

Subaru Wide Field Survey to Probe Dark Matter Distribution and Nature of Dark Energy

Satoshi Miyazaki National Astronomical Observatory of Japan

COSMO CosPA 2010

Talk Outline

I. Subaru Telescope and Suprime-Cam

2. Weak Lensing Survey

3. Building Hyper Suprime-Cam

4. HSC Survey Plan

Mosaic Camera History

NAOJ-UT Mosaic for Kiso Schmidt Sekiguchi et al. 1992 8 x 8 (1 cm² CCD) CCD:TITC215 World largest forcal plane in 1992

NAOJ-UT Mosaic for Kiso Schmidt Sekiguchi et al. 1992 8 x 8 (1 cm² CCD) CCD:TITC215 World largest forcal plane in 1992

HSC

Suprime-Cam Miyazaki et al. 2002 5 x 2 x (3cm 6cm CCD) MIT/LL CCID20 World fastest discovery speed 2002

Subaru Prime Focus

F/2.0 f = 16400 mm Field of View 30 arcmin

M] 8.2 m

Suprime-Cam

Strength of Suprime-Cam

Wide Field Corrector

Prime Focus Unit

Opt-mechanics were built by experienced Japanese firms

Strength of Suprime-Cam

Wide Field Corrector

Prime Focus Unit

Opt-mechanics were built by experienced Japanese firms

Good Image Quality

HST 'wide-I' continuum HST WFPC2 (All FOV)

HSC

NB816 narrowband

Suprime-Cam (FOV/100)

Large Aperture Telescope
 Wide Field of View
 Superb image quality

Large Aperture Telescope
 Wide Field of View
 Superb image quality

Optimized for Weak Lensing Survey (unintentionally)

I. Obtain Wide Field Imaging Data

I. Obtain Wide Field Imaging Data

2. Measurement of DM Clustering Evolution Cosmic Shear Cluster of Galaxies count

I. Obtain Wide Field Imaging Data

- 2. Measurement of DM Clustering Evolution Cosmic Shear Cluster of Galaxies count
- 3. Measurement of Cosmic Expansion History H(z)

I. Obtain Wide Field Imaging Data

2. Measurement of DM Clustering Evolution Cosmic Shear Cluster of Galaxies count

3. Measurement of Cosmic Expansion History H(z)

4. Measurement of DE (time variation)

Cosmic Shear

HSC

Cosmic Shear: Weak Lensing by Large Scale Structure

Cosmic Shear

HSC

Cosmic Shear: Shape correlation of neighboring galaxy pairs

Cosmic Shear Obs. & DE

HSC

correlation weak \rightarrow DM clustering weak \rightarrow cosmic acceleration fast \rightarrow w large

Cosmic Shear Obs. & DE

HSC

correlation weak \rightarrow DM clustering weak \rightarrow cosmic acceleration fast \rightarrow w large

Cosmic Shear on 2 sqdeg

Cluster Count

HSC

Vikhlinin et al. 2008

Cluster Count

HSC

Vikhlinin et al. 2008

HSC Weak Lensing Cluster Search

- Standard search: baryon tracer (optical, X-ray)
- Weak Lensing directly probes dark matter concentration

Weak Lensing Cluster Search

- Standard search: baryon tracer (optical, X-ray)
- Weak Lensing directly probes dark matter concentration
- Number Count of Clusters

$$N_{i} = \Delta \Omega \Delta z \frac{d^{2}V}{dzd\Omega}(z_{i}) \int_{M_{min}(z_{i})}^{\infty} \frac{dn(M, z_{i})}{dM} dM$$
Obs. Theory

HSC Weak Lensing Cluster Search

- Standard search: baryon tracer (optical, X-ray)
- Weak Lensing directly probes dark matter concentration
- Number Count of Clusters

$$N_{i} = \Delta \Omega \Delta z \frac{d^{2}V}{dzd\Omega}(z_{i}) \int_{M_{min}(z_{i})}^{\infty} \frac{dn(M, z_{i})}{dM} dM$$
Obs.
Theory

WL sampling is natural and efficient.

