follows. The coefficients 1c  and 2c  are fixed using the matching condition in which 

the mode function and first  -derivative of the mode function are continuous at the transition 

time 1  . ( 1  is the time at which slow-roll inflation begins.) For simplicity pre-inflation 
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states are assumed to be the Bunch-Davies vacuum. The coefficients 1c  and 2c can be 

calculated analytically in the case of the scalar-matter-dominated period:  

))1/(22/)21((

2/31
28

  zie
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i
c  
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and in the case of the double inflation model: 
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where 1kz   and ))1)(1/((  qzqzz . The initial states of inflation can be written in 

terms of the slow-roll parameters, the start time of slow-roll inflation 1 , and the double 

inflation parameter q. Here, three slow-roll inflation models are adopted: the new inflation 

model with the potential term given by ))(21()( 42 pvvV    ( 4,3p , PMv  ), the 

chaotic inflation model with the potential term given by amMV )/(2/)( 4    

}2){()( 42222222  gmvV   ( 6,4,2a , PMm  ), and the hybrid model 
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)2( 224  mv  , ( ,10 2
PMv  PMm 5102  ) [16].   Using the normalization value from 

the WMAP five-year data, we obtain the values of the spectral index and the slow-roll 

parameters, such as  

New inflation: 03228.0,10027.1,935.0 9   sn  

Hybrid inflation: 000878.0,00504.0,9816.0  sn  

Chaotic inflation model: 

2  model:  000022.0,00828.0,967.0  sn    

4  model: 008298.0,01655.0,950.0  sn  

6 model: 01657.0,0248.0,9334.0  sn . 

Now, we calculate the values of the nonlinearity parameter flattened
NLf . Holman and Tolley 

[3] showed that if the effective action for the inflaton contains the higher-derivative interaction 

[17]  £ 22

4
))((

8





M
g , which is derived, for example, from k-inflation or DBI inflation, 

and the initial state of inflaton is not the Bunch-Davies vacuum, then the enhanced 

non-Gaussianity is derived as follows: 
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,                                                                           (3-8) 

where M  is the cutoff scale, which is the limit of effective theory, and we assume )(/ 1akM   

where 1  is the beginning time of slow-roll inflation, and  1kz  . The present treatment 

considers the effect of the length of inflation, where 1z  indicates that inflation starts at the 

time when the present-day size perturbation 002.0k  (1/Mpc) exceeds the Hubble radius in 

inflation (i.e., inflation of close to 60 e-folds). Using the values of the above parameters we can 
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calculate the values of || 1c , || 2c , and flattened
NLf  in terms of )( 1kz  . The values of || 2c  

change only slightly among the models, but vary with the value of z, as 0.0063 for 8z , 0.004 

for 10z , and 0.001 for 20z , and 1|| 1 c . From all of the models except for the 4  model, 

similar values of flattened
NLf  are calculated, i.e., 120flattened

NLf  at 8z , and 40flattened
NLf  at 

10z . Details are shown in Table 1. With respect to the other values of z , larger values of 

flattened
NLf  can be derived at smaller z  ( 8z ), and small values of flattened

NLf  can be derived at 

larger z  ( 20z ). Based on the above results, the value of flattened
NLf  appears to depend 

strongly on the value of z , which represents the length of inflation, and the difference of the 

values of flattened
NLf  among our three slow-roll inflation models is not large. Since the 

z-dependence of flattened
NLf  is very steep, any value of flattened

NLf  can be derived at some point of 

z . We next consider the case of double inflation, the value of flattened
NLf  is 100 at 43  z  in 

the chaotic inflation, at 54  z  in the case of new inflation, and at 3z  in the case of hybrid 

inflation. With respect to the q-dependence ( qtta )( ), the values of flattened
NLf  are similar at 

very large q but change at 100q . The details are shown in Tables 2-4. 

