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0. Introduction

5D Electromagnetism on the flat geometry
The extra space is periodic (periodicity 21) and Zs-parity

Figure 1: IR-regularized geometry of 5D flat space (1).
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d52:nwdx“dx”—|—dy2 , —oco<zrhy<oo , y—oy+2, y&—y
() = diag(~1,1,1,1) , (XV) = (XV = 2", X° = y) = (2,y) ,
M,N =0,1,2,3,5; u,v=0,1,2,3. (1)

The Casimir energy
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A the 4D-momentum cutoff; W(p,y) the weight function



1) Un-weighted case: W =1

Un-restricted integral region :

1
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Ecas(A 1) = [—0.12491A° — (1.41,0.706, 0.353) x 10~° [A°In(IA)]

Randall-Schwartz integral region :

1
EE5 = _—_[-0.0893 A*] . (3)

872

2) Weighted case



[ 2,504 + (—0.142,1.09, 1.13) x 1074280 for py; — (1/N;)e=(1/20P*~(1/2)%/1
< —6.03 x 1023 for Wa = (1/Na)e™PY
~2.514 + (19.5,11.6,6.68) x 10~421I8) for Wy = (1/Ng)e~(7/2@ +1/v%)

\
(W7 elliptic, Wa: hyperbolic, Wg: reciprocal).
The renormalization of the compactification size |.
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EX Al = —7 (1 —4cln(IA)) = A (5)

The quantity Al is the normalization factor.

Casimir Energy of 4D Electromagnetism



Figure 2: Graph of Planck's radiation formula.
P(B, k) = (C%)Sﬁk?’/(eﬂk —1) (1<B<2, 0.01 <k <10).




Figure 3: IR-regularized geometry of 5D warped space (6).
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(Nupdztdz” + dz*) = e_2“|y|77w,da:“da:’/ +dy?, |z| = =e“l¥l . (6)

ds® = 75
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Heat-Kernel Approach and Position/Momentum
Propagator

A-regularized Casimir energy.
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Figure 4: Space of (z,p) for the integration.
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Figure 5: Behaviour of (—1/2)p>F~(p, z) (8).
1.0001 /w < 2 < 0.9999/T, AT/w << A .

T =1,w=10%A = 4-10%
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Weight Function and Casimir Energy Evaluation

W d4p 1/T
EL TV (w,T) = / (27)4 /1 fe dz W(p,z)F*(p, z)

~ oo 2 oo _ _
PR(p.2) = 5(2) [ GG = s [ h GEe 2y
Examples of W(p,z): W(p,z) =

( (Nl)_1e_(1/2)152/“’2_(1/2)22T2 = Wi(p,2), Ny =1.711 /87> elliptic suppression
(No) e P2T/w = Wy(p, 2), Noy = 2;—2/87r2 hyperbolic suppressionl
(Ng)_16_1/2(ﬁ2/w2+1/’22T2) = Ws(p,2), Ny =0.4177/87%  reciprocal suppressionl

\
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where G (z, z) are defined in (7). NN; are normalization constants. We show the
shape of the energy integrand (—1/2)p°W1(p, 2)F~(p, z) in Fig.6.
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Figure 6:  Behavior of (—1/2)p3W1(p,2)EF~(p, z)(elliptic suppression).
A = 20000, w = 5000, T = 1. 1.0001/w < z < 0.9999/T, = AT/w < p < A.
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We can check the divergence (scaling) behavior of Eg_;azv by numerically
evaluating the (p, z)-integral (9) for the rectangle region of Fig.4.

w
_ECas —

y

%A.1,2{1—|—0.11 ln%—O.lo ln%} for W3
ToA*.0.062{140.03 In2 —0.08 mA} for W, (10)
\ %4/\.1,6{1+0.09 In2—-0.10 In&}  for Ws