Pilot WL Cluster Survey

- Use Kappa S/N map to select cluster candidate
- Spectroscopic follow-up by multi object spectrographs (FOCAS)
 - to identify superposition of small systems
- ~ 20 square degree: 100 clusters candidates

Suprime-Cam GTO 2 deg2 weak lensing survey

HSC

Cluster Identification

HSC

Blind Cluster Survey

Field	n	ID	RA	DEC	$\kappa S/N$	κ	N_g^{a}	FOCAS ^b	Known ^c	$NEDG^{d}$	Note
XMM-Wide	00	SL J0221.7-0345	35.44	-3.77	8.15	0.156	72	-	0.43	-	XLSSC 006
	01	SL J0225.7-0312	36.43	-3.21	5.72	0.108	41	0.14	-	-	LRIS $z = 0.14$
	02	SL J0224.4-0449	36.10	-4.82	5.06	0.074	40	0.49	-	-	
	04	-	35.34	-3.50	4.91	0.082	21	-	-	-	
	08	SL J0222.3-0446	35.48	-3.80	4.33	0.081	29	-	-	-	LRIS $z = 0.41$
	10	-	36.25	-4.25	4.20	0.062	23	-	-	-	
	12	SL J0224.5-0414	36.13	-4.24	4.06	0.057	70	0.26	-	-	LRIS $z = 0.26$
	15	SL J0225.3-0441	36.34	-4.70	3.94	0.091	34	0.26	-	-	
	16	SL J0228.1-0450	37.03	-4.84	3.94	0.072	31	0.29	-	-	
	17	SL J0226.5-0401	36.63	-4.02	3.90	0.079	37	-	0.34	-	XLSSC 014
	19	SL J0227.7-0450	36.94	-4.85	3.81	0.064	43	-	0.29	-	Pierre et al. (200)
	20	-	35.98	-3.77	3.81	0.048	20	-	-	-	
	21	SL J0228.4-0425	37.12	-4.43	3.80	0.055	49	-	0.43	-	XLSSC 012
	22	SL J0225.4-0414	36.36	-4.25	3.72	0.073	43	0.14	-	-	
	23	SL J0222.8-0416	35.71	-4.27	3.69	0.049	52	0.43, 0.19, 0.23	-	-	

Miyazaki et al. 2007

12/15 (= 80 %) is identified as clusters (S/N > 3.7)

(3 unidentified halos have not yet been observed spectroscopically.)

Blind Cluster Survey

Field	n	ID	RA	DEC	$\kappa S/N$	κ	N_g^{a}	FOCAS ^b	Known ^c	NEDG ^d	Note
XMM-Wide	00	SL J0221.7-0345	35.44	-3.77	8.15	0.156	72	-	0.43	-	XLSSC 006
	01	SL J0225.7-0312	36.43	-3.21	5.72	0.108	41	0.14	-	_	LRIS $z = 0.14$
	02	SL J0224.4-0449	36.10	-4.82	5.06	0.074	40	0.49	-	_	
	04	-	35.34	-3.50	4.91	0.082	21	-	-	_	
	08	SL J0222.3-0446	35.48	-3.80	4.33	0.081	29	-	-	-	LRIS $z = 0.41$
	10	-	36.25	-4.25	4.20	0.062	23	-	-	_	
	12	SL J0224.5-0414	36.13	-4.24	4.06	0.057	70	0.26	-	_	LRIS $z = 0.26$
	15	SL J0225.3-0441	36.34	-4.70	3.94	0.091	34	0.26	-	-	
	16	SL J0228.1-0450	37.03	-4.84	3.94	0.072	31	0.29	-	-	
	17	SL J0226.5-0401	36.63	-4.02	3.90	0.079	37	-	0.34	-	XLSSC 014
	19	SL J0227.7-0450	36.94	-4.85	3.81	0.064	43	-	0.29	-	Pierre et al. (200)
	20	-	35.98	-3.77	3.81	0.048	20	-	-	-	
	21	SL J0228.4-0425	37.12	-4.43	3.80	0.055	49	-	0.43	-	XLSSC 012
	22	SL J0225.4-0414	36.36	-4.25	3.72	0.073	43	0.14	-	-	
	23	SL J0222.8-0416	35.71	-4.27	3.69	0.049	52	0.43, 0.19, 0.23	-	-	

Miyazaki et al. 2007

12/15 (= 80 %) is identified as clusters (S/N > 3.7)

WL Cluster survey is feasible

(3 unidentified halos have not yet been observed spectroscopically.)

HSC

Relatively Deep Xray Survey (10 ks) is necessary to obtain Tx (mass proxy)

Weak Lensing at large aperture telescope requires moderate exposure time (0.5 hr)