 

4. Discussion 

We have derived a new property of the proposed finite inflation model. The possibility of 

large non-Gaussianity is demonstrated. The proposed inflation model is a finite length inflation 

model with an effective higher derivative interaction, where slow-roll inflation is adopted as 

inflation and a scalar-matter-dominated period or power inflation is adopted as pre-inflation. 

Owing to the existence of pre-inflation, the initial state in inflation is not the Bunch-Davies 



 

 

 

 

 

 

 

 

 

 
 

10 

state, but is instead a more general state. The coefficients 1c  and 2c can be analytically 

calculated. Using Holman and Tolley’s formula of the nonlinearity parameter flattened
NLf , we 

calculated the value of flattened
NLf . For the case in which the scalar-matter-dominated period is 

considered to be pre-inflation, large values of  flattened
NLf  ( 100flattened

NLf ) are obtained at 

108  z  in all the models considered herein, and similar results are derived for the case of 

double inflation at 43  z . These ranges can be written as 60-63 e-folds. This length is 

similar to that obtained when the suppression of CMB angular power spectrum of 2  was 

derived using the inflation models described in previous papers [7], but such spectral 

suppression is not inconsistent when considering cosmic variance. On the experimental value 

of flattened
NLf , the orthogonal shape ( orthog

NLf  ) is peaked both on equilateral-triangle 

configurations ( equil
NLf ) and on flattened-triangle configurations ( flattened

NLf  ) [18], but we think 

we need further consideration to drive  the constraint of flattened
NLf  from the constraints of 

orthog
NLf   and 

equil
NLf . Therefore, we do not show it here. We assume such a high-derivative 

interaction in order to obtain non-linearity and effective interactions for slow-roll interaction. 

This high-derivative interaction appears to influence the parameters of slow-roll inflation. In 

order to clarify this problem, we must investigate a concrete inflation model such as k-inflation 

or DBI inflation. In the future, we would like to apply the proposed method to other inflation 

models and investigate the dependence of the length of inflation on flattened
NLf  . 

 

Acknowledgments 

The authors would like to thank the staff of Osaka Electro-Communication University for 

their valuable discussions. 



 

 

 

 

 

 

 

 

 

 
 

11 

References 

 

[1] Spergel D. N.  et al. 2007 Astrophys. J. Suppl. 170,377 (astro-ph/0603449); Hinshaw G. et 

al. 2007 Astrophys. J. Suppl. 170, 288 (astro-ph/0603451); Page L et al. 2007 Astrophys. J. 

Suppl. 170, 335 (astro-ph/0603450); Komatsu E. et al 2009 Astrophys.J.Suppl.180,330 

(arXiv0804.4142) 

[2]  Komatsu E. et al 2009 (arXiv1001.4538) 

[3]  Holman R. and Tolley A. J. 2008 JCAP 0805, 001 

[4] Armendariz-Picon C, Damour T, and Mukhanov V F, 1999 Phys. Lett. B458, 209; 

Garriga J and Mukhanov V F, 1999 Phys. Lett. B458, 219 

[5] Silverstein E and Tong D, 2004 Phys. Rev. D 70 103505; 

Alishahiha M, Silverstein E, and Tong D 2004 Phys. Rev. D 70 123505 

[6]  Chen X. ,Huang  M. x., Kachru S. ,and Shiu G. 2007 JCAP 0701,002 

 (arXiv:hep-th/0605045) 

[7] Hirai S 2003 Class. Quantum Grav. 20 1673 (hep-th/0212040) 

[8] Hirai S 2003 (hep-th/0307237); Hirai S 2005 Class. Quantum Grav. 22 1239 

(astro-ph/0404519) 

[9] Hirai S and Takami T 2006 Class. Quantum Grav. 23 2541 (astro-ph/0506479) 

        Hirai S and Takami T 2007 (arXiv:710.2385) 

[10] Bastero-Gil M, Freese K, Mersini-Houghton L 2003 Phys. Rev. D68 123514; Niarchou A, 

Jaffe A H and Pogosian L 2004 Phys. Rev. D69 063515; Cline J M, Crotty P and 

Lespourgues J 2003 JCAP 0309 3010 (astro-ph/0304558); Contraldi C R, Peloso M, 

Kofman L and Linde A 2003 JCAP 0307 002; Martin J and Ringevel C 2004 Phys. Rev. 

