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The Transplanckian Opportunity:
Sen5|t|V|ty to ngh Energles

Though the observed fluctuations
currently have low energy, they t

were once very high:
p=k/a(t)

Thus CMB observables should be
sensitive to new physics at some
‘Transplanckian’ scale U
(Brandenberger ‘99)
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Dimensional analysis suggests in
that these modifications to low-
energy observables must scale as
(H/M)".
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Prime Example:
The Primordial Power Spectrum

m The power spectrum is simply the 2-pt correlation
function of inflaton field fluctuations:
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WMAP7: A, =(243+0.11) x 1077, ng=0.963+0.012

= (Naively) interpreting this as a propagator, we
expect that it encodes high-energy physics via
virtual heavy )-particles:
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Inflaton Field Effective Action
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m Consider the effective action for ¢:

Seprlé] = / *p (p)d(—p) P /2 + H /2 + coHX(H? M) + cop®(H2 /M) 4.},
m The freezeout scale is p=H, thus the 2-pt function is
(p(p)O(—D)) |lperr = H* + coH*(H?/M?) + ¢ H*(H? /M?)

= Only even powers of p are allowed in S_, so we have
an expansion in (H/M).

Which is disastrous, since H/M ~ 0.01

(Brandenberger, Burgess, Cline, Danielsson, Easther,
Greene, Lemieux, Kaloper, Kinney, Kleban, Lawrence,
Martin, Schalm, Shenker, Shiu, v.d. Schaar)



A Possible Solution:
Vacuum State Modification

m Fortunately, there appears to be a loophole
(Easther, Greene, Kinney, v.d. Schaar, Schalm, Shiu).

= Note that time-localized (‘boundary’) terms are one energy-
dimension lower, and thus would scale only as H/M:

Sbounda.ry — /d4$ g TTl(DZCS(t — tc)'

m A simple calculation shows that such boundary terms
modify the inflaton vacuum state.

= Previous analysis assumed a Bunch-Davies vacuum,

CLk|O> — Oj

whereas De Sitter space allows for more general vacua:

(Clk + ..BkaT_k) k) = 0, |Ok) = N exp {—,Bkaikaﬂ 0).



Effect of Vacuum Choice on
Power Spectrum

m The excited vacuum will add an oscillating term to the power spectrum,
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m These ‘wiggles’ are expected to be a generic, model-independent
feature of quantum gravity, with all new physics encoded in g.

Py(k) :
But what is §?

Standard power-
law result

Corrections of
order 1|

In k Easther, Greene, Kinney, Shiu ‘01




Effective Action
Construction Procedure

m We recently developed the procedure to construct the effective
description to represent high-energy physics.

m Begin with inflating system,

Surld] = — [ oy | 5007 - V()]

and add (for example) Yukawa interactions to a heavy field y :
1
Snew[{rp:X] — /d41 \/_ |: ( ) 5 1'-[2)(2 + 2‘r’ X]

m The power spectrum can then be computed using the in-in

formalism:
k3 + d I-H If _ "+ d ffrH Ih’
Po(k) = Jim o= (O(to)]e o “ T oy (1) 2™ 1 T D010

= Note that this can be interpreted as an in-out correlation using
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Vacuum Construction Procedure

m This suggests we should transform into a new field basis

givenby ;s = (¢, +¢_)/2, d=pp —p_,
X = (x4 +x-)/2, X=x4—x-

m In this basis the action is now

P2
Slp, @, x,X] = /d4;r\/§ [000® + 90X + M*yX +gxp® + %X (502 + T)] :

m The correlations can now be evaluated using Green’s and
Wightman’s functions for these fields:

Fk(TlaTQ) = <{f§k(7'1){15—k(7'2)> r o H . .. —ikT
) - Uk(T) = — (1 —ikT)e
Re [Ux(m1)Ug (m2)] , Vv 2k3
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0 = (Px(m)P_k(72)) (MGJ, Schalm “10)



Power Spectrum Corrections

m 2-pt correlation can then be computed using normal methods,
producing Feynman diagrams:
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m Which are significant? We need some approximations!

(MGJ, Schalm ‘10)



Power Spectrum Corrections

m Each vertex is an integral over the time of interaction, and has
the following form:
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m This admits a stationary phase approximation near the
moment of energy-conservation,
ki - ko
kiks
m The vertex (to leading order in H/M) is then simply
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Power Spectrum Corrections

/ Boundary correction generated by
. O stationary phase at 7 = -M/2HkK,

when pair production occurs

2
nos  (9H\T VT _ A1 AQ M
Q_pﬁg ) (k) = (HI) 12 (|ka0 3”111; + —|k7‘g| 12— gin EIHZ k|Tol) + ¢

This is exactly the form we expected (and desired)!

. L Bulk correction generated
by virtual x-exchange

g1 A2
AP® (k) = -
¢ W) = 3 (k)

(MGJ, Schalm ‘10) This is a non-oscillating shift in the power spectrum
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Power Spectrum Corrections
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Example Theory:
Decreasing interactions

with energy
New Physics Hypersurface:

Constant interactions with energy
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Boundary Effective Field Theory:
Increasing interactions with energy

In k

(MGJ, Schalm ‘10)



Low-Energy Effectlve Interactlons

m  Most importantly, these corrections can be derived from inflaton-only
interactions:

d3
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where



Observability?

m We see that integrating out high energy physics
produces low energy interactions, but an expanding
background induces boundary terms

m These represent a modified vacuum, appearing in the
power spectrum as oscillations
m But is this observable?

m We can see about four decades of comoving k in the

CMB, 4
Fmin < kobs < 107 ki,

If H/Muing ~ 10~2 then we should see about 102
oscillations, just at the threshold of Planck’s sensitivity.



Scale of Inflation

m The scale of inflation is directly proportional to r,
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Sensitivity to r ~ 0.01 is the goal of CMBPol

m A detectably large tensor amplitude would demonstrate that
inflation occurred at a very high energy scale, comparable to
GUTs (Lyth ‘96; Baumann and McAllister ‘07)

m Since
P~ (H/.Lnl-ffp])g

this also implies we should see Transplanckian effects in the
power spectrum



Conclusion

= We now possess the theoretical tools to
transform models of fundamental physics into
low-energy interactions In an expanding
background

m These will produce specific corrections to the
primordial power spectrum which could soon be
experimentally detected

m Such transplanckian corrections would also
imply the presence of a primordial tensor
background, detectable by e.g. CMBPol