WL offers more economical way to collect samples

SIS fit to derive Twl

HSC

SIS fit to derive Twl

HSC

SIS fit to derive Twl

HSC

SIS fit to derive Twl

HSC

Comparison at CFHLS D1

Rc: 0.5 hour (x 13p) 30-40 gals/arcmin2

Comparison at CFHLS D1

LSST Science Book

HSC

14.3.7 Shear-selected Clusters

The mass maps lead naturally to the idea of searching for clusters with weak lensing. Weak lensing has traditionally been used to provide mass measurements of already known clusters, but fields of view are now large enough $(2-20 \text{ deg}^2)$ to allow blind surveys for mass overdensities (Wittman et al. 2006; Dietrich et al. 2007; Gavazzi & Soucail 2007; Miyazaki et al. 2007; Massey et al. 2007b). Based on these surveys, a conservative estimate is that LSST will reveal two shear-selected clusters deg⁻² with good signal-to-noise ratio, or 40,000 over the full survey area. Results to date suggest that many of these will not be strong X-ray sources, and many strong X-ray sources will not be selected by shear. This is an exciting opportunity to select a large sample of clusters based on mass only, rather than emitted light, but this field is currently in its infancy. Understanding selection effects is critical for using cluster counts as a cosmological tool (see Figure 12.22 and § 13.6) because mass, not light, clustering is the predictable quantity in cosmological models; simulations of structure formation in these models (§ 15.5) will be necessary to interpret the data. Shear selection provides a unique view of these selection effects, and LSST will greatly expand this view.

Prepared by the LSST Science Collaborations, with contributions from the LSST Project.

Version 2.0 November 2009

We have demonstrated that Subaru/Suprime-Cam is powerful facility to carry out weak lensing survey that can probe dark matter clustering.

We have demonstrated that Subaru/Suprime-Cam is powerful facility to carry out weak lensing survey that can probe dark matter clustering.

More data is necessary to argue the nature of Dark Energy

Upgrade of Suprime-Cam

- I. Large Aperture
- 2.Wide Field of View
- 3. Superb image quality
- 4. High QE in red

Wider Keep it Higher

Wider Field of View

Hyper Suprime-Cam

HSC Collaboration

National Astronomical Observatory of Japan

University of Tokyo (J)

KEK (J)

ASIAA (Taiwan)

Princeton University (US)

Mitsubishi Electric Canon Hamamatsu Photonics

Industrial Partners

- Larger Focal Plane 1.5 deg diameter
 - More CCDs
 - Large Filters
- New Wide Field Corrector
- <u>New Prime Focus Unit</u>
 - Optics alignment system
 - mechanical interface to the telescope

Industrial Partners

- Larger Focal Plane 1.5 deg diameter
 - More CCDs
 - Large Filters
- <u>New Wide Field Corrector</u>
- <u>New Prime Focus Unit</u>

- Canon MITSUBISHI
- Optics alignment system
- mechanical interface to the telescope

Industrial Partners

- Larger Focal Plane 1.5 deg diameter
 - More CCDs
 HAMAMATS
 - Large Filters
- <u>New Wide Field Corrector</u>
- <u>New Prime Focus Unit</u>

- Canon MITSUBISHI
- Optics alignment system
- mechanical interface to the telescope

Detector

NAOJ-Hamamatsu Collaboration

1998 n-ch Front Illminated CCD

нѕс

p-ch Development History

HPK p-ch CCD

HSC

HPK pch CCD

Quantum Efficiency

HSC

Mounted on Subaru

Replacement of MIT/LL CCID-20 July, 2008

HSC Focal Plane

	/	/														
			- 0			- 10 -		-@- 		$\mathbb{O}_{k=1}^{\prime}$	000					
/	/ /	0/	25®	1) () ()	υ © ©	U () ()	υ © ©	υ © ©	0 0	U () () ()	9 ©) \@		\backslash		\setminus
			000	00000	0 0 0	0 0		0 0 0	0 ()) () () () () () () () () () () () ()	0 _0 0	0 ())) ()	0 0				
		0 0 0	0 0 0	00000	0 0 0	0 0 0	() 	0 0 0	000000	0 0 0	00000	0 0	00	& & () () () () () () () () () () () () () (
		0	000	0 0 0 0 0		0 0 0		0 0 0	0 0 0	0000	0000	000000000000000000000000000000000000000	00	00		
		0 0 0	00 0	000000000000000000000000000000000000000	0 0 0	00	© 0 0 0 0	00	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0	0	00	000000000000000000000000000000000000000		
		0 0 0	00	0 0 0	0 0 0	0 0 0 0 0	0 0	0 0 0	0 00	0 0 0	0 0 () ()	0 00	00		@/@ / [] / @	
		0	00			00		00	0		0 0 0 0			() () () () () () () () () () () () () (/
		©`		00	0 0 	00	0 0 }	0 0 	0	00 -	00/0	/0			/	/

HSC

104 Science4 Guides8 Focus check

SiC cold plate Cooled by two pulse tube coolers 45 W@-100 C each

HSC Focal Plane

five installed and being tested

HSC Focal Plane

HSC

Electronics Assembly

HSC

FEE: Signal processing circuit

- Double-slope type CDS circuit based on SDSS photometric camera
- 3 op-amps signal processor to achieve low power consumption
 - Pre-amp
 - Inverting amp
 - Integration amp
- AC coupling with DC level restoration
- Low power and fast op-amps with quick overload recovery (No need of clamp diode)