D69 083515; Bridle S L, Lewis A M, Weller J and Efstathiou G 2003 Mon. Not. R. 



 

 

 

 

 

 

 

 

 

 
 

12 

Aston. Soc. 342 L72 (astro-ph/0302306); Piao Y S, Feng B and Zhang X 2004 Phys. Rev. 

D69 103520; Shankaranayanan S and Sriramkumar L 2004 Phys. Rev. D70 123520 

 

[11] Bardeen J M 1980 Phys. Rev. D22 1882; Kodama H and Sasaki M 1984 Prog. Theor. Phys. 

Suppl. 78 1 

[12] Mukhanov V F, Feldman H A and Brandenberger R H 1992 Phys. Rep. 215 203 

[13] Lidsey J E, Liddle A R, Kolb E W, Copeland E J, Barreiro T and Abney M 1997 Rev. Mod. 

Phys. 69 373 

[14] Mattin J and Brandenberger R 2003 Phys. Rev. D68 063513 

[15] Albrecht A, Ferreira P, Joyce M and Prokopec T 1994 Phys. Rev. D50 4807 

[16]  Ichikawa K., Suyama T., Takahashi T, Yamaguchi M 2008 Phys. Rev. D78 023513 

[17]   Creminelli P. 2003 JCAP 0310,003 

[18]  Senatore L.,Smith K.M. and Zaldarriaga M. 2010 JCAP 1001, 28  

 

 

Table 1  Values of flattened
NLf  for the case of the matter-dominated period as pre-inflation  

           New inflation           Hybrid         Chaotic inflation  

             p=3         p=4                          2          4           6  

8z    123.8     123.7       122.7        123.8     187.7     126.4 

10z    40.5       40.4        40.1         40.4       61.3       41.3 

20z    1.26       1.26        1.25         1.26       1.91       1.28 

 

Table 2  Values of flattened
NLf  in the hybrid inflation for double inflation 
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 q=105 q=104 q=103 q=102 q=10 

z=3 108.5 109.1 115.3 190.6 1096.5 

z=4 23.4 23.6 25.3 45.1 266.8 

z=5 7.24 7.3 7.93 14.8 88.6 

 

Table 3  Values of flattened
NLf  for the new inflation case of  3n  and for the new inflation case of 

4n  for double inflation 

  

3n  

 q=105 q=104 q=103 q=102 q=10 

z=4 254 254.1 256 275.1 478.5 

z=5 81.8 81.9 82.5 89.1 157.7 

z=6 32.5 32.6 32.8 35.6 63.6 

 

4n  

 q=105 q=104 q=103 q=102 q=10 

z=4 194.9 195.1 197 216.5 424.2 

z=5 62.8 62.9 63.5 70.2 140.1 

z=6 25 25 25.3 28 56.5 

 

Table 4  Values of flattened
NLf  for the Chaotic inflation  case of 2 ,  4 , and 6  for double 

inflation 

 2  model 

 q=105 q=104 q=103 q=102 q=10 

z=3 227.6 228.2 234.7 306.9 1196.5 

z=3.5 100.6 100.9 104.2 140.0 561.2 

z=4 49.8 50.0 51.8 71.1 291.0 

 

4  model 

 q=105 q=104 q=103 q=102 q=10 

z=3 181.1 181.5 185.6 242.9 1130.3 
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z=3.5 76.1 76.4 78.6 108.1 530.0 

z=4 36.1 36.2 37.5 53.9 274.4 

 

6  model 

 q=105 q=104 q=103 q=102 q=10 

z=3 165.5 165.5 165.4 191.2 1061.5 

z=3.5 67.1 67.1 67.1 81.4 497.6 

z=4 30.6 30.6 30.6 39.0 257.6 

 

 

 

  