L\

They give, after normalizing the factor A/T, only the log-divergence.
EY JAT' = —aw* (1 —4cln(A/w) — 4¢' In(A/T)) (11)
This means the 5D Casimir energy is finitely obtained by the ordinary renormal-
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ization of the warp factor w. In the above result of the warped case, the IR
parameter [ in the flat result (5) is replaced by the inverse of the warp factor w.
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Figure 7: UV regularization surface in 5D coordinate space.
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Meaning of Weight Function and Quantum
Fluctuation of Coordinates and Momenta

We propose to replace the 5D space integral with the weight W, by the
following path-integral. We newly define the Casimir energy in the higher-
dimensional theory as follows.

1/ 1/T )
Ecas(w, T, A) = / dp / 1] Dr(2) { / F(p(), 2" dz’
/A IR /w)=p(1/T)=1/p 1/w

1 YT 11 [y
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[ oo [ Fel e
= dp/ Dx*(z / F , 2 )dz
1/A r(1/w)=r(1/T)=p o 1w T(#)

1T
X exp [—1/ ! Vr? 41 r3dz] ,(12)
1

20/ )y, wrz?

where p = AT /w and the limit AT~! — oo is taken. The string (surface) tension
parameter 1/2a’ is introduced. (Note: Dimension of o' is [Length]*. ) The
square-bracket ([---])-parts of (12) are —5Area = —5 [ /detgud*z (See
(??)) where g, is the induced metric on the 4D surface. F(p, z) is defined in (9)
or (8) and shows the field-quantization of the bulk scalar (EM) fields.

The proposed definition, (12), clearly shows the 4D space-coordinates z®
or the 4D momentum-coordinates p® are quantized (quantum-statistically, not
field-theoretically) with the Euclidean time z and the "area Hamiltonian” A =
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[ v/det gop d*z. Note that F(p,z) or F(1/r,z) appears, in (12), as the energy
density operator in the quantum statistical system of {p*(2)} or {z%(2)}.
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Discussion and Conclusion

EX JAT' = —aw* (1 —4cln(A/w) — 4 In(A/T)) = —aw'™
W' =wv/1—4eln(Ajw) — 4 In(A/T) . (13)

we find the renormalization group function for the warp factor w as

<1l , |1 , & =wl-cln(A/w) = In(A/T))

B(B-function) = 3(liA) In C:)/ e (14)

Y

We should notice that, in the flat geometry case, the IR parameter (extra-space
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size) [ is renormalized . In the present warped case, however, the corresponding
parameter 1" is not renormalized, but the warp parameter w is renormalized.
Depending on the sign of ¢+ ¢, the 5D bulk curvature w flows as follows. When
c+ ¢ > 0, the bulk curvature w decreases (increases) as the the measurement
energy scale A increases (decreases). When ¢+ ¢ < 0, the flow goes in the
opposite way.

1 \ 1
GN obs GNR0082

~mi o~ (107%eV)* | (15)

where R..s is the cosmological size (Hubble length), m,, is the neutrino mass.

1 1
My~ —— = M% ~ (10%8eV)* . 16
G G pl. ~ (10%%eV) (16)
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The famous huge discrepancy factor: A\ /Aops ~ 10124, If we apply the present
approach, we have the warp factor w, and the result (13) strongly suggests the
following choice:

INPUT 1 A=M, .
1 M,

INPUT 2(Newton’s law exp.) w ~ — = ~my, ~ 107%eV
\/GNR0032 RCOS

FACT S~ / d*z\/—g —Aobs R oqw”

Result(13)requires e ° < e~ Feas/T" — exp{—T"*AT'uw*}

M
— T° =2 OUTPUT . (17)

We do not yet succeed in obtaining the right sign, but succeed in obtaining
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the finiteness and its gross absolute value of the cosmological constant. Now
we understand that the smallness of the cosmological constant comes from the
renormalization flow for the non asymptotic-free case (¢ + ¢ < 0 in (14)).
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