Back End Electronics

HSC

Ethernet Connection to the DAQ System

Designed by U-tokyo and KEK (Uchida et al. 2008 SPIE)

Wider Field Corrector

Wide Field Corrector

Current

New

GI Diameter 820 mm

whesigenegh manager and ality

	0	0.125	0.25	0.5	0.75	[deg]
g	1.0	2.7	3.6			
(0.49)	5.8	5.5	6.3	9.2	5.2	
r	1.9	3.0	4.2			
(0.63)	1.3	1.5	3.4	4.0	4.5	
i	3.1	3.8	5.7			
(0.77)	2.8	3.8	5.1	5.3	4.4	
\mathbf{Z}	3.8	4.3	6.7			
(0.90)	2.8	4.1	5.0	6.3	4.6	

RMS spot radius (micron)

HSC

upper:SC, lower:HSC

whesigenegh manager and ality

	0	0.125	0.25	0.5	0.75	[deg]
g	1.0	2.7	3.6	0".	12 (FWF	HM)
(0.49)	5.8	5.5	6.3	9.2	5.2	
r	1.9	3.0	4.2			
(0.63)	1.3	1.5	3.4	4.0	4.5	
i	3.1	3.8	5.7			
(0.77)	2.8	3.8	5.1	5.3	4.4	
Z	3.8	4.3	6.7			
(0.90)	2.8	4.1	5.0	6.3	4.6	

RMS spot radius (micron)

HSC

upper:SC, lower:HSC

whesigenegh manager and ality

HSC

	0	0.125	0.25	0.5	0.75	[deg]
g	1.0	2.7	3.6	0".1	12 (FWI	HM)
(0.49)	5.8	5.5	6.3	9.2	5.2	
r	1.9	3.0	4.2			
(0.63)	1.3	1.5	3.4	4.0	4.5	
i	3.1	3.8	5.7			
(0.77)	2.8	3.8	5.1	5.3	4.4	
Z	3.8	4.3	6.7			
(0.90)	2.8	4.1	5.0	6.3	4.6	

RMS spot radius (micron) upper:SC, lower:HSC 0".2 (FWHM) is allocated including manufacturing error

Lens Barrel from Kyocera

Sintered

New WFC G1

New WFC

New WFC

Mechanical Mockup used for fit check at the telescope

Filter

i'- filter : Barr

Filter

Prototyping

- Optics coating Japan
- Asahi Spectra
- Barr

HSC

They all look promising.

Broad band prototype

r' & i' filter already procured

нѕс

Filter Exchanger

Filter Exchanger

Central Unit

Stacker

Carrier

HSC

HSC Assembly

HSC

Schedule

2010/12	New PFU + Camera fitting Test			
2011/01	Filter Exchanger Env. Test			
2011/02	CCD Final Installation			
2011/03	New PFU -WFC fitting Test			
2011/04	Shipping to Hawaii			
2011/9	Engineering F.L.			

Draft Survey Plan (wide)

1500 square degree

filter	g	r	i	Z	Y
T [min]	15	20	30	20	25
mag	26.5	26.4	26.2	24.9	23.7
DES	25.6	25.1	25.2	24.4	22.3

5 sigma Point source 0.8 arcsec Seeing

Candidates of survey fields

Comparison

HSC

DE Constraint

HSC

Actual Data [PSF map]

object137 pos 4 e*10 Ellipticity ~ 3 % 8000 0000 4000 Ō 2000 6000 4000 2000 x[0]

PSF Modeling using stars

Galaxy shape collection based on the model

Extensive understanding of the instruments necessary to make model

optical and mechanical mis-alignment, mechanics motion error

Observed ellipticity of stars

Required accuracy is smaller than the correction

Evaluation of the systematic error is crucial.

Observed ellipticity of stars

Distance from Optical Center \longrightarrow

Summary

- Hyper Suprime-Cam is being built at NAOJ and will see the first light in fall 2011. Large survey (1500 sqdeg) is planned to carry out 2012 - 2017.
- Stage III dark energy constraint is expected and a lot of unexpected is also expected.

LSST-Science

- Efficient, deep optical survey telescope
- Will transform observation of the variable universe and address broad questions:
 - Dark energy using gravitational lensing and supernovae
 - Dark matter
 - Near-Earth, Kuiper-belt objects
 - Solar neighborhood
 - Transient phenomena
 - Gamma-ray bursts, Variable stars, Supernovae...
- Publicly accessible archive >100 Pbyte

2010/07/02 at La Jolla near San Diego

10

Thank you